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Prefae
The main aim of this book is to present the onepts and tehniques ofomplex funtion theory in a way that will give the reader maximum assis-tane in mastering the fundamentals of the theory. The book is designed toserve as a text for a �rst ourse on the lassial theory omplex funtions oras a supplement to other standard texts. The seletion and the sequeningof the ontents are the result of the experienes I had during the ourse ofmy studies and teahing. As a prerequisite the reader is expeted to haveadequate knowledge of the elements real analysis. However, in an e�ort tomake the book aessible to a wider audiene, I have tried my best to min-imize the prerequisites and to keep the exposition at an elementary level.Thus I have inluded a number of examples motivating the ideas involvedin most of the theorems and de�nitions. Most of the exerises have beenprovided with hints for their solutions. Some theorems have been givenmore than one proof to help the reader aquire a deeper understanding ofthe theory. The present edition has a large number of illuminating newexamples, observations, exerises, and some additional materials overingsome advaned topis.Within eah hapter, all the numbered items (exept �gures) eg. Corol-lary, equation, Example, Lemma, Proposition, Remark, Theorem are num-bered onseutively as they appear. For the sake of onveniene, the signsignals the end of the proofs of Theorem, Corollary, Lemma and Propo-sition whereas the sign � indiates the end of Remark, Observation andExample.It is a great pleasure for me to express my gratitude to Prof. M.S. Ran-gahari who has not only enouraged me to write the �rst edition of thebook but also has read several drafts with are and patiene. During mydotoral work at the Indian Institute of Tehnology Kanpur, I had opportu-nities to be a tutor to graduate and undergraduate students on this subjet.In this ontext, I would like to thank my teaher Prof. O.P. Juneja whointrodued me to the theory and has been a soure of inspiration sine then.Many people have given me help, enouragement, and inspiration. Ishould take this opportunity to mention just a few. I express my deepgratitude to Professors R. Balasubramanian, O. Martio, St. Rusheweyh,C.S. Seshadri, V. Singh, M. Vuorinen, and G.P. Youvaraj whose ontin-ued enouragement has been invaluable for widening my researh interest.Partiularly, I am deeply indebted to Prof. M. Vuorinen for his ontinuedsupport in bringing out this edition. In addition, a number of my researhvisits to work with him has helped me to learn a lot.It is my pleasant duty to thank Prof. G.P. Youvaraj who has been my



best friend and to this work. He has proofread the �nal manusript and hisonstrutive ritiisms has improved the presentation lot. I take this op-portunity to thank Prof. Roger W. Barnard for his support and friendshipduring my visit to Texas Teh University. I greatly appreiate his arefulreading of the �nal version of the manusript and making suggestions. Iwelome and appreiate any suggestions for improvements and ommentsregarding errors and misprints.I must also reord my appreiation due to my daughter Abirami and sonAshwin for their understanding and love during the long period that I havetaken to omplete this seond edition of the book. Above all, my deepestgratitude goes to my wife Booma (alias Geetha) for her in�nite patiene,ontinued support, and loving enouragements in all walks of my life.Finally, I wish to express my thanks to the Center for Continuing Edu-ation at the Indian Institute of Tehnology, Madras, India, for its supportin the preparation of the manusript. Also, I thank Mr. N.K. Mehra, pub-lisher and Managing Diretor of Narosa Publishing House Pvt. Ltd. whohas been superb. S PonnusamyIIT Madras, India
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Chapter 1Complex Numbers
In this hapter we review basi results suh as fundamental algebrai andtopologial properties of omplex numbers. We assume that the readeris aquainted with the familiar properties of the real number system. InSetion 1.1, we introdue omplex numbers. Setion 1.3 provides a way ofobtaining solutions of a quadrati equation in omplex variable. Setion1.2 disusses polar representation of omplex numbers whereas Setion 1.4gives an easy method of �nding solutions of a rational power of omplexnumbers. In Setion 1.5, we introdue topologial properties of the omplexplane. In Setion 1.6, we present several fundamental theorems onerningonvergene of sequenes and series of omplex numbers.1.1 De�nition of Complex NumbersConsider ordered pairs of real numbers (x; y). The word `ordered' meansthat (x; y), (y; x) are distint unless x = y. We denote the set of all orderedpairs of real numbers by C . We shall all C as the set of all omplex num-bers. In C , we de�ne addition (+) and multipliation (� or juxtaposition)between two suh ordered pairs (x1; y1), (x2; y2) by(x1; y1) + (x2; y2) := (x1 + x2; y1 + y2)(1.1)and (x1; y1)(x2; y2) := (x1x2 � y1y2; x1y2 + y1x2):(1.2)If z1 = (x1; y1) and z2 = (x2; y2), then we say thatz1 = z2 () x1 = x2 and y1 = y2:In partiular, z = (x; y) = (0; 0)() x = 0 and y = 0:We an easily hek the following simple properties for equality of or-dered pairs making it an equivalene relation: For any z1; z2 and z3 inC ,



2 Complex Numbers(i) z1 = z1(ii) z1 = z2 =) z2 = z1(iii) z1 = z2 and z2 = z3 =) z1 = z3.The assoiative and ommutative laws for addition and the multiplia-tion and distributive laws et., follow easily from the properties of the �eldof real numbers R. Further, it is lear from (1.1) and (1.2) that (0; 0) isthe additive identity, (1; 0) is the multipliative identity, (�x;�y) is theadditive inverse of z = (x; y) and1z := � xx2 + y2 ;� yx2 + y2�is the multipliative inverse of z = (x; y) 6= (0; 0).1 Given two omplexnumbers z1 and z2,� there is a unique omplex number, say z3, suh that z1 + z3 = z2: Ifzj = (xj ; yj) (j = 1; 2; 3), then z3 = (x2 � x1; y2 � y1) and is denotedby z2 � z1. [Subtration℄� for z2 6= (0; 0), there is a unique z3 suh that z1 = z2z3: In fat, z3 =z1:(1=z2) sine z2z3 = z2:z1:(1=z2) = (z2:(1=z2)):z1 = 1:z1 = z1: Theomplex number z3 is otherwise written as z3 = z1=z2. [Division℄The symbol ommonly used for a omplex number is not (x; y) but x+ iy,x; y real. Following Euler, we de�ne i := (0; 1) in the omplex numbersystem C of ordered pairs. We write a real number x as (x; 0). Thenaording to (1.2)i2 = (0; 1)(0; 1) = (�1; 0); i3 = i2 � i = (�1; 0)(0; 1) = (0;�1);and i4 = i2 � i2 = (1; 0). Also, x + iy = (x; 0) + (0; 1)(y; 0) = (x; y): Theabove disussion shows that C is also a �eld. Further, writing a real numberx as (x; 0) and noting that(x1; 0) + (x2; 0) = (x1 + x2; 0) and (x1; 0)(x2; 0) = (x1x2; 0);R turns out to be a sub�eld of C . The assoiation x 7! (x; 0) shows that wean always treat R as a subset of C . Complex numbers of the form (x; 0)are said to be purely real or just real. Those of the form (0; y) are saidto be purely imaginary whenever y 6= 0. In partiular, we have, with theabove identi�ation of R, i2 = �1: Every (omplex number) z = (x; y) 2 C ,denoted now by x+ iy, admits a unique representation2(x; y) = (x; 0) + (0; 1)(y; 0) = x+ iy; with x; y 2 R:1We use `:=' to abbreviate \de�ned by" or \written as".2From now on if we write z = x + iy 2 C , x; y are real numbers unless otherwisestated.



1.1 De�nition of Complex Numbers 3`Zero' viz. (0; 0) = 0+ i0 is the only omplex number both real and purelyimaginary. The onjugate of a omplex number z = x + iy is the omplexnumber z := x � iy. Note that z = z if and only if x + iy = x � iy, i.e.y = 0; i.e. z is purely real. The inverse or reiproal z�1 of a omplexnumber z = x+ iy 6= 0 is1z = zzz = x� iyx2 + y2 = � xx2 + y2�� i� yx2 + y2� ;whih was de�ned earlier as the multipliative inverse of z. We all x andy the real part and imaginary part of z = x+ iy, respetively. We writeRe z := x and Im z := y; Re z = z + z2 and Im z = z � z2i :We know that ordered pairs of real numbers represent points in the geomet-ri plane referred to a pair of retangular axes. We then all the olletionof ordered pairs as R2 and the two axes as the x-axis and y-axis. Beause(x; 0) 2 R2 orresponds to real numbers, the x-axis is alled the real axisand sine iy = (0; y) 2 R2 is purely imaginary, the y-axis is alled theimaginary axis.Now, we an visualize C as a plane with x + iy as points in R2 andwe simply refer to it as the �nite omplex plane or simply omplex plane.Depending on the problems on hand, we use x + iy or (x; y), to representa omplex number.1.3. Theorem. The �eld C annot be totally ordered in onsistenewith the usual order on R. (Total ordering means that if a 6= b, then eithera < b or a > b):Proof. Suppose that suh a total ordering exists on C . Then for i 2 Cwe would have either i > 0 or i < 0 sine i 6= 0. This means that in eitherase �1 = i � i = (�i)(�i) > 0whih is not true in R. This observation shows that suh an ordering isimpossible in C .Theorem 1.3 means that the expressions z1 > z2 or z1 < z2 have nomeaning unless z1 and z2 are real.1.4. Conepts of modulus/absolute value. The modulus or abso-lute value of x 2 R is de�ned byjxj := � x if x � 0�x if x < 0:



4 Complex NumbersAs it stands, there is no natural generalization of j � j to C , beause, as wehave seen in Theorem 1.3, there is no total ordering on C . However, weinterpret jxj geometrially as the distane from x to the origin (zero) of thereal line. It is this fat whih leads us to de�ne the modulus of a omplexnumber z = x + iy 2 C by jzj := pzz = px2 + y2.It is easy to derive thefollowing simple fats:(i) jzj = 0 i�3 z = 0.(ii) jRe zj � jzj; jIm zj � jzj; jzj = jzj, z1 + z2 = z1 + z2; z1z2 = z1z2.Equality holds in the �rst two inequalities i� Im z = 0 and Re z = 0,respetively.(iii) jz1z2j = jz1j jz2j; ����z1z2 ���� = jz1jjz2j (z2 6= 0).(iv) Re (z1 + z2) = Re z1 +Re z2 and Im (z1 + z2) = Im z1 + Im z2:1.5. Example. It is easy to see that if z1�z2 and z1z2 are both real,then either z1 and z2 are both real or one is the onjugate of the other.Indeed, there is nothing to prove if one of z1 and z2 is zero. Therefore,we may assume that both z1 and z2 are non-zero. By hypothesisz1z2(z1 � z2) = z1(z1z2 � jz2j2)whih is real. Therefore, we must have either z1 is real or z1z2 � jz2j2 = 0whih is equivalent to saying that either z1 is real or z1 = z2. This provesthe required onlusion. �1.6. Example. We wish to show that(i) jz1 + z2j � jz1j+ jz2j,(ii) j jz1j � jz2j j � jz1 � z2j for all z1; z2 2 C .It is also easy to see that (i) and (ii) are equivalent.To prove these, we �rst observe that if z1+z2 = 0, then there is nothingto prove. If z1 + z2 6= 0, then jz1 + z2j 6= 0. Sine Re z � jzj, we have���� z1z1 + z2 ����+ ���� z2z1 + z2 ���� � Re � z1z1 + z2�+Re � z2z1 + z2� = 1(1.7)from whih (i) follows. To prove the seond inequality, we write z1 =z2 + (z1 � z2) so that, by (i),jz1j � jz2j+ jz1 � z2j; i.e. jz1j � jz2j � jz1 � z2j:(1.8)Similarly, we obtain jz2j � jz1j � jz2 � z1j = jz1 � z2j:(1.9)3We use Paul Halmos's notation `i�' to abbreviate the words `if and only if'.



1.1 De�nition of Complex Numbers 5Combining (1.8) and (1.9) we obtain (ii). Atually, (ii) implies (i) an beseen similarly. Thus, (i) and (ii) are equivalent.Finally, we disuss the equalities in (i) and (ii). If one of z1; z2 is zero,then equality in (i) holds obviously. If z1 + z2 = 0, then equality in (i)is possible only when z1 = z2 = 0. So we assume that z1 6= 0, z2 6= 0,z1 + z2 6= 0 and note that jzj = jRe zj () Im z = 0. From (1.7), we seethat the equality in (i) holds i� for eah k = 1; 2,Im � zkz1 + z2� = 0 and Re � zkz1 + z2� � 0:That is, i� jz1z2jjz1 + z2j2 = Re (z1z2)jz1 + z2j2 ; i.e. jz1z2j = Re (z1z2):Equivalently, this holds when z1z2 is a non-negative real number. This is, infat, equivalent to the relation z1 = tz2 with t � 0, sine z1z2 = z1jz2j2=z2.One an easily hek that the same ondition holds for the equality in (ii).This ompletes the problem. �Here is another proof of the two inequalities of Example 1.6:jz1 + z2j2 = (z1 + z2)(z1 + z2)= jz1j2 + 2Re (z1z2) + jz2j2� jz1j2 + 2jz1z2j+ jz2j2; sine Re z � jRe zj � jzj;= jz1j2 + 2jz1j jz2j+ jz2j2� (jz1j+ jz2j)2;that is, jz1 + z2j � jz1j+ jz2j whih is known as the triangle inequality andit is lear that the equality holds i� jz1z2j = Re (z1z2); i.e. z1 = tz2, wheret � 0. Moreover, by �nite indution, it is easy to see that������ nXj=1 zj������ � nXj=1 jzj j:The equality holds when zj (j = 1; : : : ; n) lie on the same ray emanatingfrom the origin.1.10. Remark. If z1 = tz2 where t � 0, z1 = x1 + iy1 and z2 =x2 + iy2 6= 0, then it follows that x1 = tx2 and y1 = ty2 so that (0; 0),(x1; y1) and (x2; y2) lie on a ray from (0; 0). In other words, the points inR2 orresponding to z1 and z2 are on the ray from the origin. Note thatthis means that z1; z2 are linearly dependent. �



6 Complex Numbers
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Figure 1.1: Geometri representation of p3=2 + i=p2.1.11. Remark. For z = x+ iy, we have jzj2 � 2jxj jyj so that2jzj2 = jzj2 + jzj2 � x2 + y2 + 2jxj jyj = (jxj+ jyj)2:Hene, for any z = x + iy 2 C , we have jzj � jxj + jyj � p2jzj and it islear that the onstant p2 annot be replaed by a smaller number unlessx = 0 or y = 0. The latter inequality beomes equality if x = �y. �1.2 Geometri InterpretationAs we have pointed out in Setion 1.1, for every point of the z-plane thereis one and only one omplex number z and onversely. A omplex numberz = x + iy may be thought of as a vetor or as a direted line segment, inthe omplex plane and pitured as an arrow from the origin to the point(x; y) in C ; or as any vetor obtained by translating this vetor parallel toitself, i.e. one whose starting point is irrelevant. For instane the pointz = p32 + i2determines the vetor from the origin to this point and so the direted linesegment from (a�p3=2; b�1=2) to (a; b) also represents the same omplexnumber z = p32 + i2 for any (a; b) 2 R2 . Both vetors have the same lengthand point in the same diretion. Thus we have an in�nite number of linesegments that we an draw in order to represent a omplex number, beauseall suh segments have the same length and point in the same diretion (seeFigures 1.1 and 1.2). Here jzj is the length of the vetor z. Some of thesimple geometri relations between z, z and �z are outlined in Figure 1.3.Geometrially, addition of two omplex numbers orresponds to the vetoraddition of vetors representing them. Let z1 = x1 + iy1 and z2 = x2 + iy2be two omplex numbers suh that 0; z1 and z2 are not ollinear. Thenz1 + z2 = (x1 + x2) + i(y1 + y2) = (x1 + x2; y1 + y2):We plot these vetors in Figure 1.4. As indiated in Figure 1.4, the vetorz1+z2 is the diagonal of the parallelogram with z1 and z2 as adjaent sides.



1.2 Geometri Interpretation 7
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Figure 1.4: Law of parallelogram.
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Figure 1.5: Triangle inequality jz1 + z2j � jz1j+ jz2j.
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O x z = reiθ

θ = Arg z

z = reiθ

O
θ = Arg z

y y

x

Figure 1.6: Argument of z 6= 0.Now the triangle inequalities (see Example 1.6 and Figure 1.5) are obvious.If r is the length of the vetor represented by z, i.e. the distane fromthe origin to z, and � is the angle measured from the positive x-axis to theradius vetor joining z in the anti-lokwise sense and z = x+ iy, then theoordinate systems, viz. the artesian and polar systems, are related by(see Figure 1.6) x = r os � and y = r sin �;(1.12)and hene r =px2 + y2 and tan � = y=x:(1.13)Thus, we de�ne z = r(os �+ i sin �) = rei� : Any value of � for whih (1.12)(or (1.13)) holds is alled an argument of z 6= 0 written as � = arg z: Clearlyz has an in�nite number of distint arguments. Any two distint argumentsof z di�er by an integral multiple of 2�. (Sine z = 0 () jzj = 0, arg 0 isindeterminate). In order to speify a unique value of arg z, we may restritits value to some interval of length 2�. To make this statement preise, weintrodue the onept of \prinipal value" of arg z as follows:For an arbitrary z 6= 0, the prinipal value of arg z is de�ned to be theunique value that satis�es �� < arg z � � and it will be denoted by Arg z.Thus, the relation between arg z and Arg z is given byarg z = Arg z + 2k�; k 2 Z:For onveniene the set of all the values of arg z is denoted by � arg z. Forexample,Arg i = �2 ; Arg (1� i) = ��4 ; Arg (�1) = �; Arg (�1� i) = �3�4 :While inverting the seond equation in (1.13) we should note the following
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O x

y

Arg z = −π + Arctan (y/x) Arg z = Arctan (y/x)

Arg z = π + Arctan (y/x) Arg z = Arctan (y/x)

Figure 1.7: Desription of argument of a omplex number z = x+ iy.
x

y

θ = 7π/6 (wrong)

θ = −5π/6 (correct)
−

√
3 − i = reiθFigure 1.8: To speify the orret value when � = Arg z = �5�=6.(see Figure 1.7):Arg z = 8>>>>><>>>>>: Artan (y=x) if x > 0� +Artan (y=x) if x < 0, y � 0�� +Artan (y=x) if x < 0, y < 0�=2 if x = 0, y > 0��=2 if x = 0, y < 0where Artan t is the prinipal value of the artangent of a real number tsatisfying the inequality ��=2 < artan t � �=2. The following are thentrue:sin(arg z) = ypx2 + y2 ; os(arg z) = xpx2 + y2 ; and tan(arg z) = yx:For instane, we have the following:(a) arg z = � arg z unless z is a negative real number, beause otherwisearg z = arg z = �. In fat, we have � arg z = � arg z + 2k�; k 2 Z:(b) If z = �p3� i, then we have Arg z = �5�=6 and so (see Figure 1.8)� arg z = �5�=6 + 2k�; k 2 Z:() The omplex number z = �1� i may be written as z = p2ei�; where� = Arg z + 2k� = �3�=4+ 2k�; k 2 Z:



10 Complex NumbersWe get non-prinipal values if and only if k 2 f�1;�2; : : : g.(d) Similarly we easily derive �p10 + ip30 = 2p10ei� with � = 2�=3 +2k�, k 2 Z:Next we see that the polar representation of a omplex number simpli�esthe task of desribing the produt of two omplex numbers geometrially.To do this we onsider two omplex numbers z1 and z2 with polar repre-sentations: z1 = r1ei�1 and z2 = r2ei�2 : Now,ei�1ei�2 = (os �1 + i sin �1)(os �2 + i sin �2)= (os �1 os �2 � sin �1 sin �2) + i(sin �1 os �2 + os �1 sin �2)= os(�1 + �2) + i sin(�1 + �2) = ei(�1+�2);whih gives z1z2 = r1r2ei�1ei�2 = r1r2ei(�1+�2):(1.14)Note that jei�j = 1 and ei� = ei(�+2k�), k 2 Z. Thus, we havejz1z2j = jz1j jz2j(1.15)and arg(z1z2) = arg z1 + arg z2 (mod 2�)(1.16)in the sense that they are the same but for an integral multiple of 2�. Forz2 6= 0, we have z1z2 = r1ei�1r2ei�2 = r1r2 ei(�1��2):Thus, for z2 6= 0, we havearg�z1z2� = arg z1 � arg z2 (mod 2�):(1.17)If we ombine (1.17) with the operation of subtration, learly the angle �de�ned by � = arg�z2 � z1z3 � z1�represents the angle at the vertex z1 (see Figure 1.9). For instane, let ushoose z1 = �1 and z2 = �i: Then z1z2 = i and hene Arg (z1z2) = �=2.Further Arg z1+Arg z2 = ���=2 = �=2: Therefore, in this ase, we obtainArg z1 +Arg z2 = Arg (z1z2):As another example, suppose z1 = �1 and z2 = i. Then we see thatArg (z1z2) = ��=2 and Arg z1 +Arg z2 = 3�=2:Therefore, in this ase, we obtain the orret answer by adding �2� tobring within the interval (��; �℄. These two examples show that when the
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−
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Figure 1.9: Angle at the vertex z1.
xO

φ

zeiφ z
y

Figure 1.10: Rotation of z through an angle �.prinipal arguments are added together in a multipliation problem, theresulting argument need not be a prinipal value. Conversely, we also seethat when the non-prinipal arguments are ombined, a prinipal argumentmay result. From this observation, we also see that if we are given twoomplex numbers z1 and z2, then z1 and z2 are equal i� jz1j = jz2j andarg z1 = arg z2 (mod 2�):(i) Suppose that z1 = ei�, where � is real and z2 = z, any omplexnumber. Then z1z2 = ei�z is obtained by rotating z through anangle � (see Figure 1.10).(ii) The set of all points given by the equation �6 < arg(z � 2� 3i) � �is geometrially represented in Figure 1.11.
xO

Arg (z − 2 − 3i) = π

(2, 3)

Arg z = π/6

y

Figure 1.11: The set of all points suh that �6 < Arg (z � 2� 3i) � �.
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xO

a

θ = Arg
(z

− a)
y

Figure 1.12: The straight line Arg (z � a) = �, where a = m+ in; m; n > 0.
O x

y

a
θθ + π

Figure 1.13: The straight line arg(z � a) = � + �.(iii) The set of points desribed by S = fz : j arg z � �=2j < �=2g repre-sents the upper half-plane, viz fz : Im z > 0g. Two more examplesof this kind are given in Figures 1.12 and 1.13.(iv) Suppose z1 and z2 are non-zero omplex numbers. Thenz1z2 + z1z2 = 0 () z1z1 = ��z2z2� ; i.e. z21jz1j2 = � z22jz2j2() 2 arg z1 = � + 2arg z2 + 2k�() arg z1 = arg z2 + (2k + 1)�=2; k 2 Z:
O x

y

z3

z2

z1

z3Figure 1.14: Desription for perpendiular and parallel vetors.
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O x

y

ζ1

ζ2

ζ3

ζ1 − ζ2

ζ2 − ζ3

Figure 1.15: Desription for parallel vetors on the same straight line.This means that the vetors z1 and z2 are perpendiular (see Figure1.14) i� z1z2 + z1z2 = 0, i.e. Re (z1z2) = 0 whih is same as writingz1 = isz2; for some real number s. Note that perpendiularity isequivalent to the Pythagorean equation jz1 � z2j2 = jz1j2 + jz2j2:(v) The line through points �1 and �2 is perpendiular to the line throughpoints �3 and �4 i� (the vetors) �1��2 and �3��4 are perpendiular.Thus, we onlude that the two lines are perpendiular if and only ifthere exists a real number s suh that�1 � �2�3 � �4 = is; i.e. arg��1 � �2�3 � �4� = �2 � 2k� or � �2 � 2k�for k 2 N0 := N [ f0g.(vi) Similarly, for nonzero z1; z2 2 C it follows thatz1z2 � z1z2 = 0 () 2Im (z1z2) = 0() Im �z1z2� = 0; i.e. z1z2 is real() arg z1 = arg z2 + k�; k 2 Z:This means vetor z1 is parallel to vetor z2 i� z1 = tz2, where t isreal.(vii) Thus, three omplex numbers �j (j = 1; 2; 3) lie on the same straightline i� �2��3 = �1(�3��1) for some real �1 (see Figure 1.15). Similarlywe also have�3 � �1 = �2(�1 � �2) and �1 � �2 = �3(�2 � �3)for the real numbers �2 and �3.The points �1; �2; �3 are ollinear i��1(�3 � �1) + �2(�1 � �2) + �3(�2 � �3) = 0for some �1; �2; �3 2 R. Equivalently,(�2 � �1)�1 + (�3 � �2)�2 + (�1 � �3)�3 = 0:



14 Complex NumbersWriting �2 � �1 = �1, �3 � �2 = �2 and �1 � �3 = �3, we anstate the ondition as P3j=1 �j�j = 0 and P3j=1 �j = 0 for some real�j (j = 1; 2; 3) not all zero.1.3 Square rootsSine the square of a real number is nonnegative, x2 = a has a real solutiononly if a � 0.Now we onsider the question of square roots in C , for instane w = i;�iare the solutions of w2 = �1. Moreover, our next theorem shows that ifz 2 C , then there is a solution w 2 C for w2 = z: Theorem 1.18 below givesa purely algebrai proof of this fat. Later we obtain this result, using polaroordinates, as a speial ase of a more general result.1.18. Theorem. For a given z = x+ iy 2 C , the solutions of w2 = zare given byw = �"r jzj+ x2 + i sgn (y)r jzj � x2 # ; sgn (y) = �+1 if y � 0�1 if y < 0:Proof. We have to solve the equation (u + iv)2 = x + iy for u and v.This equation gives u2 � v2 = x and 2uv = y(1.19)and therefore, u2 + v2 = jzj: Using this and the �rst equation in (1.19), wehave u2 = jzj+ x2 and v2 = jzj � x2 :(Note that jzj � x � 0). From the seond equation in (1.19) we observethat y > 0() uv > 0; y < 0() uv < 0:Therefore, seleting u and v so that their produt has the same sign as thatof y, we obtain the required onlusion.1.20. Corollary. For every omplex number z with jzj = 1 andRe z � 0, there exists a omplex number w with jwj = 1 suh that w2 = zand jImwj � (1=p2)jIm zj:Proof. Let z = x + iy with x � 0 and jzj = 1. Then x2 + y2 = 1 andx � x2. Using Theorem 1.18, we have (sine jzj2 = 1 = jzj)jImwj2 = �����r jzj2 � x2 �����2 = x2 + y2 � x2 � x+ y2 � x2 = jIm zj22whih ompletes the proof.



1.3 Square roots 151.21. Remark. For a given omplex number z, the following fatsare easy to obtain:(i) There are two values of w suh that w2 = z and these two values arealled the square roots of z.(ii) Eah of the two values of w is real i� z is real and positive.(iii) Eah of the two values of w is purely imaginary i� z is real andnegative.(iv) The two values of w oinide with zero i� z = 0.(v) For �; � 2 C , the equationz2 + �z + � = 0(1.22)has solutions z = ��+ w2 ;(1.23)where w is suh that w2 = �2 � 4� as obtained in Theorem 1.18.Here the proedure adopted to obtain the solution is the same as forequations with real oeÆients, viz. that of ompleting the square.(vi) Suppose that the equation (1.22) has real roots, say z = x. Then wehave x2 +�x+ � = 0, and x2 + �x+ � = 0: Thus, eliminating x, theequation (1.22) has real roots if(� � �)2 = (�� �)(�� � ��); i.e. (Im �)2 + (Im�)(Im (��)) = 0:Similarly we see that the ondition under whih (1.22) has purelyimaginary roots is that (Re�)(Re (��)) = (Im�)2:(vii) On the other hand suppose that the equation (1.22) has a omplexroot, say z = z1 suh that jz1j = 1. Then we havez21 + �z1 + � = 0:(1.24)Sine jz1j = 1, z1z1 = 1 so that z1 = 1=z1. So (1.24) yieldsz1 + �+ �z1 = 0 and z1 + �+ �z1 = 0:Now, eliminating z1 from the above two equations we get(1� j�j2)z1 = �(�� ��):Thus, (1.22) has roots on jzj = 1 only if j�� ��j = j1� j�j2j: �1.25. Remark. Let �pa+ ib denote the two square roots of a+ ibgiven by Theorem 1.18. More generally we use the notation � npa+ ib todenote the n n-th roots of a+ ib. It is easy to see that�p3 + 4i = �(2 + i); �p�3 + 4i = �(1 + 2i); �p2i = �(1 + i): �In Setion 1.4, De Moivre's Theorem will be used to solve the equationwn = z for w when z is given. In fat, there are exatly n n-th roots of anynon-zero omplex number z.



16 Complex Numbers1.4 Rational Powers of a Complex NumberRepeated appliation of (1.14) yields(rei�)m = rmeim�(1.26)or equivalently, jzmj = jzjm and arg(zm) = m arg z (mod 2�), where m isa natural number. If z = rei� 6= 0, repeated appliation of (1.17) showsthat for a natural number m, z�m = (rei�)�m = r�me�im�: Of ourse, wede�ne z0 = 1 for z 6= 0. In partiular, if we let jzj = 1, i.e. z = ei�, thenwe obtain the following:1.27. Theorem. (De Moivre's Theorem) If m is an integer, then(ei�)m = eim�, i.e. (os � + i sin �)m = osm� + i sinm�:Further, the identity (1.26) is espeially useful for �nding n-th roots ofa omplex number z0 6= 0, when n is a natural number. For, if we havezn = z0 with z = rei� and z0 = r0ei�0 , thenrnein� = r0ei�0 =) r = npr0 and n� = �0 + 2k�;where r = npr0 is the unique positive n-th root of r0 (> 0). Hene, all theroots of z = z1=n0 are given bynpjz0jei(�0+2k�)=n(1.28)where k is any integer. Eah value of k = 0; 1; : : : ; n� 1 gives a di�erentvalue of z. Any other value of k merely repeats one of the values of zorresponding to k = 0; 1; : : : ; n � 1, sine e2�ik = 1. Thus, there areexatly n n-th roots of z0 6= 0. Also (1.28) shows that the n n-th roots ofz0 atually lie on a irle entered at the origin and having radius equalto npjz0j. Eah of the roots obtained from (1.28) has the same modulusand the arguments are equally spaed. Geometrially the n n-th roots ofz0 6= 0 are loated at the verties of a regular n-sided polygon insribed inthe irle of radius npjz0j. Thus, we have proved1.29. Theorem. Given a nonzero omplex number z = rei� , theequation wn = z has preisely n distint solutions given bywk = nprei(�+2k�)=n;where k = 0; 1; : : : ; n� 1; and npr denotes the positive n-th root of r = jzjand � = Arg z.For instane, the n-th roots of unity are given by!k = ei2k�=n; k = 0; 1; : : : ; n� 1:(1.30)
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Figure 1.16: The n-th roots of 1 when n = 3; 4.
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Figure 1.17: The n-th roots of 1 when n = 8.The n-th roots of 1 when n equals 4 and 8 are pitured in Figures 1.16 and1.17.Similarly, the 6-th roots of i are ei(4k+1)�=12, k = 0; 1; : : : ; 5: Further,we easily derive that the values of [(1� i)=(p3 + i)℄1=6 are2�1=12ei�; � = (4k� � 5�)=12; k = 0; 1; : : : ; 5:1.31. Remark. It is easily veri�ed that (1.28) is valid when n is anegative integer, sine z1=n = (1=z)�1=n. Further, we an easily show thatif m and n are integers having no ommon fators then all the values ofzm=n0 are npjz0jmei[(m=n)�0+(2mk�=n)℄; k = 0; 1; : : : ; n� 1: �If we set ! = e2�i=n, then all the n-th roots of unity are expressed by1; !; !2; !3; : : : ; !n�1: From (1.28) it is lear that if ! 6= 1 is an n-th rootof unity, then the others are !2; !3; : : : ; !n�1; 1. Hene if  is any one ofn-th roots of z0, then all the n-th roots of z0 are given by; !; !2; : : : ; !n�1:Now, we see some of the immediate onsequenes of the above observa-tions. Sine !n� 1 = (!� 1)(1+!+!2 + � � � +!n�1) = 0: If ! 6= 1, then



18 Complex Numbersfor n > 1, we have1 + ! + !2 + � � � + !n�1 = 0 (! = ei2�=n):Thus, in partiular, by equating real and imaginary parts on both sidesn�1Xk=1 os�2k�n � = �1 and n�1Xk=1 sin�2k�n � = 0:Further, it is also evident that the sum of the produts of all n-th roots ofunity, taken 2; 3; : : : ; n � 1 respetively at a time, is zero, sine they arethe roots of the equation zn � 1 = 0: Now, for ! 6= 1, the ondition !n = 1gives that1 + 2! + � � � + n!n�1 = (1� !)(1 + 2! + � � � + n!n�1)1� != 1 + ! + !2 + � � � + !n�1 � n!n1� != �n1� ! :Let h be any integer whih is not a multiple of n, i.e. h = np+ q (0 <q < n). Then !h = !q; q < n whih implies that the setsf1; !h; !2h; : : : ; !(n�1)hg and f1; !; !2; : : : ; !n�1gare the same in some order. Hene if h is not a multiple of n or h is aninteger suh that 0 < jhj < n, then1 + !h + !2h + � � � + !(n�1)h = 0:If h is a multiple of n, then !h = !np = (!n)p = 1 and so we have1 + !h + !2h + � � � + !(n�1)h = n:Similarly, it is evident that1� !h + !2h � � � � + (�1)n�1!(n�1)h = 1� (�1)n!nh1 + !h = 1� (�1)n1 + !h :That is, if ! is an n-th root of unity,nXk=1(�1)k�1!(k�1)h = ( 0 if n is even21 + !h if n is odd.1.32. Example. We wish to prove that all irles that passes through� and (�)�1 interset the irle jzj = 1 at right angles if j�j 6= 1, � 6= 0.



1.4 Rational Powers of a Complex Number 19To do this, we onsider the equation of the irle C with enter at z0and radius r: C = fz 2 C : jz � z0j = rg: If C passes through the points� (6= 0) and 1=�, then we havej�� z0j2 = r2; i.e. j�j2 + jz0j2 � 2 Re (�z0) = r2and j1� �z0j2 = j�j2r2; i.e. 1 + j�j2jz0j2 � 2 Re (�z0) = j�j2r2:Subtrat the latter from the former to get (1 � j�j2)(1 + r2 � jz0j2) = 0:This implies either j�j = 1 or jz0j2 = 1 + r2 holds. The seond onditionyields the required onlusion if j�j 6= 1. �1.33. Example. Disuss the nature of the setS = fz : jz � aj+ jz + aj = 2g:(1.34)For two omplex numbers z1 and z2 we know thatjz1 � z2j; jz1 + z2j � jz1j+ jz2jso that j2aj = jz + a � (z � a)j � jz + aj + jz � aj = 2: Thus, there areomplex numbers satisfying (1.34) only if jaj � .Suppose that z 2 S. Then2jzj = jz + a+ z � aj � jz + aj+ jz � aj = 2; i.e. maxz2S jzj = :Here the maximum is attained at z = e�i� where � = arg(=a). If z 2 S,then we see that the sum of the distanes from the point z to the givenpoints a and �a, is equal to the onstant 2. This means that S representsan equation of an ellipse with foi at �a. For instane, if a is real then theequation of the ellipse using retangular oordinates is given byx22 + y22 � a2 = 1:Its enter is at the origin and its semi-major and semi-minor axes are equalto  and p2 � a2, respetively.If a is real, then we an disuss the set desribed in (1.34) in the followingway: Let z = x+ iy. Then, jz � aj+ jz + aj = 2 is equivalent tojx+ iy � aj+ jx+ iy + aj = 2() jx+ iy � aj = 2� jx+ iy + aj() jx+ iy � aj2 = (2� jx+ iy + aj)2() (x� a)2 + y2 = 42 + (x+ a)2 + y2 � 4jx+ a+ iyj
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Figure 1.18: Equidistant points from p and q: jz � pj = jz � qj.() (jx+ a+ iyj)2 = (2 + ax)2() 2[(x+ a)2 + y2℄ = (2 + ax)2() (2 � a2)x2 + 2y2 = 2(2 � a2)() x22 + y22 � a2 = 1:Using the tehnique of this example one an show that the setS = fz : jz � aj � jz + aj = 2gdesribes a hyperbola with foi at z = a and z = �a. �1.35. Example. If p and q are two distint points in C , then it iseasy to see that the set desribed by fz : jz�pj = jz�qjg gives the straightline that is the perpendiular bisetor of the line segment joining p and q(see Figure 1.18). Next we see that the set of points desribed byjz � pj = �jz � qj (p 6= q; 0 < � < 1)(1.36)is a irle. Upon squaring (1.36) we getjz � pj2 = �2jz � qj2 () jzj2 � 2Re �z�p� �2q1� �2 �� = �2jq2j � jpj21� �2() ����z � p� �2q1� �2 ����2 = jp� �2qj2(1� �2)2 + �2jqj2 � jpj21� �2= �2jp� qj2(1� �2)2 ;() ����z � p� �2q1� �2 ���� = �jp� qj1� �2 :Thus, the set of the points desribed by (1.36) is a irle. �1.5 Topology of the Complex PlaneIn the earlier setions we disussed some of the algebrai and geometriproperties of the omplex �eld or plane as the ase may be. In this setion



1.5 Topology of the Complex Plane 21we study some of the topologial properties of the omplex plane. Thisis required for our study of Complex Analysis. If X is any set, then thefuntion d : X � X ! R is alled a metri or a distane funtion if itsatis�es the following onditions for all a; b and  in X :(i) d(a; b) � 0(ii) d(a; b) = 0() a = b(iii) d(a; b) = d(b; a)(iv) d(a; ) � d(a; b) + d(b; ).The set X together with a metri, i.e. (X; d) or, in short X , is alled ametri spae. As we have seen earlier, the funtiond : C � C ! R; (z; z0) 7! jz � z0j;has the following properties:(a) jz � z0j � 0(b) jz � z0j = 0() z = z0() jz � z0j = jz0 � zj(d) jz � wj � jz � z0j+ jz0 � wj, where z; z0; w 2 C ,where d(z; z0) = jz� z0j is alled the Eulidean metri. Thus, C is a metrispae with the Eulidean metri d. For instane, we have(a) If X = R and d(x; x0) = jx� x0j, then (R; d) is a metri spae.(b) If Y � X and (X; d) is a metri spae, then so is the restrition (Y; d).() Besides the Eulidean metri we have another natural metri knownas the maximum metri on C . This is de�ned asd(x+ iy; x0 + iy0) = maxfjx� x0j; jy � y0jg:For a detailed disussion on metri spaes, we refer to the book by Pon-nusamy [8℄. In the Eulidean metri spae (C ; d), an open ball�(z0; �) = fz 2 C : jz � z0j < �gis alled an open disk of radius � > 0 entered at z0 2 C or an � neighborhoodor simply a neighborhood of z0. Geometrially, �(z0; �) is just the diskentered at z0 onsisting of all points at a distane less than � from z0.Evidently, �(z0;1) = C for any z0 2 C .We use the term deleted neighbourhood of z0 to denote a set of the formfz 2 C : 0 < jz � z0j < �g; i.e. �(z0; �) nfz0g:
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Figure 1.19: Half planes.
∂1

1
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xFigure 1.20: Desription for a non-open set.We de�ne ��(z0; �) = fz 2 C : jz � z0j = �g, the irle of radius � > 0entered at z0. Throughout this book, we use the notation�R := �(0;R) = fz 2 C : jzj < Rg and � := �1:The unit disk �, as we shall see in later hapters, plays a ruial role inthe theory of funtions of a omplex variable.A subset S � C is alled open (in C ) if for every z0 2 S there is aÆ > 0 suh that �(z0; Æ) � S. This means that some disk around z0 liesentirely in S. For instane, the interior of a irle, the entire plane C , andthe half-planes given by Re z < �; Im z > � and Im z < �, are all examplesof open sets (see Figure 1.19). Here � is an arbitrary �xed real number.On the other hand \the interior of a irle union irumferene" does notform an open set, sine no neighborhood of a point on the irumferenelies entirely within the set; for instane, S = fz : jzj � 1g is not open (seeFigure 1.20). Observe that R when onsidered as a subset of C is not open.To show that the disk �(z0;R) is open, let � 2 �(z0;R). If we hoose Æsuh that 0 < Æ < R � j� � z0j, then �(�; Æ) � �(z0;R). As � 2 �(z0;R)being arbitrary, this proves that �(z0;R) is open. On the other hand, thisfat is geometrially lear.The omplement of a set S � C is C nS := fz 2 C : z 62 Sg and isusually denoted by S. A set S � C is said to be losed if its omplementC nS is open. For eah � > 0, the set �(z0; �) := fz 2 C : jz � z0j � �g
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Figure 1.21: Desription for onneted set.is losed and onsequently we all it a losed disk. We write �(0; �) as ��and �1 simply as �. Here are some examples of losed sets.(a) � = fz 2 C : jzj � 1g; � = fz 2 C : jzj � 1g; �� = fz 2 C : jzj =1g;(b) fz 2 C : Re z � 0g; fz 2 C : Im z = 1g; fz 2 C : jz � 4j � jzjg.() The entire plane C and the empty set ;.There is another way of haraterizing a losed set S using the notionof limit point of S. A point z0 is a limit point of a set S if every �(z0; �)ontains a point of S other than z0. The point z0 itself may or may notbelong to the set S. For example, z0 = 0 is a limit point ofS = �1; 12 ; 13 ; : : : ; 1n; : : :�but 0 = z0 62 S. Similarly if � = fz : jzj < 1g, then eah point on jzj = 1is a limit point of � but again does not belong to the disk �. Eah z 2 �is also a limit point of S.1.37. Example. We easily have the following:(a) S = fz : z = x+iy with x and y rationalg is neither open nor losed.(b) S = fz : z = 2g [ fz : jzj < 2g is neither open nor losed.() C , ; are both open and losed.(d) S = fz : 0 < jzj � 1g is neither open nor losed.. �As an alternative haraterization of losed sets in C , we have \a set Sis losed () S ontains all its limit points." We also note that, not everypoint of a losed set S need be a limit point of S; for instane, ifS = fz : z = 0 or z = 1=n; for positive integers ng;then z = 0 is the only limit point of S (whih is in S) and therefore, S islosed. Note that no other point of S is a limit point of S, sine, forz0 = 1n and � = 1n(n+ 1) ;
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(a, 0)(−a, 0)Figure 1.22: The set desribed by S1.
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(a, 0)(−a, 0)Figure 1.23: Set desribed by S2 and S3.the disk �(z0; �) ontains no point of S other than z0 itself. Points in a setS whih are not limit points are alled isolated points of the set S. Further,it is lear from the de�nition that eah element of an open set is a limitpoint of the set.A boundary point of a set S is a point for whih every neighborhoodontains at least one point of S and at least one point not in S. Theboundary of S, denoted by �S, is de�ned as the set of all the boundarypoints. For instane, onsiderS = fz 2 C : jz � 1j � 1g:The point z0 = 1+ i is a boundary point of S sine every Æ-neighborhood ofit has a non-empty intersetion with both S and S. Although in this ase
x

y

(a, 0)(−a, 0)Figure 1.24: The set desribed by S3.



1.5 Topology of the Complex Plane 25z0 2 S, this need not always be so. For example, z0 = 1 + i is a boundarypoint but not in S = fz 2 C : jz � 1j < 1g.The boundary �S is always losed in C , and S, the losure of S, isde�ned by S = S [ �S.A point z0 is alled an interior point of S if there exists a Æ > 0 suhthat �(z0; Æ) � S. The interior of S, denoted by IntS, is the set of allinterior points of S. Thus, it is lear from the de�nition that \A set is open() eah of its points is an interior point."A set S � C is said to be separated (or disonneted) if there exist twononempty disjoint open sets A and B suh that S � A[B, S \A 6= ;, andS \ B 6= ;. If S is not disonneted, it is alled onneted.In any partiular situation we generally an tell at a glane if a givenset S in the omplex plane is onneted, as illustrated in Figure 1.21. Ifa > 0, S1 = fz : jz � aj � a or jz + aj � agS2 = fz : jz � aj � a or jz + aj < ag;S3 = fz : jz � aj < a or jz + aj < ag;S4 = fz : jz2 � 1j < 1g;then S1 and S2 are onneted (see Figure 1.23) whereas S3 and S4 are notonneted (see Figure 1.24).The funtion  : [0; 1℄ ! C ; de�ned by (t) = (1 � t)z0 + tz1 is alledthe line segment with end points z0 and z1 and is designated by [z0; z1℄.If (t) 2 S for eah t 2 [0; 1℄, then the line segment [z0; z1℄ is said to beontained in S. A polygonal line from z0 to zn is a �nite union of segmentsof the form [z0; z1℄ [ [z1; z2℄ [ � � � [ [zn�1; zn℄:The points z0 and zn are then said to be polygonally onneted. If thesegment [zk; zk+1℄ is ontained in S, k = 0; 1; : : : ; n�1, then the polygonalline from z0 to zn is said to be ontained in S. A set S is said to bepolygonally onneted if any two points of S an be onneted by a polygonalline ontained in S. In other words, S is onneted i� eah pair of pointsz; � of S an be onneted by an ar lying in S. For instane, any opendisk �(z0; Æ) is polygonally onneted. For, if z1; z2 2 �(z0; Æ) and (t) =(1� t)z1 + tz2,j(t)� z0j = j(1� t)(z1 � z0) + t(z2 � z0)j � (1� t)Æ + tÆ = Æand so for eah t 2 [0; 1℄, (t) � �(z0; Æ).A domain is a nonempty open onneted set in C . A domain togetherwith some, none, or all of its boundary points is referred to as a region. Forinstane, ifS5 = fz 2 C : Re z < a; a-realg and S6 = fz 2 C : Re z � a; a-realg;
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(a, 0)(−a, 0)Figure 1.25: The set desribed by S7.
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zFigure 1.26: The set fz = x+ iy : y < �xg.then S5 desribes a domain whereas S6 is a region but is not a domain,sine the set de�ned by S6 is not open but onneted. On the other hand,the set S7 = fz 2 C : jRe zj > a for some a > 0gdoes not onstitute a domain. Note that S7 is open but not onneted (seeFigure 1.25). Further, the setS8 = fz 2 C : a < Re z � b for some a < bg;alled an in�nite strip, is not a domain but is a region. Also, S9 = fz 2C : jIm zj < jRe zjg is disonneted while S10 = fz 2 C : jIm zj � jRe zjgis onneted. Similarly, the setS11 = fz 2 C : jz + iaj < jz � aj for some a > 0gis onneted and open. Note that (see Figure 1.26)jz + iaj < jz � aj () jz + iaj2 < jz � aj2() jzj2 + jaj2 + 2Re (�iza) < jzj2 + jaj2 � 2Re (za)() �2Re (iza) < �2Re (za)() y < �x; sine a > 0:A set S is bounded if there is an R > 0 suh that S � �R: GeometriallyS is ontained in a losed disk entered at 0 and radius R. A set that annot



1.6 Sequenes and Series 27be enlosed by any �R for R > 0 is alled unbounded. A simple example isan in�nite strip, S8 above. Sets whih are losed as well as bounded in Care alled ompat sets in C . Of ourse, the omplex plane C is not ompatas it is not bounded in C . Note that C is losed beause C nC = ; is open.Thus, C (with usual metri) is not a ompat metri spae. On the otherhand, �R is ompat.A set S is ountable if the elements of S an be plaed in a one-to-oneorrespondene with the set of positive integers. For instane, eah of thesets de�ned by, A = f2n : n = 1; 2; : : : g;B = f2n+ 1 : n = 1; 2; : : : g;C = fr : r rationalg;is ountable whereas the set of irrationals and the set of reals are both notountable, i.e. unountable.1.6 Sequenes and SeriesAn in�nite sequene of omplex numbers is a list of points z1; z2; : : : ; zn; : : :of C listed in some order. More expliitly a mapping N ! C , n 7! zn; isalled a sequene. This is briey denoted by fzngn�1 (or simply by fzngwhen there is no onfusion) with the understanding that zn is the n-th termof the sequene. A sequene is thus merely an assignment of a spei� pointzn to eah n 2 N.Suppose fzng is a sequene of points (omplex numbers) in C and thatfnkg is a stritly inreasing sequene of natural numbers. Then the se-quene fznkg (think of znk as ak) is alled a subsequene of the sequenefzng. For instane,fzk+1g; fz2kg; fz2k+5g; and fz2kgare some subsequenes of fzng. Roughly speaking subsequenes are ob-tained by deleting some of the terms from the sequene under onsideration.Of ourse, fzng is trivially a subsequene of itself. For instane, fz2k+1gmay be obtained by removing the terms z2; z4; z6; : : : . We remark thatthe notion of sequenes is not on�ned to sequenes of omplex numbers.In later hapters, we shall also onsider sequenes of sets and sequenes offuntions.A sequene fzng is said to onverge to a point z0, and write zn ! z0, iffor every � > 0 there exists an N(�) 2 N suh thatjzn � z0j < �; for all n > N(�):That is, zn ! z0 if jzn � z0j ! 0, as a real sequene. If a sequene fails toonverge, it is said to diverge.
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z0

z4

·z7·z3

·z2

·z5·z1Figure 1.27: Desription for a limit of a sequene.Geometrially, zn ! z0 if every neighborhood of z0 ontains all but�nitely many terms of the sequene fzng; suh a point z0 is alled a limitof the sequene (see Figure 1.27). Sometimes we writelimn!1 zn = z0instead of zn ! z0. A point z0 is a limit of the sequene fzng if thereexists a subsequene that onverges to z0.To have a better understanding of series that will be introdued later, wemust de�ne the notion of limit superior (resp. limit inferior) of a sequenefrng of real numbers. If frng is bounded above (resp. bounded below) andhas at least one onvergent subsequene, then limit superior (resp. limitinferior), writtenL = lim supn!1 rn or limn!1rn �resp. l = lim infn!1 rn or limn!1rn� ;is the least upper bound (resp. the greatest lower bound) of the limits ofall onvergent subsequenes of frng. If no suh L (resp. l) exists, we setL = lim supn!1 rn = +1 �resp. l = lim infn!1 rn = �1� :Note that this is possible only if frng is an unbounded sequene. Of ourse,if frng happens to be a onvergent sequene then we note thatlim supn!1 rn = limn!1 rn = lim infn!1 rn:For instane, letan = (�1)3n; bn = 1 + (�1)n; n = n(�1)n; dn = 1� 4�n:Then we have(i) lim supn!1 an = 1 and lim infn!1 an = �1(ii) lim supn!1 bn = 2 and lim infn!1 bn = 0



1.6 Sequenes and Series 29(iii) lim supn!1 n = +1 and lim infn!1 n = �1(iv) lim supn!1 dn = 1 = lim infn!1 dn.How about the sequene feng, where en = sin(n�=2) + n os(n�=2)?For any omplex number z, we havejRe zj; jIm zj � jzj � jRe zj+ jIm zj:Now, suppose zn = xn+ iyn ! z0 = x0+ iy0: Then for a given � > 0, thereexists an N(�) suh thatjzn � z0j = j(xn � x0) + i(yn � y0)j < � for all n > N(�):This impliesjxn � x0j < � and jyn � y0j < � for all n > N(�);i.e. xn ! x0, yn ! y0. Conversely, let xn ! x0 and yn ! y0: Then for agiven � > 0, there exist N1(�) and N2(�) suh thatjxn � x0j < �=2 for all n > N1(�)and jyn � y0j < �=2 for all n > N2(�):Hene, for all n > N(�) = maxfN1(�); N2(�)g, we havejzn � z0j � jxn � x0j+ jyn � y0j < �:The above disussion shows thatzn ! z0 () Re zn ! Re z0 and Im zn ! Im z0:(1.38)A sequene an have at most one limit if it exists; for, let zn ! z0 andzn ! z�0 . Then for a given � > 0, we havejz0 � z�0 j = j(zn � z�0)� (zn � z0)j� jzn � z�0 j+ jzn � z0j< �=2 + �=2 = �; for suÆiently large n:Reall that if x; y 2 R and x < y + � for any � > 0, then x � y. For,suppose that x � y > 0. Then for � = x � y, the hypothesis yields � < �.This ontradition shows that x � y.Note also that z0; z�0 are independent of n and jz0 � z�0 j < � = 0 + �for every �. So jz0 � z�0 j � 0, and hene we must have jz0 � z�0 j = 0, i.e.z0 � z�0 = 0 or z0 = z�0 . This shows that a limit of a sequene is unique.



30 Complex Numbers1.39. Remark. If zn ! `, then the limit ` is a limit point of thesequene fzng. However, the onverse is not true. For example, letzn = (�1)n + i nn+ 1 ; n � 1:Then 1 + i and �1 + i are the limit points of the set fz1; z2; : : :g, butzn 6! 1 + i, or �1 + i. Similarly, for zn = 21�n + n + (�1)nn (n � 1); wehave zn 6! 0, but 0 is the limit point of the set S = fz1; z2; : : :g. �1.40. Example. To illustrate the onept of the limit of a sequene,we shall present some more examples.(a) For zn = 1n+ (n�1)in , we have zn ! i sine jzn�ij = 1n j1�ij = p2n ! 0:If we write zn = xn+iyn with xn = 1n and yn = n�1n as real sequenes,we have xn ! 0 = x0 and yn ! 1 = y0 (z0 = x0 + iy0 = i): Comparewith the observation in (1.38).(b) If zn = in=n, then, for a given � > 0, there is an N(�) suh that4jzn � 0j = 1n < � for all n > N(�) = �1��+ 1; i.e. zn ! 0.() For zn = �1+i=n and z0n = �1�i=n, we have zn ! �1 and z0n ! �1whereas Arg zn ! � and Arg z0n ! ��:(d) The sequene fArg [(�1)n=n℄g is divergent, beause the sequene hasthe form �, 0, �, 0, : : : and hene has no limit. �A sequene fzng is alled a Cauhy sequene if for eah � > 0 thereexists an N(�) suh that jzn � zmj < � for all n;m > N(�): Using thisde�nition, we an easily onlude the Cauhy riterion for onvergene inC : fzng onverges () fzng is a Cauhy sequene:For, let zn = xn + iyn ! z0 = x0 + iy0. Then, Re zn ! Re z0; Im zn !Im z0: As jzn � zmj � jRe (zn � zm)j + jIm (zn � zm)j; fzng is learly aCauhy sequene.Suppose fzng is a Cauhy sequene. AsjRe (zn � zm)j; jIm (zn � zm)jg � jzn � zmj;we see that fRe zng and fIm zng are Cauhy sequenes in R. Beause ofthe ompleteness property (see [11℄) of R, fRe zng and fIm zng onvergeand hene, fzng onverges.A onvergent sequene with limit zero is alled a null sequene. If thesequene fzng onverges to z0, then the sequene fzn�z0g is a null sequene.4Here [x℄ denotes the greatest integer less than or equal to x



1.6 Sequenes and Series 31Sine fzng = z0 + fzn � z0g; any onvergent sequene may be written as asum of a �xed number and a null sequene. Conversely, if fzng = z0+fz0ng;where fz0ng is a null sequene, thenjzn � z0j = jz0nj < � for n > N(�)and so the sequene fzng is onvergent.1.41. Example. It is easy to see that fzng is a null sequene forjzj < 1. To prove this, let � > 0 be given. We must �nd a value of N suhthat, for any n > N , jznj = jzjn < �: This is ertainly true if z = 0. So, fora �xed z 6= 0, we simply need to �nd an N suh that, for any n > N ,n ln jzj < ln �; i.e. n > ln �= ln jzj(sine ln jzj is negative, for jzj < 1). This proves that if jzj < 1 thenjzjn < � for n > N = [ln �= ln jzj℄ + 1:Thus, zn ! 0 as n ! 1 if jzj < 1. For jzj > 1, the sequene fzng doesnot onverge to any point of C . How about for points z on the unit irlejzj = 1? �On many oasions we will need to work with an in�nite series. Givena sequene fzng of omplex numbers the sequene fsng de�ned bysn = nXk=1 zkis alled the sequene of partial sums of the (in�nite) series P1k=1 zk: Foronveniene we shall use the equivalent forms:1Xk=1 zk or Xk�1 zk(whih will be sometimes abbreviated asP zk). Sometimes it is onvenientto start the series with k = 0 (or perhaps even with some other integer p).We then write P1k=1 zk or P1k=p zk whihever the ase may be.The seriesP zk is said to be onvergent or summable or said to onvergeto s if sn ! s. The number s is then alled the sum of the series and wewrite s =P zk: Otherwise, the series is said to be divergent or to diverge.If the series is onvergent, the sequene of its partial sums is bounded.1.42. Remark. As in the ase of sequenes, if we letzk = xk + iyk and s = u+ iv; xk ; yk; u; v real



32 Complex Numbersthen the series P zk onverges to s i� Pxk onverges to u and P yk on-verges to v. �From the Cauhy riterion, i.e. \a sequene is onvergent i� it is aCauhy sequene", we see thatX zk onverges () fsng is a Cauhy sequene.That is, \P zk onverges i� for every � > 0 there exists an N suh thatjsn � smj = ����� nXk=m+1 zk����� < � for n > m > N ."Writing zn = sn � sn�1, we have, by hoosing m = n � 1 in the aboveinequalityX zk onverges =) limn!1 sn = s =) limn!1 zn = 0:(1.43)That is, \a neessary ondition for the series P zn to onverge is thatzn ! 0 as n ! 1." However, this ondition is not suÆient for theonvergene of P zn as the harmoni series Pn�1 1=n shows.1.44. Example.(i) As the n-th term (�1)n of the series Pn�1(�1)n does not onvergeto zero, the series diverges.(ii) Consider the series P1n=1 an, where an = 1=[(n+ 1)(n+ 2)℄: Thensn = nXk=1 ak = nXk=1� 1k + 1 � 1k + 2� = 12 � 1n+ 2whih onverges to 1=2. Thus, P1n=1 an = 1=2:(iii) The series P1n=1 k�1=2 diverges to 1, beausesn = nXk=1 k�1=2 > number of terms times the last term= n(n�1=2) = n1=2;so limn!1 sn � limn!1 n1=2 = +1. A similar argument may beused to show that P1n=1 k�� diverges to 1 when � 2 [0; 1). Howabout when � = 1? If � = 1, then we easily haves2n > 1 + 12 +�14 + 14�+�18 + 18 + 18 + 18�+ � � � +� 12n + � � � + 12n�= 1 + 12 + 12 + 12 + � � � + 12 = 1+ n2 :



1.6 Sequenes and Series 33This shows that the partial sum of the series is unbounded and henefsng is divergent. Note also that, sine k�p � k�1 for all p � 1 andPk�1 k�1 diverges, we dedue that the seriesPk�1 k�� diverges for� � 1. �The following result is easily established from the de�nition of onver-gene of a series. So we omit its proof.1.45. Theorem. IfP zk = s andPwk = t thenP(zk �wk) = s� tand P zk = s; where  is any omplex onstant.As with real series, a series P zk is said to onverge absolutely or beabsolutely onvergent if the series P jzkj is onvergent. Further, using thefat that jsn � smj = ����� nXk=m+1 zk����� � nXk=m+1 jzkj;we onlude that \every absolutely onvergent series is onvergent." Notethat the onverse of this result is generally false. For instane, the seriesPk�1 zk, where zk = (�1)k�1=k, is onvergent, but not absolutely. This isbeause jsn � smj = ����� nXk=m+1 zk�����= 1m+ 1 � 1m+ 2 + 1m+ 3 � � � � 1n� 1m+ 1 < � for n > m > N = �1�� � 1� � 1and so fsng is a Cauhy sequene. Further one an show that the sum ofthis series is, in fat, ln 2. But P jzkj =Pk�1 1k diverges as shown earlier.On the other hand, the series P zk, where zk = (�1)k�1=k2, is abso-lutely onvergent (and hene onvergent).Analogous to Remark 1.42 we have \P zk is absolutely onvergent i�eah of Pxk and P yk is absolutely onvergent." The following results areoften useful.1.46. Theorem. IfPk�1 jwk j is onvergent and if jzkj � jwk j exeptfor �nitely many k's then Pk�1 zk is absolutely onvergent.The above theorem, popularly known as the omparison test for on-vergene, an be easily dedued from the Cauhy riterion for onvergene.For, let � > 0 be given. Then there is anN � 1 suh that for all n > m � N ,jsn � smj � nXk�m+1 jzkj � nXk�m+1 jwkj < �:



34 Complex NumbersThis observation proves the theorem. The seriesP jwkj is alled a majorantof P jzkj.1.47. Example. If zn = ein os(n2)=n3=2, then jznj � n�3=2 andhene P zn is onvergent. �1.48. Theorem. Let P zk be a series with nonzero terms suh thatlim supn!1 Ln = L and lim infn!1 Ln = l where Ln = jzn+1=znj:Then we have the following:(a) If L < 1, the series onverges absolutely.(b) If l > 1, the series diverges.() If l � 1 � L no onlusion an be made onerning the onvergeneof the series.Proof. Clearly L; l � 0. Suppose that L < 1. Then, for � withL < � < 1, there exists an integer N suh that����zn+1zn ���� < � for all n � Nso that jznj = jzN j � ����zN+1zN ���� � ����zN+2zN+1 ���� � � � ���� znzn�1 ���� < jzN j�n�N :Therefore, jzN+pj < jzN j�p for p � 1. Sine Pp�1 jzN j�p is a onvergent(geometri) series,Pn�1 jznj is onvergent (see also Example 2.54), by theomparison test. This proves (a).Next, we let l > 1. Then, by hypothesis, there exists an integer N suhthat l > k > 1 and ����zn+1zn ���� > k for all n � N:Therefore, for all n > N ,jznj = jzN j � ����zN+1zN ���� � ����zN+2zN+1 ���� � � � ���� znzn�1 ���� > jzN jkn�N !1:Hene, zn 6! 0 as n!1 and so P zn diverges. This proves (b).The last ase follows by onsidering the series with zn = 1=n and zn =1=n2.1.49. Corollary. Let P zk be a series of non-zero omplex termssuh that � = limn!1Ln; where Ln = jzn+1=znj:



1.6 Sequenes and Series 35(a) If � < 1, the series onverges absolutely.(b) If � > 1, the series diverges.() If � = 1, the series may onverge or diverge.1.50. Example. Consider a series P zk with Ln = jzn+1=znj:(i) If zn = (1+ i)n=n, then Ln = np2n+1 = p2� p2n+1 ! p2 as n!1 andhene the series diverges.(ii) If zn = (1 + i)n=n!, then Ln = p2n+1 ! 0 as n ! 1 and so the seriesonverges absolutely.(iii) If zn = (n + 1)(1 + i)n=n!, then Ln = p2 (n+2)(n+1)2 ! 0 as n ! 1 andtherefore the series onverges absolutely.(iv) If a; b;  and d are real suh that ja2+ b2j < j2+d2j, then we see thatthe series, with zn = (a+ ib)n=(+ id)n, is absolutely onvergent. �1.51. Theorem. Let P zk be a series of omplex terms suh thatlim supn!1 jznj1=n = L:(a) If L < 1, the series onverges absolutely.(b) If L > 1, the series diverges.() If L = 1, the series may onverge or diverge.Proof. (a) If L < 1, hoose � > 0 so that L < � < 1 Then for allsuÆiently large values of n, we havejznj1=n < �; i.e jznj < �nand so the onvergene ofP jznj follows from the omparison test with thegeometri series P�n.(b) If L > 1, jznj > 1 for in�nitely many n so that zn 6! 0 as n ! 1and thus, P zn diverges if L > 1.() Examples relating to the proof of Theorem 1.48 an be used tojustify the last assertion.The Cauhy produt of two onvergent in�nite series of omplex termsPn�0 an and Pn�0 bn is the series Pn�0 n, wheren = nXk=0 akbn�k; n = 0; 1; 2; : : : :Next we state the following theorem. Proof of (a) follows diretly fromthe de�nition and the hypothesis.1.52. Theorem.



36 Complex Numbers(a) If fzng has a limit point at z0, then there exist a subsequene fznkgof fzng suh that fznkg ! z0 as k !1.(b) If the sequene fPnk=1 akg is bounded and fbng is a dereasing nullsequene of positive numbers, then Pn�1 anbn onverges.Proof. To prove (b), by hypothesis, we note that there exists an Msuh that ����� nXk=1 an����� �M for all n:Sine fbng is a null sequene, given any � > 0 there exists an N suh thatbn < �=(2M) for all n � N . Now, for all n � N����� mXk=n+1 akbk����� �M " mXk=n+1(bk � bk+1) + (bn+1 + bm+1)# � 2Mbn+1 < �:Thus, fPmk=1 akbkg is a Cauhy sequene and the result follows by theCauhy riterion.1.7 Exerises1.53. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) The set of points z suh that jz + bij < jz + bj is the half-planefz = x+ iy : y < xg.(b) The inequality jz1 � z2j < jz1 + z2j holds provided either Re z1 > 0and Re z2 > 0, or Re z1 < 0 and Re z2 < 0.() Two omplex numbers z1 and z2 whose sum and di�erene are realand purely imaginary, respetively, must satisfy z2 = z1.(d) The equation az + bz +  = 0 has exatly one solution, i� jaj 6= jbj.(e) If the sum and produt of two omplex numbers are both real theneither both the omplex numbers are real or one is the onjugate ofthe other.(f) The inequalities Re z > 0 and jz � 1j < jz + 1j are equivalent.(g) The inequalities jzj < 1 and Re�1 + z1� z� > 0 are equivalent.(h) The inequalities Re z � Æ > 0 and ����1z � 12Æ ���� � 12Æ are equivalent.(i) The roots of the ubi equation (z + ��)3 = �3 (� 6= 0) form theverties of a triangle eah side of whih is of length equal to p3j�j.(j) For Re zj > 0 (j = 1; 2), Arg (z1z2) = Arg z1 +Arg z2.



1.7 Exerises 37(k) For any positive integer n, jIm znj � njIm zj jzjn�1.(l) If jzj < 1, then both Re (1 + z) > 0 and Re (1 + z)2 > 0 do not holdsimultaneously.(m) If z2 = (z)2, then z is either real or purely imaginary.(n) The equation 1 + os�+ i sin�1� os�+ i sin� = ei(���=2) ot(�=2) holds for eah� 6= 2n�, n 2 Z.(o) The non-real roots of (1 + z)4 = 16z4 are (�1� 2i)=5.(p) The produt of the distint n-th roots of unity is (�1)n�1.(q) All the solutions of z4 + 81 = 0 are 3[�1� i℄=p2.(r) The omplex roots of a quadrati equation have the property thatone is the square of the other.(s) If z = a+ ib, where a and b both are integers, then(i) j1 + z + z2 + � � � + znj � jzjn if a > 0(ii) j1 + z + z2 + � � � + znj � jzjn if a < 0.(t) The set of omplex numbers z suh that arg(z � i) = �=3 representsthe equation of the straight line y = p3x+ 1.(u) If Arg (z + 3) = �=3, then the least value of jzj is 3p3=2.(v) If jz� (4� 3i)j = 2, then the greatest and least value of jzj are 7 and3, respetively.(w) Convergene of fzng implies the onvergene of fZng, where Zn =1nPnk=1 zk.(x) For z 6= a and n 2 N, we have ����zn � anz � a ���� � jzjn � jajnjzj � jaj :(y) If ! is an n-th root of unity, then n�1Xj=0 jz1 + !jz2j2 = n[jz1j2 + jz2j2℄:Note: For n = 2, this redues to the Parallelogram identity.(z) If zn 6= 0 and zn ! ` 6= 0, then Arg zn ! Arg `.1.54. For any two non-zero omplex numbers z1 and z2, prove thefollowing(a) Arg (z1z2) = Arg z1 +Arg z2 + 2�k1(b) Arg (z1=z2) = Arg z1 �Arg z2 + 2�k2;where kn (n = 1; 2), whih depends on z1 and z2, is given bykn = 8<: 1 if �2� < Arg z1 + (�1)n�1Arg z2 � ��0 if �� < Arg z1 + (�1)n�1Arg z2 � ��1 if � < Arg z1 + (�1)n�1Arg z2 � 2�:



38 Complex Numbers1.55. Prove Lagrange's identity (using the method of indution):����� mXk=1 zkwk�����2 =  mXk=1 jzkj2! mXk=1 jwkj2!�Xk�j jzkwj � zjwkj2:1.56. If z1; z2; z3 are the verties of an equilateral triangle, then showthat z21+z22+z23 = z1z2+z2z3+z3z1: If z1 = 1+ i and z2 = 1� i, determinethe two possible values of z3 so that z1; z2; z3 form an equilateral triangle.1.57. Compute the limit of the sequene fzng when zn equalsn1=n; 3�n+ipn; 2n=n; n sin(1=n); n2e�n; in!:1.58. Test the onvergene of P1n=1 zn when zn equalsn(3 + i)n; n33n(2 + i)�n; n�1in; 5�n; (n!)2=(3n!); n�1=3i3n:1.59. Classify the following sets aording to the properties open,losed, bounded, unbounded, ompat:(a) S1 = fz : z = e2�ki=5; k = 0; 1; 2; 3; : : : g(b) S2 = fz : jzj > 2jz � 1jg() S4 = fz : Re (iz) < 1g(d) S5 = fz : jz + 2j � jzjg(e) S6 = fz : z2 + z2 = 1g.1.60. Supply the geometri desription of the following subsets of C :(a) S1 = fz : 0 < Re (iz) � 1g(b) S2 = �z : Im �z � z1z � z2� = 0; for z1; z2 2 C�() S3 = �z : Re �z � z1z � z2� = 0; for z1; z2 2 C�(d) S4 = fz : jz � 1j = 3jz + 1jg(e) S5 = fz : jz � 1j = Re (z)jg(f) S6 = fz : jz + 1j > 2; 0 < Arg (z � 2) < �=4g(g) S7 = fz : ��=4 < arg(z � k) < 3�=2; k = 1; 2; : : : ; 5g(h) S8 = fz : ��=6 < arg(z � 1=k) < 13�=6; k = 1; 2; : : : ; 5g :1.61. Find all irles that are orthogonal to both jz � 1j = 4 andjzj = 1.



Chapter 2Funtions, Limit and Continuity
In this hapter we introdue fundamental results onerning limits, onti-nuity and uniform onvergene of sequenes and series of funtions. We alsointrodue sets in the extended omplex plane. This hapter lays the groundwork for a areful treatment of analyti funtions of a omplex variable. InSetion 2.1, we de�ne funtions in C and their elementary properties suhas one-to-one and onto. In Setion 2.2, we briey present basi fats aboutlimits and ontinuous funtions of a omplex variable. In Setion 2.3, weformalize the notion of `the point at in�nity'. This helps to extend thenotion of limit and ontinuity for funtions de�ned on unbounded sets.This setion also provides a onvenient way for disussing the behavior offuntions as jzj gets large and for ertain generalization of domains in theomplex plane.2.1 One-to-one and Onto FuntionsLet A and B be two non-empty subsets of C . A funtion from A to B isa rule, f , whih assigns eah z0 = x0 + iy0 2 A a unique element w0 =u0 + iv0 2 B. The number w0 is alled the value of f at z0 and we writew0 = f(z0): If z varies in A then w = f(z) varies in B. We say that f is aomplex funtion of a omplex variable in A. We say that f is a funtionde�ned on A. We also writef : A! B; z 7! w = f(z):(2.1)Here z is alled the independent variable; w the dependent variable and Athe domain of f . If S � A, we an have f : S ! B and we all this newfuntion the restrition of f in (2.1) to S and denote it by f jS .Let us examine the graphial representation of (2.1), i.e. w = f(z). Byde�nition, for eah z = x+ iy,w = f(z) = Re f(z) + i Im f(z);



40 Funtions, Limit and Continuityw being a omplex number. Identifying z = x + iy with (x; y) 2 R2 , wehave the funtions (x; y) 7! Re f(z); (x; y) 7! Im f(z);or equivalently Re f : z 7! Re f(z); Im f : z 7! Im f(z);de�ned on the domain A, now onsidered a subset of R2 . We observethat these are real-valued funtions de�ned on A � R2 and denote them byRe f; Im f , respetively. Conversely, if A � R2 and we have two real-valuedfuntions u : A! R; v : A! R;then, by de�ning f(z) = u(x; y) + iv(x; y); (x; y) 2 A;we obtain f : A ! C ; where A is now onsidered as a subset of C . Thus,a omplex funtion of a omplex variable is ompletely determined by thefuntions Re f; Im f , known as the real and imaginary parts.If we use the polar form for z, then f an be written asf(z) = u(r; �) + iv(r; �):To illustrate these ideas let f(z) = 2z2 � z + 1, z 2 C . Thenf(z) = [2(x2 � y2)� x+ 1℄ + i[4xy � y℄:Thus, (Re f)(z) = 2(x2�y2)�x+1 and (Im f)(z) = 4xy�y: On the otherhand if we write z = rei� , thenf(z) = [2r2 os 2� � r os � + 1℄ + i[2r2 sin 2� � r sin �℄:Sine eah of the variables z and w requires two dimensions for represen-tation, a graphial representation annot be given for a omplex funtion.Beause of this, we need to employ two di�erent opies of the omplex planeto desribe the nature of a omplex funtion of a omplex variable. Thus,to every z = x+ iy of its domain in the z-plane, we determine the resultingvalues of u = Re f and v = Im f (w = u+ iv) and plot them in the w-plane(see Figure 2.1).If f is de�ned on A and S � A, then f(S) = ff(z) : z 2 Sg is alledthe image of the set S under f . The set R = f(A) of all image points of Ais alled the range of f .If R � B, the funtion f on A to B is alled a mapping of A into B andif R = B, we say that the funtion f maps A onto the range R sine everyelement w 2 R is an image of at least one point in A. Clearly, a mapping
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Figure 2.1: Desription for mapping.whih is \onto" is \into" but the onverse is not neessarily true. Pointw 2 R is alled an image of a point z 2 A and the point z is alled thepre-image of w, under the mapping5 w = f(z): A mapping is said to be anopen mapping if it maps open sets onto open sets.We know that every omplex number z 2 C nf0g an be uniquely writtenin polar form as z(r; �) = rei� (r = jzj; � 2 (��; �℄):If we inrease � by 2�,z(r; � + 2�) = rei(�+2�) = rei� = z(r; �)returning to its original value. With this observation, the de�nition ofsingle-valuedness of a funtion takes the following simple form in polaroordinates. A funtion f is said to be single-valued if f satis�esf(z) = f(z(r; �)) = f(z(r; � + 2�)):(2.2)Otherwise, f is said to be multiple-valued.Let us look at the funtion f(z) = zn: Then, when n is an integer, weknow that for every w 6= 0 there are n values of z satisfying w = f(z) = zn:We have f(z(r; �)) = rnein�; f(z(r; � + 2�)) = rnein�e2�ni:So, the ondition (2.2) is satis�ed i� n is an integer. This shows that thefuntion f(z) = zn is single-valued i� n is an integer. If n is not an integer,then e2�ni 6= 1 and so f in this ase is multiple-valued.If the elements of A are omplex numbers and those of B are real num-bers, then we say that f is a real-valued funtion of a omplex variable.Similarly, if the elements of A are real and those of B are omplex num-bers, then f is a omplex-valued funtion of a real variable. Whenever wespeak of a funtion we shall, unless otherwise stated expliitly, onsider asingle-valued funtion.5`Mapping' is another word for funtion, transformation.



42 Funtions, Limit and ContinuitySuppose we have a mapping of a set A onto a set R. It may happenthat some points of R have more than one pre-image. If eah w 2 R is theimage of preisely one point in A; that isf(z1) = f(z2) =) z1 = z2; or z1 6= z2 =) f(z1) 6= f(z2);then the mapping w = f(z) is said to be one-to-one. If the mappingw = f(z) is one-to-one then the funtion f is said to be univalent, a fanyterm for one-to-one funtions. (Note that the funtion f is said to beunivalent at z0 if it is univalent in a neighborhood of z0. This will bedisussed later in this book.) In this ase, we have a mapping from Rinto the z-plane with A as the range and R as the domain of de�nition.Denoting the latter mapping, alled the inverse of f , by f�1 we writez = f�1(w) if w = f(z):Thus, if f maps A in a one-to-one fashion onto R, then there is an inversemapping z = f�1(w) on R onto A. Note that f�1(w) = f�1(f(z)) = z:Observe that if f : A! R is univalent on A, then f�1 is de�ned on R andis univalent therein.A funtion f with domain A and range B is alled a onstant funtion ifB ontains only one element, say . In this ase, we write f(z) � , z 2 A.A funtion f(z) is said to be bounded on a subset S � C if there existsan M > 0 suh that jf(z)j �M for all z 2 S.Suppose we have a funtion f with domain D1 and another funtion gwith domain D2. Suppose further that, for eah z 2 D1, f(z) is in D2.Then for every z 2 D1 the assoiation g Æ f de�ned by (g Æ f)(z) = g(f(z));is a funtion alled the omposition of f and g. We indiate this byD1 f�! D2 g�! C :g Æ fFor instane, let f(z) = 2z + 1 and g(z) = z2 + 2 on C : Then,g(f(z)) = (2z + 1)2 + 2 and f(g(z)) = 2(z2 + 2) + 1; z 2 C :If f(z) = u(z) + iv(z) � u(x; y) + iv(x; y); where u; v are real-valued fun-tions, thenf(z) = u(x; y)� iv(x; y) and f(z) = u(x;�y) + iv(x;�y):Thus, we note that f(z) and f(z) are in general di�erent funtions. Forinstane, if f(z) = (1� i)z, f may be rewritten as f(z) = (x+ y)+ i(y�x)so that f(z) = (1 + i)z and f(z) = (1� i)z:2.3. Examples. Consider w = f(z) = z2; jzj � 1: Here the domainof de�nition of f is � and the range is also �: An angular region with
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Figure 2.2: Mapping under w = z2; jzj � 1.vertex at 0 of � radians in the z-plane is mapped into an angular region of2� radians in the w-plane, under this mapping (see Figure 2.2). The fatthat f(z) = z2 is not univalent on � an be seen as follows: let z = rei�(0 < r � 1), be the polar representation of the points on �. Thenw = r2e2i� = �ei� with � = r2 and � = 2�, 0 � � � 4�.So, z1 = rei�, z2 = rei(�+�) = �z1 are suh thatz21 = r2e2i� = r2e2i�+2i� = r2e2i(�+�) = z22 :This shows that the funtion is not univalent. In fat, it maps � onto �twie.Next, we onsider w = f(z) = z2, z 2 D = fz : jzj � 1; 0 � arg z < �g:Then the range is �: Thus, if z = rei� then w = r2e2i� = �ei� withp� = r (0 < � < 1) and � = 2�; 0 � � < 2�:If the two pre-images (why not more?) for w = �ei�, where � = r2 and� = 2� by f(z) = z2, are z1 = rei� and z2 = rei(�+�), then only one of z1 orz2 an lie in D sine any two elements of D have their arguments di�eringby less than �. This shows that the funtion is univalent in D.Again we onsider the same funtion f(z) = z2, but this time withoutindiating the domain of de�nition. Then, we havef(z1) = f(z2) =) z21 � z22 = 0 =) either z1 = z2 or z1 = �z2:The points z1 and z2 suh that z1 = �z2 are symmetri with respet to theorigin, i.e. lie at the same distane from the origin on the same straightline through the origin. This shows that f(z) = z2 is univalent in a domainD i� this domain does not have even a single pair of points symmetri withrespet to the origin. For instane, f(z) = z2 is univalent in the upperhalf-plane U = fz : Im z > 0g, the lower half-plane L = fz : Im z < 0g,respetively. Note also that f maps U and L, into the w-plane with a utalong the negative real semi-axis omitting the origin. �



44 Funtions, Limit and Continuity2.4. Examples. Consider w = f(z) = z: Observe that the e�et ofthis mapping on the points of the plane is a reetion on the real axis. Thisfuntion is one-to-one and the inverse is z = w. It maps the entire z-planeonto the entire w-plane.On the other hand, the funtion w = g(z) = jzj maps the entire z-planeonto the non-negative real axis of the w-plane. In fat, it maps every irleentered at the origin to a point. It is not one-to-one and hene no inverseexists. �2.5. Examples. It is easy to see that the funtion f(z) = 3z+ z2 isone-to-one in �. Indeed, for z1; z2 in �,f(z1) = f(z2) =) (z1 � z2)(z1 + z2 + 3) = 0 =) z1 � z2 = 0(z1 + z2 + 3 6= 0 in �, sine Re (z1 + z2 + 3) > �1� 1 + 3 = 1).Similarly, it is easy to see that the funtion f(z) = (1+ z)2 is univalentin �. More generally, f(z) = z + �z2 is univalent for jzj < 1=(2j�j) whihis in fat the largest disk entered at the origin on whih f is one-to-one.This is easily seen using the argument relating to f(z) = 3z + z2. �A domain D is said to be symmetri with respet to the origin, if forevery z 2 D, the point �z 2 D. A funtion f de�ned on the domain Dwhih is symmetri with respet to origin is said to be even if f(z) = f(�z)is valid for every z 2 D. For example, f(z) = z2n (n 2 N) is even in C . Afuntion f is said to be odd on D if f(z) = �f(�z) for every z 2 D. Forexample, f(z) = z2n�1 (n 2 N) is an odd funtion in C .A domain D is said to be starlike with respet to a point z0 2 D if foreah z 2 D the line segment, [z0; z℄, from z0 to z lies entirely in D. Thepoint z0 is alled a star enter of D. A starlike domain is a domain whihis starlike with respet to the origin. A domain D is said to be onvex iffor eah pair of points �; z 2 D, the line segment, [�; z℄, joining z and � liesentirely in D. Obviously, a onvex domain is starlike with respet to anyof its points.An open disk, half-planes suh as Re z > 0, an open ellipse and an openretangle are examples of onvex domain. An example of a starlike domainbut non-onvex is the domain C nfz = �x : x � 1g, i.e. the plane minus thenegative real axis from �1. How about the set C nfx+ iy : x = 0; jyj � 1g?2.2 Conepts of Limit and ContinuityThe de�nitions of limit, ontinuity and uniform ontinuity are analogousto those in Real Analysis. Suppose that a omplex-valued funtion f isde�ned on D � C and z0 2 D. Then f is said to have a limit ` as z ! z0and we write limz!z0 f(z) = ` or f(z)! ` as z ! z0
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Figure 2.3: z ! z0 in C .i� for any given � > 0, there exists a Æ = Æ(�; z0) > 0 suh thatjf(z)� `j < � whenever z 2 D and 0 < jz � z0j < Æ;i.e. i� for eah � > 0 there exists a Æ > 0 suh that (see 1.6)f(z) 2 �(`; �) whenever z 2 [�(z0; Æ) nfz0g℄ \D:It is straightforward to statelimz!z0 f(z) = l () limz!z0 jf(z)� `j = 0:Less preisely stated, this means that if z is near z0, then f(z) is lose to `.First, it should be noted that the funtion need not be de�ned at z0 inorder to have a limit at z0. Seondly, it is the puntured disk �(z0; Æ) nfz0gwhih is involved in D, i.e. z0 need not be in D. Thirdly, even if theondition that z0 2 D holds, we may have f(z0) 6= `. In real variabletheory, we do not have the freedom whih a omplex variable produes for,if z0 = x0 2 R, a neighboring point z = x! x0 has only two possible wayseither from the left or from the right. In the omplex ase, z an approahz0 in any manner in the omplex plane (see Figure 2.3).As in Real Analysis, if the limit exists then it must be unique: Supposethat limz!z0 f(z) = ` and limz!z0 f(z) = `0 with ` 6= `0:Then for a given � > 0 there exist Æ1; Æ2 > 0 suh thatjf(z)� `j < � whenever z 2 D and 0 < jz � z0j < Æ1and jf(z)� `0j < � whenever z 2 D and 0 < jz � z0j < Æ2:Therefore, whenever z 2 D and 0 < jz � z0j < Æ = minfÆ1; Æ2g,j`� `0j = j(f(z)� `0)� (f(z)� `)j � jf(z)� `0j+ jf(z)� `j < �+ � = 2�:Both the left and the right side of the above inequality are independent ofÆ. As � is arbitrary, the inequality an hold i� ` = `0.



46 Funtions, Limit and ContinuitySuppose that f; g are funtions de�ned on D � C . Then f + g is thefuntion de�ned on D by(f + g)(z) = f(z) + g(z); z 2 D:Similarly, we de�ne (fg)(z) = f(z)g(z) for z 2 D, and�fg� (z) = f(z)g(z) ; z 2 D when g(z) 6= 0 in D:The following theorem gives the \omplex" theory of limits from the\real" theory, and onversely.2.6. Theorem. Let f(z) = u(z) + iv(z), where u(z) = u(x; y) andv(z) = v(x; y) are real-valued funtions, be de�ned on D exept possibly atz0. Then for ` and `0 2 R, limz!z0 f(z) = `1 + i`2(2.7)i� lim(x;y)!(x0;y0)u(x; y) = `1 and lim(x;y)!(x0;y0) v(x; y) = `2:(2.8)Proof. The proof of this theorem follows immediately from Remark1.42. However, we inlude the details here. Suppose that the limit (2.7)exists. Using the triangle inequality it follows that the inequalitiesju(x; y)� `1j; jv(x; y)� `2j � jf(z)� (`1 + i`2)jand jx� x0j; jy � y0j � jz � z0j are satis�ed.Now if we allow z ! z0, i.e. (x; y) ! (x0; y0), it is evident that thetwo limits (2.8) exist. Conversely, suppose that the two limits (2.8) exist.Then, for a given � > 0, there exist Æ1 and Æ2 suh thatju(x; y)� `1j < �=2 whenever 0 < j(x� x0) + i(y � y0)j < Æ1and jv(x; y)� `2j < �=2 whenever 0 < j(x � x0) + i(y � y0)j < Æ2:By the triangle inequalityjf(z)� `j = j(u(x; y)� `1) + i(v(x; y)� `2)j� ju(x; y)� `1j+ jv(x; y)� `2j< (�=2) + (�=2) = �whenever 0 < jz � z0j < Æ = minfÆ1; Æ2g and the proof is omplete.



2.2 Conepts of Limit and Continuity 472.9. Example. For z 6= 0, onsiderf(z) = zz = (z)2jzj2 = x2 � y2 � 2ixyx2 + y2 :If we set f(x+ iy) = u(x; y) + iv(x; y), u(x; y); v(x; y) being real, thenu(x; y) = x2 � y2x2 + y2 and v(x; y) = � 2xyx2 + y2 :For eah point z0 6= 0, it is lear that limz!z0 f(z) exists and equals f(z0).We shall see whether limz!0 f(z) exists or not, by examining the limits asz ! 0 in many ways. Let m be any real number and allow z ! 0 along theline y = mx. Thenf(x+mxi) = �1�m21 +m2�� i� 2m1 +m2�whih learly shows that limz!0 f(z) does not exist. �2.10. Theorem. Let f and g be de�ned in a neighborhood of z0exept possibly at z0. Given limz!z0 f(z) = ` and limz!z0 g(z) = `0; we have(a) limz!z0[f(z) + g(z)℄ = `+ `0(b) limz!z0[f(z)g(z)℄ = ``0() limz!z0 f(z)g(z) = `̀0 if `0 6= 0.In partiular, For a, b omplex onstants, limz!z0(az + b) = az0 + b:Proof. By hypothesis, given �1 > 0, there exists Æf = Æf (z0; �1) > 0suh that 0 < jz � z0j < Æf =) jf(z)� `j < �1:(2.11)Similarly, given �2 > 0, there exists Æg = Æg(z0; �2) > 0 suh that0 < jz � z0j < Æg =) jg(z)� `0j < �2:(2.12)(a) Then for all z with 0 < jz � z0j < Æ = minfÆf ; Ægg it follows fromthe triangle inequality thatjf(z) + g(z)� (`+ `0)j � jf(z)� `j+ jg(z)� `0j < �1 + �2:Given � > 0, hoosing �1 and �2 so that �1 + �2 = �, we see that (a) followsfrom the last inequality.



48 Funtions, Limit and Continuity(b) Now for all z suh that 0 < jz� z0j < Æ, it follows from the triangleinequality thatjf(z)g(z)� ``0j = jg(z)(f(z)� `) + `(g(z)� `0)j� jg(z)j jf(z)� `j+ j`j jg(z)� `0j� [jg(z)� `0j+ j`0j℄jf(z)� `j+ j`j jg(z)� `0j� [�2 + j`0j℄�1 + j`j�2and the result follows as �1 and �2 are arbitrary.() If we hoose �2 = j`0j=2, as �jg(z)j + `0 � jg(z) � `0j, (2.12) showsthat 0 < jz � z0j < Æg =) jg(z)j > j`0j=2:(2.13)So g(z) 6= 0 in the deleted neighborhood �(z0; Æg) nfz0g. Now for all z suhthat 0 < jz � z0j < Æ, it follows that for �2 � j`0j=2����f(z)g(z) � `̀0 ���� = ����f(z)`0 � g(z)`g(z)`0 ����� ���� (f(z)� `)`0 � `(g(z)� `0)g(z)`0 ����� [�1j`0j+ �2j`j℄ � 2j`0j � 1j`0j� ; by (2:13);= 2(�1j`0j+ �2j`j)j`0j2 :Again the result follows as �1 and �2 are arbitrary.A funtion f : D ! C is ontinuous at z0 2 D i� limz!z0 f(z) existsand equals the funtion value f(z0). We say that f is ontinuous on D orf : D ! C is ontinuous when f is ontinuous at all points of D. Notethat f is ontinuous at z0 i� the following three onditions hold:f(z0) is de�ned, limz!z0 f(z) exists, and limz!z0 f(z) = f(z0).In terms of our earlier notation, the de�nition of ontinuity is that fora given � > 0, there exists a Æ > 0 suh thatjf(z)� f(z0)j < � whenever z 2 D and jz � z0j < Æ;or equivalently,f(z) 2 �(f(z0); �) whenever z 2 �(z0; Æ) \D:(2.14)A funtion f : D ! C is disontinuous (or has a disontinuity) at a pointz0 if z0 2 D, yet f is not ontinuous at z0.



2.2 Conepts of Limit and Continuity 492.15. Remark. If the domain D of f is suh that z0 2 D and�(z0; Æ) � D for some Æ > 0, then all the points in �(z0; Æ) for this Æ or asmaller Æ0 are to satisfy (2.14). It might happen that z0 2 D is suh thatthere exists a Æ > 0 with only z0 in �(z0; Æ) \ D; i.e. z0 is an isolatedpoint of D. In this ase (2.14) is trivially satis�ed and f is ontinuous atz0. Avoiding this trivial ase we shall, heneforth assume that when weonsider z0 2 D for ontinuity of f : D ! C , z0 is an interior point of D. Ifwe are onerned with ontinuity of f on D we shall assume D to be open(sine D is open, there exists an r suh that z0 + h 2 D with jhj < r). �In the de�nition of f at z0, the number Æ depends on z0 and �. When,given � > 0, there exists a Æ = Æ(�), independent of z0, satisfying (2.14) forall z0 2 D then we say that f is uniformly ontinuous on D. Clearly everyuniformly ontinuous funtion on D is ontinuous on D, but the onverseis not true in general (see Examples 2.28).2.16. Example. Consider f : C ! C de�ned byf(z) =8<: 0 if z = �(1 + 2i)z2 � 3z � 10iz + (1 + 2i) if z 6= �(1 + 2i).As z2 � 3z � 10i = [z � (4 + 2i)℄[z + (1 + 2i)℄; we may rewritef(z) = � 0 if z = �(1 + 2i)z � (4 + 2i) if z 6= �(1 + 2i);so that limz!�(1+2i) f(z) = �(5 + 4i) 6= f(�1� 2i):To verify this using `� � Æ' notation, let � > 0 be given. For z 6= �1 � 2i,we obtain that jf(z) + 5 + 4ij = jz + (1 + 2i)j: Therefore,jf(z)� (�5� 4i)j < � whenever 0 < jz � (�1� 2i)j < Æ = �so that limz!�(1+2i) f(z) = �(5 + 4i): �In the de�nition of limit, if ` 6= f(z0), then f is said to have a removabledisontinuity at z0 2 D (i.e. if the value of f is \orreted" at the point z0, itbeomes ontinuous there). This an also be done when f(z0) is not de�nedthere. For instane in the above example if we de�ne f(�1�2i) = �5�4i,then f beomes ontinuous at z = �1� 2i and at all other points in C . Asan immediate onsequene of Theorem 2.6 we have2.17. Theorem. The funtion f(z) = u(x; y)+ iv(x; y) is ontinuousat z0 = x0 + iy0 i� u(x; y) and v(x; y) are ontinuous at (x0; y0). In otherwords, Re f , Im f are both ontinuous i� f is ontinuous.



50 Funtions, Limit and ContinuityConsider f(z) = jzj2. As the real and imaginary parts of f are ontin-uous funtions of x and y for all (x; y) 2 R2 , f(z) is ontinuous on C .As a result of the properties of limits (see Theorem 2.10), we obtain thefollowing theorem.2.18. Theorem. If f; g : D ! C are ontinuous at z0 2 D, thentheir sum f +g, produt fg, quotient f=g where g(z0) 6= 0, and jf j are alsoontinuous at z0. In partiular, every polynomial a0 + a1z + � � � + anzn isontinuous for every z in C .Here are some examples of funtions whose ontinuity follow from The-orem 2.18. The funtion f de�ned byf(z) = z3 + 3z2 + 4is ontinuous on C nf2i;�2ig. More generally, Theorem 2.18 shows that anyrational funtion p(z)=q(z), where p and q are polynomials, is ontinuouson C nfz : q(z) = 0g. For example, a funtion of the forma�nzn + a�(n�1)zn�1 + � � � + a�1z + a0 + a1z + � � � + anznis ontinuous on the puntured plane C nf0g.2.19. Theorem. If limz!z0 f(z) = w0 and g is a funtion whih isontinuous at the point w0, then limz!z0(g Æ f)(z) = g(w0):Proof. Continuity of g at w0 implies that for a given � > 0, there existsa Æg > 0 suh thatjg(w)� g(w0)j < � whenever jw � w0j < Æg :(2.20)Further, by the ondition on f , for this Æg > 0, there exists a Æ > 0 suhthat jf(z)� w0j < Æg whenever z 2 �(z0; Æ) nfz0g:Now if we let w = f(z) in (2.20) we see that for all z 2 �(z0; Æ) nfz0g,j(g Æ f)(z)� g(w0)j = jg(f(z))� g(w0)j < �from whih we obtain the required onlusion.2.21. Corollary. The omposition of two ontinuous funtions isontinuous; i.e. if f : D1 ! D2 is ontinuous at z0 2 D1 and if g : D2 ! Cis ontinuous at w0 = f(z0), then g Æ f de�ned by (g Æ f)(z) = g(f(z)) isontinuous at z0.Proof. The proof is a onsequene of Theorem 2.19, see Figure 2.4.
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z0

D1

w = f (z)

w0
= f (z0
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D2

ζ = g(w)

g(w0
) = g(f (z0

))

Figure 2.4: Desription for a omposite map.An alternative and useful haraterization of a ontinuous funtion interms of sequenes is the following.2.22. Theorem. A funtion f is ontinuous at a point z0 2 D i�f(z0) = limn!1 f(zn) for every sequene fzng suh that zn 2 D for n =1; 2; : : : and zn ! z0 as n!1.Proof. =) : Consider a sequene fzng in D suh that zn ! z0 asn!1. Continuity of f at z0 implies that, for a given � > 0 there exists aÆ with jf(z)� f(z0)j < � whenever jz � z0j < Æ:For this Æ, sine zn ! z0, there exists an N suh that for all n � N ,jzn � z0j < Æ. Thus,jf(zn)� f(z0)j < � for all n � Nfrom whih it follows that f(zn)! f(z0), as desired.(= : Suppose that the onverse part is not true. Then, for some � > 0,for every Æ > 0 there orresponds a point � suh thatj� � z0j < Æ and jf(�)� f(z0)j � �:Fix suh an �. Then for eah n 2 N there exists � 2 D\�(z0; 1=n), denotedby �n, j�n � z0j < 1n and jf(�n)� f(z0)j � �:So, �n ! z0 but f(�n) 6! f(z0) as n ! 1. This is a ontradition to ourassumption, and so the onverse part is proved.Consider the funtion f de�ned byf(z) = zz ; z 2 C nf0g:Note that the funtion itself is not de�ned at 0 and so, it is not ontinuousat 0. If zn = 1=n and z0n = i=n, then f(zn) = 1 and f(z0n) = �1. Note
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� z0

δ ǫ

f (�)

f (z0)Figure 2.5: Desription for ontinuous mapping.that zn ! 0 and z0n ! 0. Can this funtion be made ontinuous at 0, byde�ning its value suitably at the origin?2.23. Theorem. Let f : D ! C be a funtion. Then f is ontinuouson D i� for every open set O � C , f�1(O) = fz 2 D : f(z) 2 Og is openin D.Proof. (= : Suppose that for eah open set O � C ; f�1 (O) is open.Let z0 2 D and � > 0 be given. Then A = �(f(z0); �) is an open set in Cand so by hypothesis f�1(A) is open in D. Sine f�1(A) is open in D andz0 2 f�1(A), there exists an open disk �(z0; Æ) suh that �(z0; Æ) \ D �f�1(A): Hene (see Figure 2.5),f(�(z0; Æ) \D) � A = �(f(z0); �):Continuity of f at z0 is thus established.=) : Suppose that f is ontinuous on D and let O be any open setin C . If f�1(O) = ;, then it is open. Otherwise, let z0 be any point off�1(O). Then z0 2 D and f(z0) 2 O. As O is open, there exists an opendisk �(f(z0); �) � O. Continuity of f at z0 then implies thatf(z) 2 �(f(z0); �) � O whenever z 2 �(z0; Æ) \D:Thus, �(z0; Æ) \D � f�1(O) and this shows that f�1(O) is open in D.One of the important results onerning ontinuous funtions is thatthey preserve onnetedness.2.24. Theorem. Let f : D ! C be a ontinuous funtion and let Dbe a onneted set. Then f(D) is a onneted set.Proof. Suppose that the theorem is not true. Then there exist twonon-empty disjoint open subsets V1; V2 of f(D) suh that f(D) = V1 [ V2.By Theorem 2.23, U1 = f�1(V1) and U2 = f�1(V2) are both non-emptyopen subsets of D suh that U1 \ U2 = ; and D = U1 [ U2, ontraditingthe onnetedness of D.



2.2 Conepts of Limit and Continuity 53Our next theorem is helpful partiularly in onstruting uniformly on-tinuous funtions.2.25. Theorem. A ontinuous funtion on a ompat set D is uni-formly ontinuous therein.Proof. Suppose that f is not uniformly ontinuous on D. Then, pro-eeding as in the onverse part of Theorem 2.22, there exists an � > 0, andtwo sequenes f�ng and f�ng in D suh that for every n 2 N,j�n � �nj < 1n and jf(�n)� f(�n)j � �:(2.26)Sine D is ompat, f�ng ontains a subsequene f�nkg onverging to apoint z0, say, where z0 is a point of D; i.e. �nk ! z0. Let f�nkg be theorresponding subsequene of f�ng. Then �nk ! z0. For, the triangleinequality gives j�nk � z0j � j�nk � �nk j+ j�nk � z0jand so we have �nk ! z0. Therefore, for the subsequenes f�nkg and f�nkg,(2.26) gives j�nk � �nk j < 1nk and jf(�nk)� f(�nk )j � �(2.27)for every k. However, as f is ontinuous at z0, we havef(�nk )! f(z0) and f(�nk)! f(z0) as k !1;ontraditing (2.27). Hene, f is uniformly ontinuous.2.28. Example. There are uniformly ontinuous funtions on a setwhih is not ompat. For instane, the identity funtion z is obviouslyuniformly ontinuous on C . But f(z) = z2 is not uniformly ontinuous onC whereas it is uniformly ontinuous on �R = fz : jzj < Rg (also �R nf0g),where R is a �xed positive number. To verify this, hoose two points z0and z on �R. Thenjz2 � z20 j = jz � z0j jz + z0j � jz � z0j(jzj+ jz0j) � 2Rjz � z0j:Therefore given any � > 0 there exists a Æ = �=(2R) suh thatjz � z0j < Æ implies jz2 � z20 j < �;thus proving the uniform ontinuity on �R.Suppose that z is not restrited to �R and allow z; z0 to be C . Wehoose two points of C to be z = R+ 1=R; z0 = 1=R so that jz � z0j = R,where R > 0. Then,jz2 � z20 j = �R+ 2R�R = R2 + 2 > 2and so, f(z) = z2 is not uniformly ontinuous throughout C . �



54 Funtions, Limit and Continuity2.3 Stereographi ProjetionWhen dealing with the real line, we frequently use the onept of in�nityand speak of +1 and �1. For instane, the sequene f2ng diverges to+1 whereas f�ng diverges to �1 and fxng = f(�1)nng is unboundedabove and unbounded below, solim supn!1 xn = +1; lim infn!1 xn = �1:Therefore, in the ase of real-valued funtions, limits suh aslimx!a f(x) =1; limx!1 g(x) = l; limx!�1h(x) = l0; limx!1 p(x) =1provide valuable information about the behavior of funtions near thesepoints, namely a;1;�1. In dealing with the omplex plane C , we toospeak of in�nity and denote it by the usual symbol `1'. In C , we do notgive a sign to the omplex in�nity. One of the main reasons for this is thatC has no natural ordering as R does.In Setion 1.5, we have disussed the topologial properties of the om-plex plane C with the usual Eulidean metri. It turned out that theompat sets were the bounded and losed sets. However, the in�nite set,for instane S = fz 2 C : z = m+ in; m; n 2 Nghas no limit in C and is losed but is non-ompat. Nevertheless, it will bevery muh useful to develop the notion of limit points for suh unboundedsets. Therefore, we shall extend the omplex plane C by adjoining oneextra point alled the \point at in�nity" whih we shall denote by 1, i.e.we onsider the extended omplex plane C1 := C [f1g as a losed surfaehaving a single point at in�nity. We shall then introdue a new metri toanalyze the behavior of a omplex funtion at in�nity and to map thepoints in C into the surfae of a sphere. This proess will be referred to asstereographi projetion.In fat, suh an extra point `1' is de�ned so as to satisfy the followingomputational properties (see Figure 2.6): Whatever be z 2 C ,z1 = 0; z +1 =1 (z 6=1); z0 =1 (z 6= 0);z � 1 =1 (z 6= 0); 1z =1 (z 6=1):We do not de�ne (or have no sense to de�ne)00 ; 1+1; 1�1; 0 � 1; and 11 :We de�ne z0 = 1 for z 2 C1 , and for eah n 2 N, we set0�n =1n =1; 0n =1�n = 0:
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Figure 2.6: Complex `1'.We use the following onstrution due to Riemann. There are two om-monly used methods. In one method, a orrespondene is set up betweenthe points of C and those of a sphere of radius 1=2 with enter at (0; 0; 1=2)tangent to this plane. There is another method of orrespondene in whihthe sphere of radius 1 has enter at (0; 0; 0) and the plane passes through(0; 0; 0). We shall use the �rst one.Let C be the omplex plane. Through the origin onstrut a line per-pendiular to C . Let this be �-axis of a 3-dimensional Eulidean spae inwhih a point has oordinates (�; �; �). Consider the sphere S of radius 1=2with enter at (0; 0; 1=2). That is,S = f(�; �; �) 2 R3 : �2 + �2 + (� � 1=2)2 = 1=4g:It is a ommon pratie to all the points N and O with oordinates(0; 0; 1) and (0; 0; 0) the north pole and south pole of the sphere S, respe-tively. The great irle in the plane � = 1=2 is alled the equator. Theplane � = 0 oinides with the omplex plane C and the � and � axes arethe x and y axes, respetively. Let Q(x; y; 0) be any point in the planeC . Through the points N and Q we draw a straight line NQ intersetingthe sphere S at a point, say, P (�; �; �). Then (�; �; �) is alled the stereo-graphi projetion, or image of (x; y; 0) on the sphere and is onsidered asthe spherial representation of z = x+ iy. This proedure assigns a uniquepoint on S to every given omplex number z so that we are free to thinkof C as sitting inside R3 . Conversely, to eah point (�; �; �) on the sphereother than N we an assoiate the omplex number z = (x; y; 0) where theline from (0,0,1) through (�; �; �) intersets C . Now we immediately seethat there is a one-to-one orrespondene between C and the points of Swith one exeption, namely, the north pole (0,0,1) itself. By assigning tothe north pole N of the sphere to orrespond to the point at in�nity, weobtain a one-to-one orrespondene between the points of the sphere S onone hand and the points of the extended omplex plane C1 on the other.The sphere is often alled Riemann sphere or omplex sphereIt is easy to obtain expliit equations expressing �; � and � in terms of
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x, ζ

y, η
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C(0, 0, 1/2)
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Figure 2.7: Riemann's sphere.x and y. The line in R3 passing through (0; 0; 1) and (x; y; 0) is given byft(0; 0; 1)+(1�t)(x; y; 0) : t 2 Rg � f((1�t)x; (1�t)y; t) : t 2 Rg:(2.29)Sine this line intersets the sphere S, we must have(1� t)2x2 + (1� t)2y2 + (t� 1=2)2 = 14so that (1� t)2jzj2 = t(1� t): If (�; �; �) 6= (0; 0; 1), then we arrive att = jzj21 + jzj2 ; i.e. 1� t = 11 + jzj2 :Using the fat that the points (0; 0; 1), (�; �; �) and (x; y; 0) are ollinear,(2.29) now yields 8>>>>>>><>>>>>>>: � = x1 + x2 + y2 = z + z2(1 + jzj2) ;� = y1 + x2 + y2 = �i(z � z)2(1 + jzj2) ;� = x2 + y21 + x2 + y2 = jzj21 + jzj2 ;(2.30)that is z = x+ iy 2 C orresponds to� x1 + x2 + y2 ; y1 + x2 + y2 ; x2 + y21 + x2 + y2� 2 Sor equivalently to� z + z2(1 + jzj2) ; �i(z � z)2(1 + jzj2) ; jzj21 + jzj2� 2 S:



2.3 Stereographi Projetion 57For instane, the images of 1; i; (1�i)=p2 on the sphere are respetivelygiven by Z1; Z2; Z3, whereZ1 = (1=2; 0; 1=2); Z2 = (0; 1=2; 1=2); Z3 = (p2=4;�p2=4; 1=2):Using the three equations in (2.30) it is easy to see that1� � = 11 + jzj2 ; i.e. jzj2 = �1� �(2.31)so that x = �1� � ; y = �1� � ; or z = � + i�1� � :(2.32)That is (�; �; �) orresponds to� �1� ��+ i� �1� �� 2 C :The map z  ! (�; �; �) is alled stereographi projetion of C on S nf(0; 0; 1)gor vie versa. In fat if � : C ! S nf(0; 0; 1)g is the stereographi projetionof C on S nf(0; 0; 1)g, then�(z) = � z + z2(1 + jzj2) ; �i(z � z)2(1 + jzj2) ; jzj21 + jzj2� :The inverse of �, ��1 : S nf(0; 0; 1)g ! C , is given by��1(�; �; �) = �1� � + i �1� � :2.33. Remark. If z is a omplex number orresponding to the pointQ(�; �; �) on the puntured sphere S nf(0; 0; 1)g, then (2.31) shows thatjzj ? R() � ? R21 +R2 ; R > 0:(2.34)In partiular, the images of fz : jzj < 1g and fz : jzj > 1g are the southernhemisphere and the northern hemisphere, respetively. �Now suppose that (�n; �n; �n) is a sequene of points of S whih on-verges to (0; 0; 1) and let fzng be the orresponding sequene of points inC . It follows (as is obvious geometrially) from (2.31) that jznj beomesvery large; i.e. as (�n; �n; �n) ! (0; 0; 1), jznj ! 1. Conversely, in view of(2.30), if jznj ! 1 then (�n; �n; �n) ! (0; 0; 1). Thus, it is reasonable tointrodue the symbol \1" to orrespond to (0; 0; 1) 2 S. We an now thinkof C1 either as `a plane + an ideal point' or as a sphere. Correspondingly,as was pointed out earlier, we may think of C as a plane, or as a sphere
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C → (0, 0, 1/2)

O → (0, 0, 0)

Q → (x, y, 0)

≡ (ξ, η, 0)

Figure 2.8: Projetion of a portion of the Riemann sphere.without the north pole. Both points of view are useful, depending on theproblem on hand.The notions suh as limit point of a sequene and neighborhoods of apoint an now be de�ned for the extended omplex plane C1 through thisidenti�ation with the Riemann sphere S.2.35. De�nition. A sequene fzng is said to diverge to the limit1, written zn ! 1 or limn!1 zn = 1, if for any R > 0, there exists anumber N suh that jznj > R for n > N:Sine fz : jzj > Rg orresponds to a `ap' (see also Figure 2.7) itmakes sense to think of fz : jzj > Rg as a neighborhood of 1. Suh aneighborhood beomes smaller as R gets larger and larger. This geometriintuition allows us to de�ne the onept of ontinuity on C1 . We next givea justi�ation for this notion.We de�ne �(z; z0) = d(Z;Z 0)) to be the Eulidean distane betweenZ = (�; �; �) and Z 0 = (�0; �0; � 0) in the three dimensional spae whih arerespetively the pre-images of z = x + iy and z0 = x0 + iy0 (under thestereographi projetion of the sphere S onto the omplex plane C ). Sine(�; �; �) and (�0; �0; � 0) are on the sphere S,�2 + �2 + �2 = � and �02 + �02 + � 02 = � 0:(2.36)The length of the segment joining Z and Z 0, known as hordal distane ofz from z0, is de�ned as �(z; z0) = d(Z;Z 0): Therefore, we have�(z; z0) = p(� � �0)2 + (� � �0)2 + (� � � 0)2= p� + � 0 � 2(��0 + ��0 + �� 0); by (2:36);= jz � z0jp1 + jzj2p1 + jz0j2 ; by (2.30) and (2.36).



2.3 Stereographi Projetion 59In partiular, if z0 is the point at in�nity then �(z;1), the spatial distanebetween the images of z and (0; 0; 1), is given by8>>>><>>>>:�(z;1) =p�2 + �2 + (� � 1)2 = p1� �;= 1p1 + jzj2 ; by (2:31);= limz0!1�(z; z0):(2.37)Further, we note that�(z; z0) = 1 () jz � z0j2 = (1 + jzj2)(1 + jz0j2)() j1 + zz0j = 0() zz0 = �1:In other words, the points z and z0 in C represent diametrially opposite(antipodal) points of the Riemann sphere S i� zz0 = �1.By (2.34) and (2.37), we see that the set fz : jzj > Rg; R > 0, orre-sponds to the set f(�; �; �) 2 S n(0; 0; 1) : (�; �; �) lies within the spherialap of radius R=p1 +R2g.Conversely, if (�; �; �) 6= (0; 0; 1), as noted above, we havep�2 + �2 + (� � 1)2 =p1� � = 1p1 + jzj2 :Note that 1p1 + jzj2 < � () jzj > p1� �2� (� > 0):Therefore, the �-neighborhood of (0; 0; 1) on S, namely,f(�; �; �) 2 S : p�2 + �2 + (� � 1)2 < �gis nothing but N(1; �) = fz 2 C : jzj > p1��2� g [ f1g; whih we all an�-neighborhood of 1. Clearly,(a) �(z1; z2) � 0(b) �(z1; z2) = 0() z1 = z2() �(z1; z2) = �(z2; z1)(d) �(z1; z3) � �(z1; z2) + �(z2; z3)(e) �(0; z1) � �(0; z2) provided jz1j � jz2j � 1(f) �(z1; z2) � jz1 � z2j = d(z1; z2).In partiular, we all � de�ned on C1 , the hordal metri on C1 . Thisallows us to treat the point 1 like any other point. Thus, we have



60 Funtions, Limit and Continuity2.38. Theorem. The hordal metri �(: ; :) de�ned on C1 satis�esthe properties of a metri.By a irle on the sphere S we mean the intersetion of S with someplane a� + b� + � + d = 0: Let us now �nd the equation of the irle onthe sphere whih is the stereographi image of the irle fz : jz � aj = Rg.By (2.32) and jz � aj2 = R2, the required equation is given by�2 + �2(1� �)2 � a�� � i�1� � �� a�� + i�1� � � = R2 � jaj2;whih upon simpli�ation beomes(a+ a)� + i(a� a)� + (jaj2 �R2 � 1)� = 1 + jaj2 �R2:2.39. Theorem. Suppose T � C1 . Then the orresponding imageof T on the Riemann sphere S is(a) a irle in S not ontaining (0; 0; 1) if T is a irle;(b) a irle in S minus (0; 0; 1) if T is a line.Proof. First we onsider the general equation of a irle in the plane:T = f(x; y) : A(x2 + y2) +Bx + Cy +D = 0g:(2.40)Using stereographi projetion, i.e. by (2.32) and (2.31), we have(A�D)� +B� + C� +D = 0whih is the equation of a plane in spae when a general point has oordi-nates (�; �; �). Note that a plane and a sphere interset in a irle. SupposeA = 0, then (2.40) is a straight line in C . Thus, the orresponding set inthe sphere S is given by the intersetion of�2 + �2 + �2 = �;with B� +C� �D� +D = 0 whih is a irle minus (0,0,1). If we onsiderT � C1 , then the orresponding image set governed by the above equationsis a irle passing through the north pole (0,0,1). This proves (a).Suppose A 6= 0 and D = 0. Then T redues toA(x2 + y2) +Bx+ Cy = 0;whih is a irle passing through (0; 0) and so the orresponding image isgiven by the intersetion of �2 + �2 + �2 = �



2.3 Stereographi Projetion 61with B� + C� +A� = 0: This is in fat a irle passing through the southpole (0,0,0). The general statement (b) is obvious.The onverse of Theorem 2.39 takes the following form.2.41. Theorem. If TS is a irle on the Riemann sphere S and TI isits stereographi projetion on C1 , then(a) TI is a irle if (0; 0; 1) 62 TS(b) TI is a line if (0; 0; 1) 2 TS.Proof. If TS is a irle on the sphere S, thenTS = f�� + �� + � + Æ = 0g \ f�2 + �2 + �2 = �g:Thus, TS passes through (0; 0; 1) provided  + Æ = 0. It follows from (2.30)that the orresponding set of points of the plane in C satis�es( + Æ)(x2 + y2) + �x+ �y + Æ = 0; (x; y) 2 TI :(2.42)Clearly, this equation represents the equation of a irle if  + Æ 6= 0. If+ Æ = 0, then (2.42) is the equation of a line. The onlusion now followsfrom the fat that  + Æ = 0() (0; 0; 1) 2 TS:2.43. Example. Suppose that a ube has its verties on the Riemannsphere and its edges parallel to the o-ordinate axes. Let us now �nd thestereographi projetions of the verties. By hypothesis, the verties areZ1 = (�; �; �); Z2 = (�; �; 1� �);Z3 = (�;��; 1� �); Z4 = (��; �; 1� �);Z5 = (��;��; 1� �); Z6 = (��; �; �);Z7 = (�;��; �); Z8 = (��;��; �):Further the length of the sides of the ube gives the relationj�j = j�j = j� � 1=2j :(2.44)For onveniene, we let � > 0, � > 0 and � > 12 . As �; �; � lie on theRiemann sphere �2 + �2 + (� � 1=2)2 = 1=4;by (2.44), we have �2 + �2 + �2 = 1=4; i.e. 3�2 = 1=4: Thus, we get� = � = 12p3 = �� � 12� ; i.e. � = p3 + 12p3  1� � = p3� 12p3 ! :



62 Funtions, Limit and ContinuityTherefore, by (2.32), we havez = � + i�1� � = (1 + i)p3� 1 = � 1p3� 1�+ i� 1p3� 1�whih is the stereographi projetion of 12p3 ; 12p3 ; p3 + 12p3 ! :Similarly the stereographi projetions of the other verties are obtained asfollows:Z2 =  12p3 ; 12p3 ; p3� 12p3 ! ; Z3 =  12p3 ;� 12p3 ; p3� 12p3 ! ;Z4 =  � 12p3 ; 12p3 ; p3� 12p3 ! ; Z5 =  � 12p3 ; 12p3 ; p3� 12p3 ! ;Z6 =  � 12p3 ; 12p3 ; p3 + 12p3 ! ; Z7 =  12p3 ;� 12p3 ; p3 + 12p3 ! ;Z8 =  � 12p3 ;� 12p3 ; p3 + 12p3 ! ;and Z2 ! z2 = � 1p3 + 1�+ i� 1p3 + 1�Z3 ! z3 = � 1p3 + 1�� i� 1p3 + 1�Z4 ! z4 = �� 1p3 + 1�+ i� 1p3 + 1�Z5 ! z5 = �� 1p3 + 1�� i� 1p3 + 1�Z6 ! z6 = �� 1p3� 1�+ i� 1p3� 1�Z7 ! z7 = � 1p3� 1�� i� 1p3� 1�Z8 ! z8 = �� 1p3� 1�� i� 1p3� 1� : �2.45. Example. We wish to prove that the points z and z0 in theomplex plane will orrespond to symmetri points with respet to theequatorial plane (viz., the plane � = 1=2) i� zz0 = 1.



2.3 Stereographi Projetion 63To prove this, we �rst note that z and z0 orrespond to symmetripoints with respet to equatorial plane i� z and z0 orrespond to (�; �; �)and (�; �; 1� �), respetively. This holds if and only ifz = � + i�1� � and z0 = � + i�1� (1� �) ; i.e. zz0 = �2 + �2(1� �)� = 1: �We shall now briey indiate how to extend the limit onepts disussedin the previous setion to the extended omplex plane.2.46. De�nition. (Limit at in�nity) Let f be de�ned on an un-bounded set E. (Then for any R > 0, there exists z 2 E suh that jzj > R.)We say that f(z) ! ` as z ! 1 if for every � > 0, there exists an R > 0suh that jf(z)� `j < � whenever z 2 E and jzj > R:In this ase, we writelimz!1 f(z) = ` or limjzj!1 f(z) = `:Reall (see De�nition 2.35) that a set of the form fz : jzj > Rg [ f1g isalled a neighborhood of 1. For onveniene, we may introdue�(1; 1=R) := fz : jzj > Rg [ f1g = C1 n�(0;R):The losed disk �(1; 1=R) and the puntured disk �(1; 1=R) nf1g maybe de�ned similarly. For instane, �(1; 1=R) nf1g := C nfz : jzj > Rg.Let us show that(a) limz!1 1z = 0; (b) limz!1 1z2 = 0.To do this, we �rst note that 1=z and 1=z2 are de�ned everywhere inC nf0g. Then for every � > 0 there exists a R = 1=� suh that����1z ���� < � whenever jzj > 1� = R:For the seond ase, we note that ��1=z2�� < � () jzj > 1=p� so, in thisase, we hoose R = 1=p�.2.47. De�nition. (In�nite limit) Let f be de�ned on D exeptpossibly at z0 of D. We say that f(z) ! 1 as z ! z0 if for every R > 0,there exists a Æ > 0 suh thatjf(z)j > R whenever z 2 D \�(z0; Æ) nfz0g:



64 Funtions, Limit and ContinuityIn this ase, we write,limz!z0 f(z) =1 or limz!z0 jf(z)j =1:Note. Considering the real-valued funtion jf j on D or D nfz0g de�nedby jf j(z) = jf(z)j, z 2 D, we observe thatlimz!z0 f(z) =1 i� limz!z0 jf j(z) := limz!z0 jf(z)j =1:2.48. Example. We have (a) limz!1 1jz2 � 1j =1, (b) limz!0 1z2 =1.Note that the funtion f de�ned byf(z) = 1z2 � 1is de�ned for all z 2 C nf�1; 1g. Let R > 0 be given. Then we must showthat we an �nd a Æ > 0 suh thatjf(z)j = ���� 1z2 � 1 ���� > R whenever 0 < jz � 1j < Æ:Note that jf(z)j > R() 0 < jz2 � 1j < 1=R: Now 0 < jz � 1j < Æ impliesthatjz2 � 1j = jz � 1j jz � 1 + 2j � jz � 1j[jz � 1j+ 2℄ < Æ(Æ + 2) = (Æ + 1)2 � 1and therefore jz2 � 1j < 1=R if Æ = p1 +R�1 � 1: Henejf(z)j > R whenever z 2 [C nf�1; 1g℄\ [�(1;p1 +R�1 � 1) nf1g℄and the onlusion follows. The seond ase is lear, beause���� 1z2 ���� = 1jzj2 > R whenever jzj = jz � 0j < Æ = 1pR: �2.49. De�nition. Let f be de�ned on an unbounded set E. If forevery R > 0 there exists K > 0 suh that jf(z)j > R for jzj > K and z 2 E;then we say that f(z)!1 as z !1 and write limz!1 f(z) =1:For instane, if f(z) ! 1 as z ! 1, then jf(z)j ! 1 as z ! 1: Inpartiular, limz!1 z =1.2.50. Remark. Using the hordal metri � on C [ f1g, it is easyto see that the following are true:(a) zn ! z0 () �(zn; z0)! 0 (b) zn !1() �(zn;1)! 0:



2.4 Sequenes and Series of funtions 65Part (b), in partiular, helps us to give an alternate meaning to a state-ment suh as jf(z)j > R for jz � z0j < Æ in the form�(f(z);1) < 1p1 +R2 for �(z; z0) < jz � z0j < Æ: �Let E be an unbounded set. Then f : E ! C1 is ontinuous at z0 2 Ei� for every � > 0, there exists a Æ > 0 suh thatjf(z)� f(z0)j < � whenever z 2 �(z0; Æ) \ E;or equivalently, f(�(z0; Æ) \ E) � �(f(z0); �):In this de�nition, with the help of the above notation, we now admit theases where z0 = 1 and f(z0) = 1. We say f is ontinuous on E i� fis ontinuous at all points of E. For instane, a rational funtion in z isa ontinuous funtion from C1 into C1 . Many other basi notions mayalso extended to the extended omplex plane. We postpone our disussionon ertain aspets of funtions on the extended omplex plane to a laterhapter.2.4 Sequenes and Series of FuntionsNext we disuss the uniform onvergene of sequenes and series of fun-tions. Consider a sequene of omplex-valued funtions ffn(z)g, fn : D �C ! C and n 2 N. For a �xed z0 2 D, ffn(z0)g is an ordinary sequeneof omplex numbers and so the onvergene of the sequene of these fun-tions for eah z0 2 D is as in the de�nition of onvergene of a sequene ofomplex numbers in Setion 1.6.2.51. De�nition. A sequene ffng of funtions is said to be onver-gent at z0 2 D if the sequene ffn(z0)g onverges. We shall all this limitf(z0). The sequene ffn(z)g of funtions is said to onverge `pointwise' tof(z) in D if ffn(z0)g onverges to f(z0) at eah point z0 2 D.Sine the limit of a sequene, when it exists, is unique, in the ase of`pointwise' onvergene, we have a uniquely de�ned funtion f from D intoC and we all f , the pointwise limit, or simply the limit funtion of thesequene ffn(z)g and write f(z) = limn!1 fn(z), z 2 D: An equivalentformulation of the above disussion is given by the following:2.52. De�nition. Let fn and f be funtions from D into C . We saythat fn(z) ! f(z) on D i� for every � > 0 and every z 2 D, there existsN = N(�; z) suh that jfn(z)� f(z)j < � for all n � N: This onvergene issaid to be uniform if it is possible that N(�; z) an be hosen independentof z 2 D. That is, one N(�) works for all z 2 D.



66 Funtions, Limit and ContinuityWe often write fn ! f uniformly on D, or limn!1 fn(z) = f(z) uni-formly on D to denote the uniform onvergene of fn to f on D. Alsonote that the uniform onvergene on D implies pointwise onvergene.The onverse is false, for example onsider fn(z) = zn for z 2 � (see alsoExample 2.55). Then the sequene fzng onverges uniformly on jzj � r(0 < r < 1); for if � > 0 is given, thenjznj � rn < � whenever n > (ln �)= ln r:Note that f(z) = limn!1 zn = � 0 if jzj < 11 if z = 1:However, the onvergene is not uniform on jzj < 1. Indeed if 0 < � < 1,then for any positive integer n, it is possible to hoose z so that1 > jzj � �1=n:Then jznj � � and so the hoie of N depends on z. For instane, givenany positive integer n, one an exhibit points z with jzjn � 1=3 (note thatthe hoie z = exp(�(1=n) ln 3) will do when � = 1=3).Alternatively, it suÆes to observe that (sine jzj < 1),jzjn < � whenever n ln jzj < ln � or n > (ln �)= ln jzj:Sine ln jzj approahes zero as jzj ! 1, the maximum value of n is in�niteand so there annot exist an N independent of z satisfying the onditionthat is required for uniform onvergene.We are frequently onerned with series of the formPn�1 fn(z) for z insome subset of C . In situations like this, as in the ase of series of omplexterms, we have2.53. De�nition. The seriesPk�1 fk onverges `pointwise' inD to afuntion f in D if the orresponding sequene of partial sums sn =Pnk=1 fkonverges to f `pointwise' in D. Then we writef = 1Xk=1 fkand say that the series Pn�1 fn is pointwise onvergent in D with sumf . This series is said to onverge to f uniformly in D i� sn onverges tof uniformly in D. The series is said to onverge absolutely or said to beabsolutely onvergent in D if the seriesPk�1 jfkj is onvergent in D.2.54. Example. Consider the geometri seriesPk�1 zk�1: If z 6= 1,then the n-th partial sum issn = 1 + z + � � � + zn�1 = 1� zn1� z :



2.4 Sequenes and Series of funtions 67Sine fzng is a null sequene for jzj < 1, it follows thatXk�1 zk�1 = limn!1 sn = limn!1 1� zn1� z = 11� z ; jzj < 1:In fat,����sn � 11� z ���� = jzjnj1� zj < � whenever n ln jzj < ln(�j1� zj):If 0 < jzj < 1, then ln jzj < 0 and so we have����sn � 11� z ���� < � whenever n > N � ln(�j1� zj)n ln jzj :Thus, the geometri series is pointwise onvergent in � with sum f(z) =1=(1� z).If jzj � 1, jzjn � 1 and sine jzjn 6! 0, the series diverges in this ase.These fats an also be veri�ed with the help of Corollary 1.49 and Theorem1.51.Next we wish to show that the geometri series is not uniformly on-vergent in jzj < 1. To do this, we need to show that sn does not onvergeuniformly in jzj < 1. Clearly, from the expression for sn, it suÆes to showthat fSng, where Sn(z) = zn=(1�z), is not uniformly onvergent in jzj < 1.Let � > 0 be given. If fSng were uniformly onvergent for jzj < 1, thenthere would exist an N suh that���� zn1� z ���� < � for all n > N and all z 2 �:Now, for a given � > 0 we hoose z0 = N+�N+�+1 in �. Then for this point,we note thatzN+101� z0 = [1� 1=(N + �+ 1)℄N+11=(N + �+ 1) > 1� (N + 1)=(N + �+ 1)1=(N + �+ 1) = �(sine (1 � x)n > 1 � nx if 0 < x < 1 and n is a positive integer � 1); sothe onvergene is not uniform for jzj < 1. �2.55. Example. Consider the seriesS(z) = �z + z(1� z) + z2(1� z) + � � � + zn�1(1� z) + � � �Then the n-th partial sum issn(z) = �z + (1� z) n�1Xk=1 zk = �zn



68 Funtions, Limit and Continuityso that the sequene fsng (and, so the series) onverges to zero for jzj < 1.We have already shown that the sequene fzng does not onverge uniformlyfor jzj < 1. Consequently, the given series is not uniformly onvergent forjzj < 1. �Many results about the onvergene of numerial sequenes in C an bearried over easily to the onvergene of a sequene of funtions at a pointand so, for pointwise onvergene. We list a few of them.2.56. Theorem. Let ffng and fgng be sequenes of funtions de�nedon a set D � C .(a) fn ! f pointwise in D () for eah � > 0 and eah z 2 D thereexists an N(�; z) suh that jfn(z)� fm(z)j < � for all n;m > N(�; z):(b) If fn ! f and gn ! g both pointwise in D, then fn�gn ! f �g andfngn ! fg pointwise on D.() If gn(z) 6= 0 and g(z) 6= 0 for eah z in D and n 2 N, then fngn ! fgpointwise in D.(d) ffn(z)g is uniformly onvergent in D i� for every � > 0 and all z 2 Dthere exists an N = N(�) suh that jfn(z)� fm(z)j < � for all n;m >N(�):(e) If fn ! f and gn ! g both uniformly in a ommon region D thenfn � gn ! f � g uniformly in D and for a omplex onstant �,�fn ! �f uniformly in D.Theorem 2.56(d) is alled the Cauhy riterion for uniform onvergene.Uniform onvergene does not arry over to the produt of funtions, ingeneral. To see this, onsiderfn(z) = gn(z) = 1z + 1n and f(z) = g(z) = 1z in � nf0g:Then, fn ! f and gn ! g both uniformly in � nf0g. Nowfn(z)gn(z)� f(z)g(z) = 1n2 + 2n � 1z :In partiular, for z = n�1, or n�2 in �, we �nd that (fngn � fg)(z) � 2for all n � 1: Hene, fngn 6! fg uniformly in �.2.57. Theorem. The limit funtion of a uniformly onvergent se-quene of ontinuous funtions is itself ontinuous.Proof. Let eah fn be ontinuous in D and suppose that fn ! funiformly in D. Let z0 2 D be given. Now, for all z 2 D and for all indiesn, the triangle inequality givesjf(z)� f(z0)j � jf(z)� fn(z)j+ jfn(z)� fn(z0)j+ jfn(z0)� f(z0)j:



2.4 Sequenes and Series of funtions 69The laim now follows from this inequality upon using the hypothesis.2.58. Corollary. IfPn�1 fn is uniformly onvergent in D and if fnis ontinuous in D for eah n, then so is the sum f =Pn�1 fn.Corollary 2.58 makes no assertion about the sum of a series of ontinuousfuntions if the onvergene is not uniform.The Cauhy onvergene riterion for series of omplex numbers dis-ussed in Chapter 1 takes the following form: \The seriesPn�1 fn(z) on-verges uniformly in D i� for every � > 0 there exists an N = N(�) suhthat����� nXk=m+1 fk(z)����� = jsn � smj < � for all z 2 D whenever n > m � N":The next theorem gives a suÆient ondition for the uniform onvergeneof the series Pn�1 fn(z). This is one of the frequently used results inomplex analysis.2.59. Theorem. (Weierstrass' M-test) Let Pn�1Mn be a onver-gent series of positive real numbers suh that jfn(z)j � Mn for all n 2 Nand for all z in a set D. Then the series Pn�1 fn(z) onverges absolutelyand uniformly in D.Proof. To prove this, we note that, for all n > N and z 2 D,����� nXk=N+1 fk(z)����� � nXk=N+1 jfk(z)j � nXk=N+1Mk:(2.60)The Cauhy riterion (see Theorem 2.56(a) and De�nition 2.53) applied tothe series Pn�1Mn shows that for every � > 0; there exists an N(�) suhthat PnN+1Mk < � for all n > N = N(�) This observation, by (2.60), im-plies that Pn�1 fn(z) satis�es the Cauhy riterion (see Theorem 2.56(a))for uniform onvergene on D and so the assertion follows.We illustrate the appliation of Weierstrass' M-test with an examplewhih is already familiar for us. The geometri seriesPn�1 zn�1 onvergesuniformly for jzj � r, where 0 < r < 1. Finally, we end this setion withtwo more examples.2.61. Example. De�nefn(z) = 1 + zn1� zn = 21� zn � 1; n 2 N:Note that if jzj < 1, then jzjn ! 0 as n ! 1; and if jzj > 1, thenjzjn ! 1. Therefore, if jzj > 1 then for suÆiently large values of n, we



70 Funtions, Limit and Continuityhave j1� znj � jzjn � 1!1 as n!1: Hene, for jzj 6= 1, limn!1 fn(z)exists and f(z) = limn!1 fn(z) = � 1 if jzj < 1�1 if jzj > 1:From this, we also onlude that it is not possible to de�ne the limit funtionf(z) on jzj = 1 so that f beomes a ontinuous funtion in C . �2.62. Example. Let us disuss the onvergene of1Xk=1 zk�1(1� zk)(1� zk+1) (jzj 6= 1):For jzj 6= 1, the partial sums takes the formSn(z) = nXk=1 11� z � zk�11� zk � zk1� zk+1 �= 11� z � 11� z � zn1� zn+1 � :Note that Sn(0) = 1. For 0 < jzj < 1, we have���� zn1� zn+1 ���� � jzjn1� jzjn+1 =! 0 as n!1and for jzj > 1, we getzn1� zn+1 = 1z�n � z ! �1z as n!1:It follows that, as n!1,Sn(z)! f(z) = 8>><>>: 1(1� z)2 if jzj < 111� z � 11� z + 1z� if jzj > 1: �2.5 Exerises2.63. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) The funtion f(z) = �z + 1=(�z) is univalent in fz : jzj > j�j�1g,� 6= 0.(b) The funtion f(z) = (az + b)=(z + d); ad � b 6= 0, is univalent inC nf�d=g.



2.5 Exerises 71() The funtion f(z) = (1 + z)3 is not univalent in �.(d) For every positive integer n, the funtion f(z) = nz+ zn is univalentin �.(e) If n is a positive integer, then jzj < 1=n is the largest disk enteredat 0 on whih the funtion f(z) = z + zn is univalent.(f) The Koebe funtion k(z) = z=(1� z)2 is univalent in �.(g) The range of the Koebe funtion k(z) = z=(1� z)2 is (�1;�1=4℄.(h) The series Pan onverges to a () P an onverges to a.(i) The funtion f(z) = z2 is uniformly ontinuous on �R (also �R nf0g),where R is a �xed positive number, but not in C .(j) Eah of the limits limz!0 Re z2jzj2 and limz!0 Im z2jzj2 does not exist.(k) For f(z) = [Re (z) + Im (z)℄=jzj2, limz!0 f(z) does not exist.(l) The funtion f(z) = (Re z)=(Im z) is ontinuous for all z with Im z 6=0 and disontinuous for all z with Im z = 0. Also, no disontinuity off(z) is removable.(m) The funtion f(z) = (2 + z)Arg z does not have removable disonti-nuities.(n) The funtion f(z) = (Arg z)2 is ontinuous on the puntured planeC nf0g.(o) The funtion F (z; h) = [(z + h)n � zn℄=h � nzn�1 (0 6= h; z 2 C )satis�es the inequality jF (z; h)j � F (jzj; jhj).(p) The sequene ffn(z)g, where fn(z) = 1=(1 + nz), does not onvergeto f(z) = 0 uniformly in any losed region ontaining the origin.(q) The sequene f 1nzgn�1 onverges for 0 < jzj < 1, but not uniformly.If r > 0 is �xed, the onvergene is uniform for r < jzj < 1.(r) The sequene ffn(z)gn�1, for jzj < 1, where fn(z) = z3 � z=n, on-verges uniformly to the limit funtion f(z) = z3 for z 2 �.(s) The sequene fzn=ngn�1 onverges uniformly to 0.(t) The series Pn�0 3�nzn onverges uniformly for jzj � r, 0 < r < 3.(u) The seriesP1n=0 z2=(1 + z2)n onverges for all z exterior to the lem-nisate jz2 + 1j = 1.(v) The transformation w = 2�1[z + �2z�1℄ (� 2 R), maps the irlejzj = r (r 6= �) into an ellipse in the w-plane.(w) The series Pn�0 z2n=(1 � z2n) onverges uniformly for jzj � r, 0 <r < 1.(x) The mapping � de�ned for stereographi projetion is a homeomor-phism (i.e. bijetive and biontinuous).



72 Funtions, Limit and Continuity2.64. Disuss the ontinuity of the following omplex-valued funtionsat z = 0:(a) f(z) = 8<: (Re z) (Im z)jzj2 if z 6= 00 if z = 0:(b) f(z) = 8<: Im zjzj if z 6= 00 if z = 0:() f(z) = (Re z)=(1 + jzj) for z 2 C .(d) f(z) = jRe (z) Im (z)j for z 2 C .(e) f(z) = 8<: sin jzjjzj if z 6= 01 if z = 0:(f) f(z) = 8<: 1� exp(�jzj2)jzj2 if z 6= 01 if z = 0:2.65. Desribe the position of the following points in relation to z inthe omplex plane, as viewed on the Riemann sphere:z; z; 1=z; (z + z)=2; � iz; z � z2 ; zz ; zjzj :Also, for eah of the following points in C , give the orresponding pointson the Riemann sphere: 0; 1 + i; 1� i; 2 + 3i; 2� 3i:2.66. Let D � C and f : D ! C . Chek whether the followingstatements are equivalent or not:(a) f is not uniformly ontinuous in D(b) there exists an � > 0 suh that for every Æ > 0 there are points �Æ and�Æ in D suh that j�Æ � �Æ j < Æ and jf(�Æ)� f(�Æ)j � �() there exists an � > 0, and two sequenes f�ng and f�ng in D suhthat for every n 2 N, j�n � �nj < 1=n and jf(�n)� f(�n)j � �:2.67. Show that the �eld of 2 � 2 matries � x y�y x� is isomorphito the �eld of omplex numbers x+ iy.



Chapter 3Analyti Funtions and Power Series
In Setion 3.1 we disuss the fundamental di�erene between the deriva-tive of a funtion of a real and that of a omplex variable, by providingneessary and suÆient onditions for di�erentiability. As a onsequene,a ontinuously di�erentiable funtion (briey C1-funtion) f de�ned in anopen set D is analyti if fz(z) = 0 on D. There is an interesting relationshipbetween funtions that are analyti in a domain and real-valued funtionsthat are harmoni in that domain. In Setion 3.2 we disuss this relation-ship at an introdutory level, espeially in �nding harmoni onjugates. Inaddition, we disuss the polar form of the Cauhy-Riemann equations andthe Laplae equation whih have many impliations in various branhes ofapplied mathematis. In Setion 3.3, we investigate `in�nite polynomials'-ageneralization of `polynomials' and the in�nite series of omplex numbers.The disussion allow us to haraterize the behavior of the power seriesin a very natural fashion. Therefore, the aim of this setion is to studythe onvergene of the power series. In Setion 3.4, we examine variousknown properties of the so-alled standard or elementary funtions from areal variable to a omplex variable. Setion 3.5 illustrates the relationshipbetween w = log z (z 6= 0) and z = ew and onsiders its loal properties.Several standard funtions are assoiated with exponential funtions or log-arithmi funtions. As a onsequene, in Setion 3.5, we de�ne the inversetrigonometri and the inverse hyperboli funtions.3.1 Di�erentiability and Cauhy-Riemann EquationsDi�erentiation in C is set against a bakground of limits, ontinuity andso on. To some extent the rules for di�erentiation of a funtion of a om-plex variable are similar to those of di�erentiation of a funtion of a realvariable. Sine C is merely R2 with additional strutures of addition andmultipliation of omplex numbers, we an immediately transfer most ofthe onepts of R2 into those for the omplex �eld C . In fat, we have



74 Analyti Funtions and Power Seriesalready done so when we de�ned the onept of distane (modulus),jz � z0j =p(x� x0)2 + (y � y0)2 (z = x+ iy and z0 = x0 + iy0)whih is the same as the Eulidean distane between the points z = (x; y)and z0 = (x0; y0) in R2 . We now start with3.1. De�nition. We say that a omplex funtion f de�ned in a non-empty open set D is di�erentiable (or omplex di�erentiable) at z0 2 D ifthe limit limz!z0 f(z)� f(z0)z � z0 = limh!0 f(z0 + h)� f(z0)h(3.2)exists. When this is the ase, the value of the limit, denoted by f 0(z0), isalled the derivative of f at z0. The number f 0(z0) is generally a omplexnumber. The funtion f is said to be di�erentiable in (on) D if it is dif-ferentiable at every point of D. A funtion whih is di�erentiable in theentire omplex plane is alled an entire funtion.We observe that \formally" the limit de�nition of the derivative givenby (3.2) is idential in form to that of the derivative of a real (or omplex)-valued funtion of a real variable. In terms of `�� Æ' notation, the limit in(3.2) exists i� given any � > 0, there exists a Æ = Æ(�; z0) > 0 suh that����f(z)� f(z0)z � z0 � f 0(z0)���� < � whenever 0 < jz � z0j < Æ:Letting �(z) =8<: f(z)� f(z0)z � z0 � f 0(z0) for 0 < jz � z0j < Æ0 for z = z0;we have limz!z0 �(z) = 0 = �(z0): Therefore � is ontinuous at z0 and weget an expliit expression for f(z) in the formf(z) = f(z0) + f 0(z0)(z � z0) + (z � z0)�(z)(3.3)for jz � z0j < Æ. In onlusion, we have3.4. Proposition. Let D � C be open, f : D ! C and z0 2 D.Then f 0(z0) exists i� there exists a funtion � : D ! C whih is ontinuousat z0 and satis�es (3:3) for all z 2 D. Equivalently, f is di�erentiable at z0i� f(z) = f(z0) + f 0(z0)(z � z0) +E(z)(3.5)where E is a funtion de�ned in a neighborhood of a suh thatlimz!z0 jE(z)=(z � z0)j = 0:



3.1 Di�erentiability and Cauhy-Riemann Equations 75By (3.5), we obtain a linear funtion L(z) = f(z0)+f 0(z0)(z�z0) whihapproximates f(z) up to an \error" term E(z), whih, for z lose to z0, issmall, in absolute value in omparison with jz � z0j. This may be treatedas an alternate and geometri desription of di�erentiability at a point. Atthis plae it is neessary to make an important point to the reader. Sine itis not possible to graph a omplex funtions in the usual way as we do withreal-valued funtions, it is not meaningful to visualize f 0(z0) as a `slope' ofsome urve as we do in the real ase.It is immediate that the derivative of a onstant funtion is zero; for iff(z) � , then for eah z0 2 C we havelimh!0 f(z0 + h)� f(z0)h = limh!0 � h = 0:3.6. Theorem. A real-valued funtion of a omplex variable eitherhas derivative zero or the derivative does not exist.Proof. Suppose that f(z) is a real-valued funtion of omplex variablewhose derivative exists at a point a. Thenf 0(a) = limh!0 f(a+ h)� f(a)h :If we take the limit h ! 0 along the real axis, then f 0(a) is real. If wetake the limit h! 0 along the imaginary axis, then f 0(a) beomes a purelyimaginary number. So we must have f 0(a) = 0.There are several other immediate onsequenes of De�nition 3.1 whihare worth mentioning. First along this line is to allow z ! z0 in (3.3) andobtain3.7. Theorem. If f has derivative at z0, then it is ontinuous at z0.As in the real ase, ontinuity of f does not neessarily imply di�eren-tiability of f in omplex ase also. The funtion f(z) = jzj demonstratesthis. For if h = h1 + ih2 (h1; h2 real), thenf(h)� f(0)h = jhjh �! 8>><>>: 1 for h = h1 + i � 0, 0 < h1 ! 0�1 for h = h1 + i � 0, 0 > h1 ! 0�i for h = 0 + ih2, 0 < h2 ! 0i for h = 0 + ih2, 0 > h2 ! 0:(3.8)Thus, jzj is not di�erentiable at z = 0 but is ontinuous at 0. Is f di�eren-tiable at other points in C ?Note that f : R ! R de�ned by f(x) = jxj is (real) di�erentiable onR nf0g and ontinuous on R whereas its omplex analog map f : C ! C



76 Analyti Funtions and Power Seriesde�ned by f(z) = jzj is nowhere di�erentiable although it is ontinuous inC (see Example 3.10).Next we give an example of a funtion whih is di�erentiable at a singlepoint in C and nowhere else. For example, if f(z) = jzj2 then f is learlyontinuous in C . On the other hand (with h 6= 0), we havef(h)� f(0)h = hhh = h ! 0 as h! 0so that f is di�erentiable at the origin with derivative f 0(0) = 0. Is fdi�erentiable at any other point? Now let z0 6= 0 be an arbitrary point inC n f0g. With 0 6= h as neighboring variable point of 0, we havef(z0 + h)� f(z0)h = jz0 + hj2 � jz0j2h= z0h+ z0h+ hhh= z0 + z0�hh�+ h:As z0 6= 0, (3.8) shows that the expression on the right tends to di�erentvalues as h! 0. Thus, the funtion f(z) = jzj2 annot be di�erentiable atz0 6= 0. How about the translated funtion g de�ned by g(z) = f(z � a)?Clearly, g(z) = jz � aj2 (a is a �xed point in C ) is di�erentiable only at aand nowhere else.Similarly, it is easy to verify that the funtion f(z) = zRe z is di�er-entiable at z = 0 only. Problems like this an be done also by using theCauhy-Riemann equations. Thus, there exist omplex funtions whih aredi�erentiable at a given point but not in any neighborhood of that point.Many formulas for the derivatives of omplex funtions are the same asthose for the real ounterparts. For example, it follows that the monomialsf(z) = zn (n 2 N) are entire, i.e. di�erentiable in the entire omplex plane.In fat, for eah �xed z0 2 C , we havelimz!z0 f(z)� f(z0)z � z0 = limz!z0 zn � zn0z � z0= limz!z0[zn�1 + zn�2z0 + � � � + zn�10 ℄ = nzn�10 :In onsonane with Real Analysis we an write this in the formf 0(z) = ddz (zn) = nzn�1for every z 2 C and n = 0; 1; 2; : : : : By De�nition 3.1, we have the followingstandard theorems on di�erentiation in omplex ounterpart.



3.1 Di�erentiability and Cauhy-Riemann Equations 773.9. Theorem. If f and g are di�erentiable at z0, then their sumf + g, di�erene f � g, produt fg, quotient f=g (where g(z0) 6= 0) and thesalar multipliation f , are also di�erentiable at z0 and(f � g)0 = f 0 � g0; (fg)0 = f 0g + fg0; �fg�0 = f 0g � fg0g2 ; (f)0 = f 0;where  is a omplex onstant.More generally, a �nite linear ombinations (of the form �1f1 + �2f2 +� � � + �nfn; �j 2 C , j = 1; 2; : : : n) and �nite produts of funtions di�er-entiable at z0 are also di�erentiable at z0.Proof. For z 6= z0, onsider the following:(f � g)(z)� (f � g)(z0)z � z0 = �f(z)� f(z0)z � z0 ���g(z)� g(z0)z � z0 �(fg)(z)� (fg)(z0)z � z0 = f(z)�g(z)� g(z0)z � z0 �+ g(z0)�f(z)� f(z0)z � z0 �and, for g(z0) 6= 0,�fg� (z)��fg� (z0)z � z0 = g(z0)�f(z)� f(z0)z � z0 �� f(z0)�g(z)� g(z0)z � z0 �g(z)g(z0) :The assertions then follow from the above equalities and the properties ofthe limit by making z ! z0 and noting that if f; g are di�erentiable at z0they are ontinuous at z0 so that f(z)! f(z0), g(z)! g(z0) as z ! z0.Let f(z) = 1 and g(z) = zn (z 6= 0, n 2 N). Then g0(z) = nzn�1 andTheorem 3.9 help us to get h0(z), where h(z) = f(z)=g(z) = 1=zn; z 6= 0:h0(z) = ddz � 1zn� = �nz�n�1and so h(z) = z�n is di�erentiable in C nf0g. Further, Theorem 3.9 showsthat eah polynomial of the form p(z) = a0 + a1z+ � � � + anzn; where n isa non-negative integer, is di�erentiable in C and has the derivativep0(z) = a1 + 2a2z + � � � + nanzn�1; z 2 C ;obtained by term-by-term di�erentiation of the polynomial p(z). In par-tiular, every polynomial is an entire funtion. This fat and Theorem 3.9immediately imply that a rational funtion of the form R(z) = p(z)=q(z);where p(z) and q(z) are polynomials in z, is di�erentiable at all points ex-ept where the denominator vanishes and the formula for R0(z) is obtainedby using Theorem 3.9.



78 Analyti Funtions and Power Series3.10. Example. Let f(z) = Re z and z0 be an arbitrary �xed pointin C . Then, for h = h1 + ih2 (6= 0),f(z0 + h)� f(z0)h = Re (h)h = � 1 for h = h1 + i:0 2 R n f0g0 for h = 0 + ih2 2 i(R n f0g)so that limh!0 f(z0 + h)� f(z0)hdoes not exist. Therefore, f(z) = Re z is nowhere di�erentiable even thoughit is ontinuous in C .Similarly, we see that Im z, jzj, z and Arg z are all nowhere di�erentiablein C . Is eah of the funtions listed here ontinuous in C ? Is eah of thesefuntions in�nitely often real di�erentiable in R2? Is a produt of twonowhere di�erentiable funtions always nowhere di�erentiable? How aboutg(z) = (z)2? �3.11. De�nition. A funtion f is said to be analyti, or holomorphiat a point a 2 C if it is di�erentiable at every point of some neighborhoodof a. Similarly, f is analyti in (on) an arbitrary set S if it is di�erentiableat every point of some open set ontaining S. An entire funtion is thenthe one whih is analyti in (on) the whole omplex plane.Formally, we say that a point at whih a funtion eases to be analytiis alled a singularity or a singular point. For a preise de�nition, we referto Setion 7.1. Can we say f(z) = z has every point in C as its singularity?The answer is no, see Example 7.1.Observe that even though f(z) = jz� aj2 is di�erentiable at a, it is notanalyti at this point beause there does not exist a neighborhood of a inwhih jz�aj2 is di�erentiable at eah point of the neighborhood. Moreover,this funtion is nowhere analyti in C .The meaning of sentenes suh as \f is analyti for jzj � R, R > 0"should now be lear (meaning that f is analyti in some domain ontainingthe losed region �R. Further, it is also lear from the de�nition that if Dis an open set then the phrase \analyti in (on) D" means \di�erentiable atall points of D". The set of all analyti funtions (mappings) in the openset D is denoted by H(D), H standing for `holomorphi', an alternative for`analyti'. As usual, we writef (0) = f; f (1) = f 0; f (2) = f 00 and so on:Beause of the inherent two-dimensional (R2 ) harater of a omplexvariable (C ), the usual rules of the derivative from alulus may be usedwhen di�erentiating analyti funtions. The proofs extend without muhhange beyond the real ase by replaing the real variables x; y by omplex



3.1 Di�erentiability and Cauhy-Riemann Equations 79variables z; w. As an example, a diret onsequene of De�nition 3.1 givesthe following hain rule for di�erentiation of omposite funtions.3.12. Theorem. Let f : D1 ! C , g : D2 ! C be suh that f(D1) �D2. If f is di�erentiable at z0 and g is di�erentiable at w0 = f(z0), thenthe omposition (g Æ f)(z) = g(f(z)) is di�erentiable at z0 and(g Æ f)0(z0) = g0(w0)f 0(z0) = (g0 Æ f)(z0)f 0(z0):Further, if f 2 H(D1) and g 2 H(D2) then g Æ f 2 H(D1).Proof. Let w = f(z); z 2 D1 and assume the hypotheses. By (3.3),sine f is di�erentiable at z0, there exists a Æ1 > 0 suh thatf(z)� f(z0) = (z � z0)�f (z) for z 2 �(z0; Æ1) � D1;where �f (� f 0(z0) + �(z) in (3.3)) is ontinuous in �(z0; Æ1) withlimz!z0 �f (z) = f 0(z0):Further, sine g is ontinuous at w0, there exists a Æ2 > 0 suh thatg(w)� g(w0) = (w � w0)�g(w) for w 2 �(w0; Æ2) � D2;where �g is ontinuous in �(w0; Æ2) with limw!w0 �g(w) = g0(w0): Nowhoose Æ > 0 suh that Æ < Æ1 andjz � z0j < Æ1 ) jf(z)� f(z0)j < Æ2:Then for z 2 �(z0; Æ), we have by substitutiong(f(z))� g(f(z0)) = (f(z)� f(z0))�g(f(z))= (z � z0)�f (z) � �g(f(z))= (z � z0)�gÆf (z):By Corollary 2.21, �g Æ f is ontinuous at z0 and its value at z0 is �g(w0) =g0(w0). By Theorem 2.18, the produt �f (z) � �g(f(z)), i.e. �gÆf (z), isontinuous at z0 andlimz!z0 �gÆf (z) = limz!z0[�f (z) � �g(f(z))℄ = f 0(z0) � g0(w0) = f 0(z0)g0(f(z0)):The assertion now follows from (3.3).Theorem 3.9 leads quikly to the following useful properties of analytifuntions.3.13. Theorem. Linear ombinations and �nite produts of analytifuntions in an open set D are all analyti in D. If f and g are analyti in



80 Analyti Funtions and Power SeriesD, then the quotient f=g is analyti in D exept for those z in D at whihg vanishes.3.14. Corollary. If f and g are entire then so are f � g, fg; andf Æ g is entire when it is de�ned.We know that if F (z) = U(x; y) + iV (x; y) where U and V are real-valued funtions de�ned in a neighborhood of z0, then the partial derivativeUx(x; y) of U with respet to x at (x; y) (where z = x + iy), if it exists, isde�ned to be Ux(x; y) = limh!0 U(x+ h; y)� U(x; y)h :(3.15)Similarly, the partial derivative Uy(x; y) of U with respet to y at (x; y), ifit exists, is de�ned to beUy(x; y) = limh!0 U(x; y + h)� U(x; y)h :(3.16)Sometimes (3.15) and (3.16) are denoted by the Leibnitz notation,�U�x (z) = �U�x (x; y) and �U�y (z) = �U�y (x; y);respetively. Note that h in (3.15) and (3.16) is a non-zero real numbernear 0. The partial derivatives Fx(x; y) and Fy(x; y) of the omplex-valuedfuntion of the omplex variable F (z) = U(x; y) + iV (x; y) at z = x + iyare de�ned byFx(z) = Ux(x; y) + iVx(x; y) and Fy(z) = Uy(x; y) + iVy(x; y);respetively, provided the partial derivatives on the right side of the orre-sponding equations exist. We simply write these expressions asFx = Ux + iVx; and Fy = Uy + iVy:If Fy = iFx, then, by equating imaginary and real parts, we have a pair offamous partial di�erential equationsUx = Vy; Uy = �Vx:Conversely, the later two equations imply Fy = iFx. These two extremelyimportant partial di�erential equations are alled the Cauhy-Riemann6(briey we write the C-R) equations. The former is atually referred to as6These two equations are named in honor of Frenh a mathematiian, Augustin-LouisCauhy (1789-1857), who disovered them, and in honor of a German mathematiian,Georg Friedrih Bernhard Riemann (1826-1866), who made them fundamental in thedevelopment of the theory of omplex analysis. Riemann is onsidered one of the threefounders of omplex funtion theory; the others being Cauhy and Weierstrass.



3.1 Di�erentiability and Cauhy-Riemann Equations 81the C-R equations in Cartesian form. We note that the existene of thederivative for real-valued funtions of single real variable is a mild smoothondition while the same for omplex-valued funtions of a omplex variableleads to the above pair of partial di�erential equations. We usually writef(z) = f(x+ iy) = u(x; y) + iv(x; y) = Re f(z) + iIm f(z)or f(z) = u(z)+iv(z) instead. However, we may abuse the notation slightlyby writing f(z) = f(x; y), but when we write it like this, we atually identifyu(x; y) + iv(x; y) 2 C with (u(x; y); v(x; y)) 2 R2 and use results from twovariable alulus for our investigation.If 
 � R2 and u : 
 ! R is a ontinuous funtion, then u is alled aC1- (or ontinuously di�erentiable) funtion in 
 if ux and uy exist and areontinuous in 
. More generally, if k 2 N then u is said to be in Ck(
)(or simply a Ck funtion or k-times ontinuously di�erentiable funtion) ifall the partial derivatives of u up to and inluding order k exist and areontinuous in 
. We indiate this by writing u 2 Ck. Note that C0(
)denotes the set of all ontinuous funtions in 
. A funtion f : 
 ! C issaid to belong to Ck(
), or simply all it a Ck-funtion, if both u and vbelong to Ck(
).From the inspetion of funtions suh as jzj, jzj2 and zRe z, we onludethat it is not neessarily an easy task to determine whether a given funtiondoes or does not have a derivative. Let us start deriving a simple riterionwhih helps us to handle this problem.3.17. Theorem. If f(z) = u(x; y) + iv(x; y) is di�erentiable at z0,then the C-R equations hold at z0 = x0 + iy0:ifx(z0) = fy(z0);or equivalently,ux(x0; y0) = vy(x0; y0) and uy(x0; y0) = �vx(x0; y0):Proof. Let f : 
! C where 
 � C is a neighborhood of z0. If f 0(z0)exists for some point z0 = x0 + iy0, then the limitlimh!0 f(z0 + h)� f(z0)hexists and is independent of the path along whih h = h1 + ih2 ! 0. Inpartiular, we havef 0(z0) = limh1!0 f(x0 + h1; y0)� f(x0; y0)h1 + i0 = �f�x (z0);and f 0(z0) = limh2!0 f(x0; y0 + h2)� f(x0; y0)0 + ih2 = 1i �f�y (z0):



82 Analyti Funtions and Power SeriesA omparison of the two expressions for f 0(z0) shows that the omplexdi�erentiability of f at z0 implies that not only the partial derivatives off (with respet to x and y) exist at z0, but also that they satisfy the C-Requations{in omplex form�f�x (z0) = 1i �f�y (z0); i.e. ifx(z0) = fy(z0):(3.18)Equating the real and imaginary parts yields the C-R equations{in Carte-sian form ux(z0) = vy(z0) and uy(z0) = �vx(z0):Another onvenient notation is to treat the pair of onjugate omplexvariables z and z as two independent variables by writingx = z + z2 ; y = �i�z � z2 � :Now we introdue the following di�erential operators:��z := ��x �x�z + ��y �y�z = 12 � ��x � i ��y�and ��z := ��x �x�z + ��y �y�z = 12 � ��x + i ��y� :It follows that if f = u+ iv, thenfz = �f�z = 12 ��f�x � i�f�y� = 12 ([ux + vy℄ + i[vx � uy℄)(3.19)and similarly,fz = �f�z = 12 ��f�x + i�f�y� = 12 ([ux � vy℄ + i[uy + vx℄) :(3.20)Therefore, the C-R equations (3.18) are exatly equivalent to fz(z0) = 0whih is also referred to as the omplex form of the C-R equations. Withthis notation, we have the following alternate form of Theorem 3.17.3.21. Theorem. A neessary ondition for a omplex-valued funtionf = u + iv to be di�erentiable at z0 is that fz(z0) = 0: In partiular, iff 2 H(D), then C-R equations hold at every point z 2 D.The C-R equations are more helpful in proving non-di�erentiability.For example, onsider f(z) = z and g(z) = Re z. Then fz(z) = 1 6= 0 andwriting g as g(z) = z + z2 ;



3.1 Di�erentiability and Cauhy-Riemann Equations 83it follows that gz(z) = 1=2 6= 0. Thus, both f and g are nowhere di�eren-tiable.On the other hand, the onverse of Theorem 3.17 (equivalently, Theo-rem 3.21) is not true. We an demonstrate this by a number of examples(for instane, see Examples 3.23 and 3.24). That is, the neessary ondi-tion stated in Theorem 3.17 for di�erentiability at a point is not generallysuÆient for di�erentiability at that point.3.22. Remark. Eah of the funtionsf1(z) = jzj; f2(z) = Re z and f3(z) = Im z;is a non-onstant real-valued funtion de�ned in C (see Theorem 3.6). Eahof them is nowhere analyti. If we rewrite these funtions asf1(x; y) =px2 + y2; f2(x; y) = x; f3(x; y) = y;then, exept f1, eah of these funtions are real di�erentiable in R2 . �3.23. Example. It is easy to see that the funtion f de�ned byf(z) = jRe z Im zj1=2satis�es the C-R equations at the origin, but is not di�erentiable at thispoint. To see this, we may rewrite the given funtion asf(z) = jz2 � z2j1=22 or f = u+ iv with u(x; y) = jxyj1=2 and v(x; y) = 0.Note that f is identially zero on the real and imaginary axes. Therefore,it is trivial to see that ux(0; 0) = uy(0; 0) = vx(0; 0) = vy(0; 0) = 0: Forexample, ux(0; 0) = lims!0 u(s; 0)� u(0; 0)s = 0:Thus, the C-R equations hold at z = 0: However, taking h = rei� 6= 0 withr ! 0, we �nd thatlimh!0 f(h)� f(0)h = limr!0 jr2 os � sin �j1=2r(os � + i sin �) = e�i�j sin 2�j1=2p2whih is learly depending upon � (e.g. take � = 0 and � = �=4). Weonlude that f is not di�erentiable at z = 0 even though f satis�es theC-R equations at the origin. Here, sine v(x; y) = 0, v is a C1-funtion inR2 : Are the partial derivatives ux and uy ontinuous at the origin? Howabout the funtionsf(z) = jRe z Im zj1=3 and f(z) = jRe z Im zj1=4? �



84 Analyti Funtions and Power Series3.24. Examples. Considerf(z) = u+ iv = 8<: x3 � y3x2 + y2 + i�x3 + y3x2 + y2� if (x; y) 6= (0; 0);0 if x = y = 0:For this funtion the orresponding u and v are ontinuous at the originand therefore, f is ontinuous at the origin. Using the identi�ationf(x; y) = (u(x; y); v(x; y))  ! f(z) = u(z) + iv(z);for 0 6= h 2 R and 0 6= k 2 R, we havef(h; 0)� f(0; 0)h = (h3=h2 + ih3=h2)� 0h = 1 + i; i.e. fx(0; 0) = 1 + iandf(0; h)� f(0; 0)h = (�h3=h2 + ih3=h2)� 0h = �1+i; i.e. fy(0; 0) = �1 + iwhih shows that ifx(0; 0) = fy(0; 0): Thus we see that the C-R equationsare ertainly satis�ed at the origin. But f is not di�erentiable at the origin,beause for h = h1 + ih1, h1 2 R,f(0 + h)� f(0)h =8>><>>: ih1h1 + ih1 = 1 + i2 for h = h1 + ih1h1 + ih1h1 = 1 + i for h = h1 + i � 0.This observation shows that the partial derivatives exist and satisfy the C-Requations at the origin even though the funtion is not di�erentiable there.A similar onlusion ontinues to hold for the following two funtions:f(z) =8<: z5jzj4 for z 6= 00 for z = 0 = 8<: z3z2 for z 6= 00 for z = 0;and g(z) = u+ iv =8<: Im (z2)jzj2 for z 6= 00 if z = 0:We shall provide details for the �rst ase and leave the seond ase as anexerise. As before, using the notation f(x; y) = (u(x; y); v(x; y)), we seethat f(h; 0)� f(0; 0)h = (h5=jhj4)� 0h = 1; i.e. fx(0; 0) = 1;



3.1 Di�erentiability and Cauhy-Riemann Equations 85and f(0; h)� f(0; 0)h = ((ih)5=jhj4)� 0h = i; i.e. fy(0; 0) = i;so that ifx(0; 0) = fy(0; 0) and the C-R equations hold at the origin. Then,taking h = rei� 6= 0 with r 6= 0, it follows that for h 6= 0;f(h)� f(0)h = h4jhj4 = ei4�and therefore, as h ! 0 along di�erent paths, the di�erene quotient doesnot yield a unique value. Thus, f is not di�erentiable at the origin. Again,an f be di�erentiable at other points in C ? For z0 6= 0, we observe thatfz(z0) = �2�z0z0�3whih gives that jfz(z0)j = 2 for z0 6= 0. Thus, f annot be di�erentiableat z0 6= 0 and hene, it is nowhere di�erentiable. �Next we give suÆient onditions for a omplex-valued funtion to bedi�erentiable. To present this we need the following lemma whih is awell-known result from two variable alulus.3.25. Lemma. Let u : 
 � R2 ! R, where 
 is an open set ontain-ing the point (x0; y0). Suppose that(i) ux and uy exist at every point in a neighborhood of (x0; y0), and(ii) ux and uy are ontinuous at (x0; y0).Then, for suÆiently small s and t in R,u(x0 + s; y0 + t)� u(x0; y0) = sux(x0 + s�; y0 + t) + tuy(x0; y0 + t�)with js�j < jsj and jt�j < jtj:Proof. We onsideru(x0 + s; y0 + t)� u(x0; y0) = [u(x0 + s; y0 + t)� u(x0; y0 + t)℄+ [u(x0; y0 + t)� u(x0; y0)℄ :By the mean value theorem of alulus applied to the funtion�(x) = u(x; y0 + t)for x between x0 and x0 + s, we haveu(x0 + s; y0 + t)� u(x0; y0 + t) = sux(x0 + s�; y0 + t)



86 Analyti Funtions and Power Serieswith js�j < jsj. (Indeed when we restrit u to a horizontal line segmentin the disk �(z0; Æ), then it redues to a di�erentiable funtion of the realvariable x with derivative ux, whilst in the vertial segment in this disk uis a funtion of y alone and has the derivative uy. Note that orrespondingto (x0; y0), there exist points x� in[x0; x0 + s℄ = f(1� t)x0 + t(x0 + s) : t 2 [0; 1℄g � �(z0; Æ);that is �x0 < x� < x0 + s if s > 0x0 + s < x� < x0 if s < 0,so that jx� � x0j < jsj: Thus, orresponding to z0, there exist points x� 2[x0; x0 + s℄ with js�j < jsj, satisfying the desired equation). Similarly, wehave u(x0; y0 + t)� u(x0; y0) = tuy(x0; y0 + t�)with jt�j < jtj. Adding this with the previous expression gives the desiredresult.3.26. Theorem. Let f : 
 ! C , where 
 is an open set in Containing the point z0, and f(z) = u(x; y) + iv(x; y) for z = x + iy 2 
:Suppose that(i) ux; uy; vx; and vy exist at eah point in a neighborhood of z0 and areontinuous at z0(ii) the C-R equations are valid at z0.Then f is di�erentiable at z0 and f 0(z0) = ux(z0) + ivx(z0):Proof. Let z0 = x0 + iy0. We wish to show that f 0(z0) exists. Sine
 is open and z0 2 
, there exists a Æ > 0 suh that �(z0; Æ) � 
: Chooseh = s+ it 6= 0 with 0 < jhj < Æ, so that z0+h 2 �(z0; Æ). Now we onsiderf(z0 + h)� f(z0) = f(x0 + s; y0 + t)� f(x0; y0)= f(x0 + s; y0 + t)� f(x0; y0 + t)+f(x0; y0 + t)� f(x0; y0):The mean value theorem applied to both real and imaginary parts of f(z)(see Lemma 3.25) shows thatf(z0 + h)� f(z0) = sfx(x0 + s�; y0 + t) + tfy(x0; y0 + t�)(3.27)with js�j < jsj and jt�j < jtj. Remember thath! 0 () s! 0 and t! 0 =) s� ! 0 and t� ! 0:



3.1 Di�erentiability and Cauhy-Riemann Equations 87By assumption ux; uy; vx and vy exist in some neighborhood of z0 and areontinuous at z0 and therefore, fx and fy exist in that neighborhood andare ontinuous at z0. In partiular, as fx is ontinuous, we note thatfx(x0 + s�; y0 + t)! fx(x0; y0) as h! 0;or equivalently fx(x0 + s�; y0 + t) = fx(x0; y0) + �(h);(3.28)where �(h)! 0 as h! 0. Similarly, as fy is ontinuous at z0, we �nd thatfy(x0; y0 + t�) = fy(x0; y0) + �(h);where �(h)! 0 as h! 0: Further, sine the C-R equations are satis�ed atz0, we have fy(x0; y0) = ifx(x0; y0) and so the last equation beomesfy(x0; y0 + t�) = ifx(x0; y0) + �(h):(3.29)By (3.28) and (3.29), (3.27) gives that for h = s+ it with 0 < jhj < Æf(z0 + h)� f(z0)h = s[fx(x0; y0) + �(h)℄s+ it + t[ifx(x0; y0) + �(h)℄s+ it= fx(x0; y0) + �(h)� ss+ it�+ �(h)� ts+ it� :Note that s=(s+ it) and t=(s+ it) are bounded by 1, and eah of �(h) and�(h) approahes zero as h! 0. Consequently, taking the limit as h! 0 inthe above equation, we see thatf 0(z0) = limh!0 f(z0 + h)� f(z0)hexists and is equal to fx(x0; y0) = ux(x0; y0) + ivx(x0; y0):If the hypotheses of Theorem 3:26 hold at eah point of a neighborhood�(z0; Æ) of z0, then f is analyti in �(z0; Æ). Further, to minimize thenotational diÆulties, we ould assume z0 = 0 in Theorem 3.26, beausethe result for z0 6= 0 an be retrieved from the ase z0 = 0 by merelyapplying the latter to the funtion g(z) = f(z + z0) whih exhibits thesame behavior at the origin that the funtion f(z) does for z0 6= 0.3.30. Example. Consider f = u+iv, where u = x2y2 and v = 2x2y2.Then all the partial derivatives exist and are ontinuous in C . However,the C-R equations are satis�ed only when 2xy2 = 4x2y and 2x2y = �4xy2;that is when xy(y � 2x) = 0 and xy(x+ 2y) = 0:



88 Analyti Funtions and Power SeriesThese two equations show that the C-R equations hold only along the linesx = 0; y = 0 and nowhere else. Thus, f = u+ iv is di�erentiable only alongpoints on the real and imaginary axes and nowhere else. Note that, everyneighborhood of every point on the line x = 0 (and y = 0, respetively)will ontain points o� the line at whih the C-R equations does not hold.It follows that f = u+ iv is nowhere analyti. �If f is onstant in some domain D, then f 0(z) = 0 in D. As a onse-quene of the C-R equations, we shall now establish the onverse part of it(see also Corollaries 4.21 and 12.3 for a proof). For more about the basiproperties onerning the range of non-onstant analyti funtions, we referto Setion 12.6.3.31. Theorem. Suppose that f is analyti in a domain D. We have(i) if f 0(z) = 0 in D, then f is onstant(ii) if one of jf j, Re f , Im f , Arg f is onstant in D, then f is onstant.Equivalently, we say that if the range f(D) lies in either a irle or avertial line or horizontal line or any line with onstant slope, then fis onstant.Proof. (i) For z = x+ iy 2 D and f = u+ iv, we havef 0 = ux + ivx = vy � iuy:Suppose f 0(z) = 0 in D. Then all the partial derivatives of u and v onD are zero, i.e. ux(z) = uy(z) = vx(z) = vy(z) = 0 for z 2 D: We knowfrom Real Analysis that if � is a real-valued di�erentiable funtion of a realvariable and suh that �0(x) = 0 on (a; b), then � is a onstant on (a; b).Let z0 = x0 + iy0 be an arbitrary point in D and for a < b, letL = fx+ iy0 : x 2 (a; b)g:If the horizontal line segment L lies in D, then � de�ned by�(x) = u(x; y0)satis�es �0(x) = ux(x; y0) = 0 on L and so u is onstant on L. It follows thatu is onstant on eah horizontal line segment in D. Likewise u is onstanton eah vertial line segment in D. Sine D is open and onneted, eahpair of points in D an be onneted by a polygonal step path onsistingentirely of suh line segments. Therefore, u is onstant in D. Similarly,v is onstant in D. Consequently, f is onstant throughout D (see alsoCorollary 4.21).(ii) Now suppose that jf(z)j = k, so that u2 + v2 = k2: If k = 0 itis obvious that f = 0 in D. So, let k 6= 0. Di�erentiating partially withrespet to x and y, we see thatuux + vvx = 0; uuy + vvy = 0:



3.2 Harmoni Funtions 89By the C-R equations, these beomeuux � vuy = 0; uuy + vux = 0:Squaring and adding, we obtain0 = (u2 + v2)(u2x + u2y) = k2jf 0(z)j2so that f 0(z) = 0 in D. Therefore from (i) we dedue that f is onstant.Suppose u is onstant. Then ux = uy = 0; therefore, by the C-Requations, vx = vy = 0 so that f 0(z) = 0 in D. Hene f is onstant.If Arg f = �, a onstant, then g(z) = e�i�f(z) is a real-valued analytifuntion and so, by part (i), g(z) is onstant.Suppose f and g are analyti in a domain D suh that f 0(z) = g0(z) inD then applying part (i) of Theorem 3.31 to f � g we onlude that f andg di�er from eah other by a onstant.The hypothesis that D is onneted in Theorem 3.31 is not superuous.For example, if D = C nfz : 1 � jzj � 3g and if f : D ! C is de�ned byf(z) = � 0 for jzj < 1i for jzj > 3,then f 2 H(D) and f 0(z) = 0 in D, yet f is non-onstant in D.Here is another example. De�nef(z) = � 0 for Re z > ai for Re z < a;where a 2 R is �xed. Then f 2 H(D), where D = C nfz : Re z = ag,yet f is not onstant in D. Note that, in eah of these two examples,Re f(z) = u(x; y) = 0 in D but Im f(z) = v(x; y) is not onstant.3.2 Harmoni FuntionsWe begin with the formal de�nition of a harmoni funtion. A real-valuedfuntion � = �(x; y) of real variables x and y is said to be harmoni in anopen subset 
 of C if it has ontinuous partial derivatives of seond orderand satis�es the Laplae's equation7 in two variables 52� = 0 throughout
, where 52 is the seond order di�erential operator given by52� = �2��x2 + �2��y2 = �xx + �yy:7This equation that bears the name of the Frenh mathematiian, Pierre Simon deLaplae (1749-1827), had been found by Leonhard Euler in 1752 in onnetion withEuler's studies on hydrodynamis. Laplae ontributed signi�antly to the �elds ofelestial mehanis and probability theory and his parents were farmers.



90 Analyti Funtions and Power SeriesThe operator � 7! 52� is alled Laplae operator or simply a Laplaian.A funtion v is alled a onjugate harmoni funtion (or, more briey, aharmoni onjugate) for a harmoni funtion u in 
 whenever f = u +iv is analyti in 
. Note that the word onjugate here is not the sameas onjugate of a omplex number z. Further, the harmoni onjugate vis unique, up to an addition of a real onstant. Indeed, if v1 is anotherharmoni onjugate of u, so that F = u+ iv1 is also analyti in 
, then thedi�erene F � f = i(v1 � v) beomes analyti in 
. But then by Theorem3.31(ii), v1 � v is a onstant.Sine �if = v+ i(�u), we also observe that �u is a harmoni onjugateof v whenever v is a harmoni onjugate of u.3.32. Remark. As an be observed from the C-R equations, weannot hoose two arbitrary harmoni funtions u and v and laim thatthe resulting funtion f = u+ iv is analyti. For example, u(x; y) � x andv(x; y) � �y are harmoni funtions in C , but f = u+ iv = x+ i(�y) = zis nowhere analyti. On the other hand,v + iu = �y + ix = i(x+ iy) = izwhih is analyti in C . Further, it would be appropriate to have the Laplaeequation to be satis�ed not just for any set of points but for an open set ora domain or more importantly a simply onneted domain. For example,if u = x3 � y3 then�2u�x2 + �2u�y2 = 6(x� y) = 0 only when y = xand the set fz = x + iy : y = xg is not open in C and so, u annot betreated as a harmoni funtion in any open subset of C . �Let us now disuss some fats about this topi and onstrut simpleexamples of harmoni funtions. We �rst introdue a omplex Laplaian.Suppose that we are given a harmoni funtionu(x; y) = u�z + z2 ; z � z2i � :Then, formally treating z and z as independent variables, as before�u�z = �u�x �x�z + �u�y �y�z = 12[ux � iuy℄so that �2u�z�z = 12 � ��x (ux � iuy) � �x�z + ��y (ux � iuy) � �y�z �= 14 [(uxx + uyy) + i(uxy � uyx)℄ ;



3.2 Harmoni Funtions 91where we have used the notationuxy = ��y ��u�x� ; uyx = ��x ��u�y� ; uxx = ��x ��u�x� ; uyy = ��y ��u�y� :Therefore any harmoni funtion u satis�es the di�erential equation52u = �2u�z�z = 0:The operator 52 is sometimes alled the omplex Laplaian. Thus if u andits �rst and seond partial derivatives are ontinuous in an open subset
 � C , then 52u = (1=4)52 u:Hene, the Laplaian (operator) in omplex form is given by52 = 4 ��z � ��z� :(3.33)For example, if f = u+ iv is a omplex-valued funtion in a domain 
 then52(zf) = 4 ��z � ��z (zf)� = 4 ��z �f + �f�z� = 4fz + 452 fwhih shows that if f and zf are harmoni in 
, then fz = 0 in 
 andhene f is analyti in 
, by Theorem 3.26. We say that a omplex-valuedfuntion is harmoni in an open set if both its real and imaginary parts areharmoni thereat.Harmoni funtions play an important role in both mathematis andphysis. There are (at least) two important reasons why harmoni fun-tions oupled with the C-R equations are disussed as an important partof omplex analysis as demonstrated in the next two theorems. First, wereall that if f = u+iv is analyti in an open set 
, then the C-R equationshold throughout 
: ux = vy; uy = �vx:(3.34)The C-R equations have some interesting onsequenes. For instane, if theseond partial derivatives exist and are ontinuous (in fat, we shall latersee that the derivative of an analyti funtion in a domain is itself analytithere�more generally in�nitely di�erentiable, and so u and v both haveontinuous partial derivatives of all orders) then by di�erentiating the �rstequation with respet to x and seond with respet to y, we getuxx = vxy; uyy = �vyx:The ontinuity of these partial derivatives implies that the mixed derivativesare equal (whih is an important fat from two variable alulus) and, inpartiular, vxy = vyx and therefore,uxx + uyy = vxy � vyx = 0:



92 Analyti Funtions and Power SeriesIn a similar way, di�erentiating the �rst equation in (3.34) with respet toy and the seond in (3.34) with respet to x, we �nd that v satis�es theLaplae equation 52v = 0: In onlusion we have3.35. Theorem. Let 
 be an open subset of C . Then the real andimaginary parts of an analyti funtion in 
 are harmoni in 
.At this point it should be noted that the mixed seond partial derivativesdo not oinide in general. For instane, for the real-valued funtion u(x; y)de�ned by u(x; y) = 8<: xy(x2 � y2)x2 + y2 if (x; y) 6= (0; 0)0 if x = y = 0;it is easily seen that uxy(0; 0) 6= uyx(0; 0):3.36. Example. If �(x; y) is harmoni in a domain D, then, byTheorem 3.26 with u (= �x) and v (= ��y), we �nd that f = �x � i�y 2H(D). Similarly, if  (x; y) is harmoni in D then g =  x � i y 2 H(D).In partiular, we havef � g = (�x �  x)� i(�y �  y) 2 H(D)f � ig = (�x �  y)� i(�y �  x) 2 H(D)if � g = (�y �  x) + i(�x �  y) 2 H(D):This example gives a way of obtaining analyti funtions from harmonifuntions. �Theorem 3.35 provides numerous examples of harmoni funtions as weshall soon see. However, the funtion u de�ned by u(x; y) = x2+y2 annotbe a real part of an analyti funtion sine 52u = 4. We raise the question:Given a real-valued harmoni funtion u in an open set 
, an it be writtenas a real or imaginary part of an analyti funtion f : 
! C ? If so, underwhat ondition this is possible. We need some preparation to answer thisquestion.3.37. De�nition. A domain D in C is simply onneted if its om-plement with respet to C1 (i.e. C1 nD) is a onneted subset of C1 .Topologially, a simply onneted domain D in C an be ontinuouslyshrunk to a point in D. Note that the puntured unit disk A = fz : 0 <jzj < 1g an be shrunk to an arbitrarily small domain, but not to a pointin A. Intuitively, a simply onneted domain in C means that it does notontain any \holes". Consequently, aording to De�nition 3.37, exteriorof irles (i.e. omplement of losed disks in C ) are not simply onneted



3.2 Harmoni Funtions 93in C . Note that, in the extended plane, the exterior of a irle is simplyonneted beause it an be \shrunk" to the point at 1. Some simpleexamples of simply onneted domains in C are(i) disks �(a; r)(ii) half-planes fz : Re (ei�z) > �g(iii) onvex domains suh as in (i), (ii) and in�nite parallel strips, suh asD = fz : � < Re (ei�z) < �g for some � and � with � < �(iv) domains that are starlike with respet to the origin suh as C n[0;1)and C nfiy : jyj > 1g(v) the whole omplex plane.The annular domain E = fz : 1 < jzj < 2g is not simply onneted,whereas the domain E with fz : 1 < Re z < 2; Im z = 0g removed from it(i.e. E nf(1; 2)g), is simply onneted.We note that there are many equivalent de�nitions of simply onnet-edness. One suh equivalent form of it is the following (see also De�nition4.50):3.38. De�nition. Let D be a domain in C and D1 be the setorresponding to D on the Riemann sphere S. Then D is alled simplyonneted if D1 = S nD1 is onneted and ontains the north pole.It would have been nie if every harmoni funtion is a real part ofsome analyti funtion. But this is not true in general. However, it isindeed true loally, but globally provided 
 is a simply onneted domain.More preisely, we have3.39. Theorem. Let 
 be a simply onneted domain and let � beharmoni in 
. Then � has a harmoni onjugate in 
.It is onvenient to supply a proof of Theorem 3.39 in Chapter 4 sine amotivation for an expliit onstrution for the harmoni onjugate omesfrom (omplex) integration. On the other hand, one an give a simple anda diret proof of Theorem 3.39 espeially when(i) �(x; y) is a real-valued harmoni polynomial in C(ii) �(x; y) is a real valued harmoni funtion in 
 where 
 is either anopen disk or open retangle, see Corollary 3.57.3.40. Example. Consider u(x; y) = 4xy � x3 + 3xy2. Thenux = 4y � 3x2 + 3y2 and uy = 4x+ 6xy



94 Analyti Funtions and Power Seriesfrom whih it is easy to see that u is harmoni in R2 . To �nd the harmonionjugate v(x; y) in C for u(x; y), we may proeed as follows. If f = u+ ivis the orresponding analyti funtion, thenf 0(z) = ux � iuy= 4y � 3x2 + 3y2 � i(4x+ 6xy)= �3[x2 � y2 + 2ixy℄� 4i(x+ iy)= �3z2 � 4izwhih gives f(z) = �z3�2iz2+ik, where k is a real onstant. The harmonionjugate v(x; y) may be obtained by taking the imaginary part of the lastexpression.Alternately, use the C-R equations to obtainvy = ux = 4y � 3x2 + 3y2:(3.41)Integrate (3.41) with respet to y to obtainv = Z vydy + �(x) = 2y2 � 3x2y + y3 + �(x);(3.42)where � is a funtion of x. If � in (3.42) is di�erentiable with respet to xthe equation vx = �6xy+ �0(x) (= �uy) is obtained whih, together withthe C-R equation uy = �vx, gives�0(x) = 6xy � uy = 6xy � (4x+ 6xy) = �4xso that �(x) = �2x2 + k, where k is some real onstant. Hene, by (3.42),the harmoni onjugate funtion v(x; y) is given byv = (2y2 � 3x2y + y3) + (�2x2 + k):Now we an use x = (z + z)=2 and y = (z � z)=2i to write f as a funtionof z. �3.43. Theorem. If u and v are harmoni onjugates to eah other insome domain then u and v must be onstant there.Proof. By the de�nition and the hypotheses, f = u+ iv and g = v+ iuare analyti in D. Butf � ig = 2u; and f + ig = 2iv:By Theorem 3.9, these imply that the real-valued funtions of a omplexvariable, namely u and v are analyti in D: Therefore, by Theorem 3.6,f 0(z) = 0 in D. Sine D is a domain, it follows that f and g are onstantsand hene, u and v are onstants.



3.2 Harmoni Funtions 953.44. Polar form of the C-R equations and Laplaian. There areways to obtain the C-R equations in polar form. Here is a diret method.Let f(z) = u(r; �)+ iv(r; �) be di�erentiable at a point z. Then f 0(z) existsand equals f 0(z) = limh!0 f(z + h)� f(z)h :Set z = rei� . The nearby points of z along the radial diretion may begiven by z + h = (r +�r)ei� . Therefore, for h = �rei� 6= 0,f(z + h)� f(z)h = u(r +�r; �) + iv(r +�r; �)�rei� � u(r; �) + iv(r; �)�rei�= 1ei� �u(r +�r; �) � u(r; �)�r �+ iei� �v(r +�r; �)� v(r; �)�r � :Allowing �r ! 0 shows thatf 0(z) = 1ei� [ur + ivr℄:(3.45)Next hoose nearby points of z along the irular path through the point zso that z + h = rei(�+��) = rei�ei��; i.e. h = rei�(ei�� � 1)and for �� 6= 0,f(z + h)� f(z)h = u(r; � +��)� u(r; �)rei�(ei�� � 1) + iv(r; � +��)� v(r; �)rei�(ei�� � 1)= 1irei� ��u(r; � +��)� u(r; �)�� �+i�v(r; � +��)� v(r; �)�� �� i��ei�� � 1 :Now allowing �� ! 0, it follows thatf 0(z) = 1irei� [u� + iv�℄ = 1rei� [v� � iu�℄:(3.46)Comparing (3.45) and (3.46) produes the C-R equations in polar form:ur = v�r and vr = �u�r :(3.47)Alternatively, let f(z) = f(rei�), r 6= 0, be di�erentiable at a point z0:Then both f 0(z0) = �f�r �r�z ����z=z0 = (ur + ivr)e�i���z0



96 Analyti Funtions and Power Seriesand f 0(z0) = �f�� ���z ����z=z0 = (u� + iv�)e�i�ir ����z0must be the same. Therefore, equating the right hand side of the last twoequations yields (3.47).If we di�erentiate the �rst equation in (3.47) with respet to r and theseond in (3.47) with respet to � we get��r (v�) = ur + rurr; ��� (vr) = �1r u��and so, using the ontinuity of seond partial derivatives, these two equa-tions give urr + 1r ur + 1r2 u�� = 0:whih is the polar form of the Laplae equation. If u(r; �) depends on ralone, then the above Laplae equation beomesurr + 1r ur = 0:For example, we have� rn osn� and rn sinn� are harmoni for any positive integer n� ln r = ln jzj is harmoni in the puntured disk C nf0g. We note thatln jzj has no harmoni onjugate in C nf0g, though it does have inC n[0;1), see Setion 3.5.Next we attempt to develop methods for �nding an analyti funtionf whose real part is a given harmoni funtion u(x; y) whih is a rationalfuntion in x and y. For this we start withf(z) = f(x+ iy) = u(x; y) + iv(x; y)so that f(z) = f(x+ iy) = u(x; y)� iv(x; y);where x = (z+ z)=2 and y = (z� z)=(2i). Adding the above two equationswe �nd that f(x+ iy) + f(x+ iy) = 2u(x; y):Reall that analyti funtions are ompletely haraterized by the ondi-tion: fz = �f�z = 0:(3.48)For example, if we substitute z for f then we see that fz = 0 and fz = 1:Thus we remark that f(z), the onjugate of an analyti funtion f(z), has



3.2 Harmoni Funtions 97the derivative zero with respet to z and so f(z) may be onsidered as afuntion of z alone. Therefore, we an denote f(z) simply by f(z). That isf(x+ iy) = f(x � iy); and 2u(x; y) = f(x+ iy) + f(x � iy):In partiular, the last equation yieldsu�z2 ; z2i� = 12 hf �z2 + i z2i�+ f �z2 � i z2i�i = 12[f(z) + f(0)℄whih gives f(z) = 2u�z2 ; z2i�� f(0):Also we observe thatu(0; 0) = (1=2)[f(0) + f(0)℄ = Re f(0)and so f(0) = Re f(0)� i Im f(0) = u(0; 0)� ik;where k = Im f(0) is a real number. Consequently, the funtion f may beomputed by the formulaf(z) = 2u�z2 ; z2i�� u(0; 0) + ik:Similarly, it follows that in a neighborhood of z0, the analyti funtionf = u+ iv assoiated with the harmoni funtion u(x; y) is given byf(z) = 2u�z + z02 ; z � z02i �� u(x0; y0) + ik;where k is a real onstant. We shall illustrate the appliation of this methodwith two examples.3.49. Example. Consider u(x; y) = x3 � 3xy2: Then u is de�ned inR2 and u satis�es Laplae's equation for all points in R2 . Using the abovemethod, the orresponding analyti funtion f is given byf(z) = 2u�z2 ; z2i��u(0; 0)+ ik = 2 ��z2�3 � 3�z2�� z2i�2�+ ik = z3+ ik;where k is a real number. �3.50. Example. We wish to �nd the most general ubi formu(x; y) = ax3 + bx2y + xy2 + dy3 (a; b; ; d-real);whih satis�es Laplae's equation, and to determine an analyti funtionwhih has u as its real part. To do this, for (x; y) 2 R2 , we omputeuxx + uyy = 2[(3a+ )x+ (b+ 3d)y℄



98 Analyti Funtions and Power Seriesand so, 52u = 0 in R2 provided 3a+  = 0 = b+ 3d = 0: Thus, the mostgeneral harmoni polynomial of degree three takes the formu = ax3 � 3dx2y � 3axy2 + dy3:Further, using the above method of onstrution of analyti funtion, wehavef(z) = 2u�z2 ; z2i�+ ik= 2 �a�z2�3 � 3d�z2�2 � z2i�� 3a�z2�� z2i�2 + d� z2i�3�+ ik= (a+ id)z3 + ikwhih is the required analyti funtion having u as its real part, where k isa real onstant. �3.51. Disussion on �nding harmoni onjugates. Let us arefullylook at the problem of whether a real-valued harmoni funtion u, a C2-solution of Laplae's equation in some domain 
, is a real or imaginary partof some analyti funtion. For the time being we suppose that a harmonifuntion u is given and we have found an analyti funtion F (z) in 
 suhthat F (z) = u + iv, z 2 
: Then, the C-R equations give vx = �uy andvy = ux whih show that, vx and vy are ompletely determined from thegiven funtion u. Therefore, v may be found up to an additive onstant.Again, in view of the C-R equations, we see thatuxx + uyy = 0 () ��x (ux) = ��y (�uy) () ��x (vy) = ��y (vx):Set f = �uy and g = ux. This amounts to rephrasing our problem asfollow.3.52. Problem. Given f; g 2 C1(
) with fy = gx, an we �nd afuntion v 2 C2(
) suh that vx = f and vy = g in 
? If so under whatonditions on 
, is this possible?First, we aim at giving a partial solution to this problem by disussinga speial ase when 
 is an open retangle (and the proof is similar when
 is an open disk).3.53. Theorem. Let 
 = f(x; y) 2 R2 : jx � aj < Æ; jy � bj < Æ0g bean open retangle in R2 . Suppose that f; g 2 C1(
) suh thatfy = gx in 
:(3.54)Then there exists a funtion v 2 C2(
) satisfying the onditionsvx = f and vy = g(3.55)



3.2 Harmoni Funtions 99in 
. (We may take v as real-valued whenever f and g are also).Proof. Choose an arbitrary point (x; y) 2 
 and de�nev(x; y) = Z xa f(s; b) ds+ Z yb g(x; t) dt:Observe that any other v may di�er from the above merely by a onstant.What motivates us to de�ne v(x; y) in this way? (see Remark 3.56). Weneed to show that v has the desired properties. By the fundamental theoremof alulus for C1-funtions,vy(x; y) = g(x; y):Next, one again using the fundamental theorem of alulus for the �rstintegral and the theorem on di�erentiation under the integral sign, it followsthat vx(x; y) = f(x; b) + ��x �Z yb g(x; t) dt�= f(x; b) + Z yb ��xg(x; t) dt= f(x; b) + Z yb ��y f(x; t) dt (sine gx = fy)= f(x; b) + f(x; y)� f(x; b)so that vx(x; y) = f(x; y): Thus, we have found a funtion v with vy = g 2C1(
) and vx = f 2 C1(
) whih means that v 2 C2(
):3.56. Remark. The funtion v(x; y) that we need to de�ne mustsatisfy (3.55). Indeed, integrating vy(x; y) = g(x; y) with respet to y, weget v(x; y) = Z yb g(x; t) dt+ �(x)where � is some C1-funtion of x. Sine we also need vx = f , by the �rstequation in (3.55), we ompute thatvx(x; y) = Z yb ��xg(x; t) dt+ �0(x) = Z yb ��yf(x; t) dt+ �0(x)whih givesf(x; y) = f(x; y)� f(x; b) + �0(x); i.e. �0(x) = f(x; b):This has the solution �(x) = Z xa f(s; b) ds+ ;



100 Analyti Funtions and Power Serieswhere  is some onstant. Hene, v(x; y) must be of the formv(x; y) = Z xa f(s; b) ds+ Z yb g(x; t) dt+ : �3.57. Corollary. If 
 is either an open retangle (with sides parallelto the axes) or open disk and if u is a real-valued harmoni funtion in 
,then there exists an analyti funtion F in 
 suh that u = ReF:Proof. Set f = �uy and g = ux: Then f; g 2 C1(
) and, sine52u = 0in 
, we have fy = gx in 
: By Theorem 3.53, there exists a real-valuedfuntion v 2 C2(
) suh thatvx = f = �uy and vy = g = ux in 
:By the theorem on suÆient onditions for analyti funtions (see Theorem3.26), we onlude that F = u+ iv is analyti in 
.Theorem 3.53 is alled an antiderivative theorem (for real-valued fun-tions). Now it is natural to raise the following3.58. Problem. Given an analyti funtion F in 
, an we �nd ananalyti funtion G suh that G0(z) = F (z)?If the answer to this problem is yes, then we all the funtion G aprimitive or anti-derivative for F . Any other anti-derivative of F woulddi�er from G by a onstant. Indeed, if both G1 and G2 are primitives of afuntion F , then(G1(z)�G2(z))0 = G01(z)�G02(z) = F (z)� F (z) = 0and so by Theorem 3.31, we see that G1(z)�G2(z) is a onstant.Here is a simple illustration. The primitive of the polynomial funtion pde�ned by p(z) =Pnk=0 akzk is P (z) =Pnk=0(ak=(k + 1))zk+1 +K; whereK is an arbitrary onstant.Is there any restrition on 
 for the existene of primitives? First wegive an aÆrmative answer when 
 is an open retangle or onvex or opendisk in C . However, we shall later disuss a more general theorem whihprovides an aÆrmative answer to this problem whenever 
 is a simplyonneted domain.3.59. Theorem. (Antiderivative Theorem) Let 
 be either an openretangle (with sides parallel to the axes) or an open disk. Then everyanalyti funtion F (z) in 
 possesses a primitive in 
.Proof. Set F (z) = u(z) + iv(z). Sine F is analyti in 
,uy = �vx () fy = gx;



3.3 Power Series as an Analyti Funtion 101where u = f 2 C1(
) and �v = g 2 C1(
): By Theorem 3.53, there existsU 2 C2(
) suh thatUx = f (= u) and Uy = g (= �v) in 
:As F is analyti, we have vy = ux where v; u 2 C1(
). Again, by Theorem3.53, it follows that there exists V 2 C2(
) suh thatVx = v and Vy = u in 
:Finally, de�ne G(z) = U + iV . Then, U; V 2 C2(
) and the C-R equationsare satis�ed in 
: Hene, by Theorem 3.26, G is analyti in 
. Note thatG0(z) = Ux + iVx = u+ iv = F (z):3.3 Power Series as an Analyti FuntionIn our earlier setions we have seen that the polynomial of degree n � 1given by p(z) = a0 + a1z + � � � + anzn (an 6= 0)(3.60)an be di�erentiated term-by-term to getp0(z) = a1 + 2a2z + � � � + nanzn�1:(3.61)Consider a series of funtions of the form Pn�0 an(� � �0)n; where � is aomplex variable and �0, an, n = 0; 1; 2; : : : , are �xed onstants. Suh aseries will be alled a (formal) power series with enter �0 and oeÆientsan. The substitution z = � � �0 transforms the above series into the powerseries Xn�0 anzn:(3.62)So, for our disussion it is enough to onsider power series with enter 0as the results about general power series an be obtained by translation.Now the polynomial (3.60) may be thought of as a power series at 0 withoeÆients ak = 0 for all k > n and so we say that the family of polynomialsis ontained in the family of power series. Further, we also note that a powerseries de�ned by (3.62) is a speial ase of the limit of in�nite sequenes offuntions, namely, ffn(z)g, where fn(z) =Pn�1k=0 akzk. In any ase, (3.61)suggests that for the power series (3.62) with sum f(z), we should havef 0(z) =Xn�1nanzn�1and in that ase we all the R.H.S the derived series of Pn�0 anzn. Thisfat of ourse requires justi�ation and before giving a proof, we disusssome important fats about the onvergene of (3.62) to appreiate fullythe ideas involved.



102 Analyti Funtions and Power SeriesNow, we onsider the polynomialspn(z) = 1� z22! + z44! � � � � + (�1)n z2n(2n)! ;qn(z) = z � z33! + z55! � � � � + (�1)n z2n+1(2n+ 1)! ;rn(z) = 1 + z + z22! + � � � + znn! :We know that these are entire. As n!1, we obtain thatpn(z)! os z; qn(z)! sin z; rn(z)! ezand in all three ases, the orresponding limit funtions are also entire.How about the polynomial 1+ z+ z2+ � � � + zn when n!1? How about1 + rz + r2z2 + � � � + rnzn (r > 1) as n!1?We start with some interesting fats due to Abel: Suppose 0 6= z1 2 Cis suh that the power seriesPn�0 anzn1 onverges. The terms of the seriesare then bounded (see Setion 1.6). Indeed, as janzn1 j ! 0 as n!1, thereexists an M > 0 suh that janzn1 j < M for all n � 0. We have then, for allz with jzj < jz1j,janznj = janzn1 j ���� zz1 ����n < M ���� zz1 ����n for all n:Sine jz=z1j < 1, the geometri series Pn�0 jz=z1jn onverges, so that, bythe omparison test, Pn�0 janznj onverges for all z with jzj < jz1j. Forexample, if f(z) = Pn�1 zn=n then the series onverges for jzj < 1, sinef(�1) =Pn�1(�1)n=n onverges.If the seriesPn�0 anzn2 diverges, then, for all z with jzj > jz2j, we havejanznj � janzn2 j for eah n � 0:So, by the omparison test, the series Pn�0 anzn does not onverge. Forexample, f(z) = Pn�1 zn=n diverges for jzj > 1, sine f(1) = Pn�1 1=ndiverges.The above fats allow us to haraterize the behavior of the power series(3.62) in a very natural fashion. Indeed, translating the series about `0' intoa series about a 2 C , the above disussion gives (see Figure 3.1)3.63. Theorem. If the series P1n=0 an(z � a)n onverges at somepoint z1 (6= a), then the series onverges (absolutely) at all points in thedisk �(a; jz1� aj). If the series diverges at z2 (6= a), then it diverges for allz with jz � aj > jz2 � aj.Beause of the interesting information about the onvergene from The-orem 3.63, it is natural to ask: what is the largest disk about a on whih
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Figure 3.1: Desription for Abel's test.
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Figure 3.2: Illustration for the disk of onvergene.the series Pn�0 an(z � a)n onverges? We now make this issue more pre-ise in the form of a de�nition for a series about the origin. The radius ofonvergene R of the given power series (3.62) is de�ned byR = supf� : Xn�0 anzn onverges for all z satisfying jzj � �g.Note that R = 0 if Pn�0 anzn onverges only for z = 0. If R = 1,then the series Pn�0 anzn onverges for all z 2 C . Thus, by de�nition, if0 < R <1,P janznj onverges for all z suh that jzj < R and diverges forall z suh that jzj > R. The series may onverge for some or all points onthe irle jzj = R. The irle jzj = R is then alled the irle of onvergenebeause this is the greatest irle about a = 0 inside whih Pn�0 janznjonverges at eah point (see Figure 3.2).The onventions 0�1 = 1 and 1�1 = 0 are observed so that R is theunique number in [0;1℄.3.64. Theorem. (Root Test) Let L�1 = lim supn!1 npjanj. Then(i) if L = 1, the series Pn�0 anzn onverges absolutely for all �nite zand uniformly in any bounded set



104 Analyti Funtions and Power Series(ii) if L = 0, the series onverges only at z = 0 and diverges at all otherpoints other than 0(iii) if 0 < L < 1, the series onverges absolutely for jzj < L, uniformlyfor jzj � r, r < L and diverges for jzj > L(iv) L = R.Proof. As the series onverges for z = 0, we need to onsider only thease z 6= 0. So, for z 6= 0, we havelim supn!1 npjanznj = jzj lim supn!1 npjanj = jzjL :By Theorem 1.51, the series Pn�0 anzn onverges absolutely for jzj < Land diverges for jzj > L. The uniform onvergene of the series for jzj � r(r < L) follows from the Weierstrass M-test (see Theorem 2.59). Thus, (i)to (iii) follows. We leave (iv) as a simple exerise.3.65. Remark. Note that if limn!1 npjanj exists, then we havelimn!1 npjanj = lim supn!1 npjanj:In this ase, the radius of onvergene R is simply determined fromR�1 = limn!1 npjanj: �3.66. Example. For eah �xed z 6= 0, we have limn!1 jzj1=n = 1. Thisan be proved as follows: Let Æn = n1=n � 1. Then for eah n > 1, Æn is apositive real number. Now, for n � 2, we haven = (1 + Æn)n = nXk=0�nk�Ækn > 1 + n(n� 1)2 Æ2n > n(n� 1)2 Æ2n � n24 Æ2n:This implies that 0 � Æ2n < 2n and so we have Æn ! 0 as n ! 1; i.e.limn!1n1=n = 1. Applying this result for jzj � 1, we get jzj1=n ! 1, sine1 � jzj1=n � n1=n for suÆiently large n:If jzj < 1, apply the preeding argument for 1=z. �3.67. Remark. The above example shows that fzng, where zn =n1=n � 1, is a null sequene. Sine n1=n ! 1, we also have1n h1 + 21=2 + 31=3 + � � � + n1=ni! 1 as n!1: �



3.3 Power Series as an Analyti Funtion 105The determination of the radius of onvergene for the series (3.62) willnot always require an appliation of Theorem 3.64, i.e. the Root test. Inmost of the ases, the following theorem alled the Ratio test will serve thepurpose instead.3.68. Theorem. (Ratio Test) If an 6= 0 for all but �nitely manyvalues of n, then the radius of onvergene R of (3:62) is related byl := lim infn!1 ����an+1an ���� � 1R � lim supn!1 ����an+1an ���� =: L:In partiular, if limn!1 ����an+1an ���� exists either as �nite or +1 then1R = lim supn!1 janj1=n = limn!1 ����an+1an ���� :Proof. Proof of this theorem is an immediate onsequene of Theorem1.48. Again it suÆes to onsider the ase z 6= 0. In this event,lim supn!1 ����an+1zn+1anzn ���� = jzjL and lim infn!1 ����an+1zn+1anzn ���� = jzjl:By Theorem 1.48, the seriesPn�0 anzn onverges absolutely for jzj < 1=Land diverges for jzj > 1=l. Thus, R must be at least 1=L and at most 1=l;that is R is related by 1=L � R � 1=l: Consequently, if limn!1 jan+1=anjexists then L = l and henelimn!1 ����an+1an ���� = lim supn!1 janj1=n = lim infn!1 janj1=n = limn!1 janj1=n = 1R:This ompletes the proof.Note that if the sequene fjan+1j=janjg osillates, the limit does notexist and therefore the Ratio test beomes of no use. For instane, forseries suh asXn�0 anzn = 3 + z + 3z2 + z3 + 3z4 + � � � + 3z2k + z2k+1 + � � �the ratio jan+1j=janj is alternately 1=3 and 3, so the limit does not ex-ist. In this partiular series, even though the Ratio test indiates thatthe value of R is lying between 1=3 and 3, it does not yield the exatvalue of R. However, as ja2kj = 3 and ja2k+1j = 1, Example 3.66 givesR�1 = lim supn!1 janj1=n = 1:Thus in the above two examples the Ratio test gives no informationwhereas the Root test gives the radius of onvergene. We look now at astring of examples.



106 Analyti Funtions and Power Series(i) Sine (see Example 3.66) n1=n ! 1 as n! 1, the series Pn�1 nznonverges for jzj < 1 and diverges for jzj > 1. For jzj = 1, jnznj = n! 1and so the series diverges for jzj = 1. In this ase we note that the seriesdiverges at all points on the irle of onvergene. Also, we observe thatthe Root test is learly appliable.(ii) Consider the seriesPn�0(�1)nzpn = 1� zp+ z2p� � � � ; where p �is a �xed positive integer. Thenanp = ��1 if n = 1; 3; : : :1 if n = 0; 2; : : : ; i.e. am = � (�1)m=k if m = 0; k; 2k; : : :0 otherwise:In this ase lim supn!1 janj1=n = 1. Hene, R = 1 and the series onvergesabsolutely for jzj < 1, uniformly for jzj � � < 1, and diverges for jzj > 1.Sine the sequene of terms of the series does not approah zero whenjzj = 1, it follows that the series diverges for jzj = 1. Note that the Ratiotest is not appliable diretly, but we ould obtain the radius of onvergeneby translating the given series into a new series with a new variable �,� = zp.(iii) By means of the Ratio test we at one see that eah of the seriesXn�1(�1)nnkzn; Xn�1(�1)n�1 znnk ; Xn�1nkzn (k = 1; 2; : : : )has 1 as the radius of onvergene. For k � 2, the seond of the aboveonverges absolutely on jzj = 1 sine, on jzj = 1,Xn�1 ���� (�1)nznnk ���� =Xn�1 1nkonverges for k � 2. For k = 1, the series beomesXn�1(�1)n�1 znn = z � z22 + z33 � � � � ; jzj < 1:This series is alled the Logarithmi series (see Setion 3.5). On the otherhand, the series Xn�1 znn(3.69)at z = �1 beomes �1 + 12 � 13 + 14 � � � � and so onverges for z = �1,but non-absolutely. At z = 1, this series is Pn�1 1n whih is the harmoniseries and we know that this is divergent. What happens on the rest of��? To see this, we let z = ei� (� 6= 0; 2�) and ak = zk = eik�. Then����� nXk=1 zk����� = ����1� zn+11� z ���� � 2j1� ei�j



3.3 Power Series as an Analyti Funtion 107showing that the partial sums are bounded provided � 6= 0; 2�. Hene, byTheorem 1.52(b) with bn = n�1, the series (3.69) onverges for jzj = 1exept at z = 1. Consequently, the logarithmi series Pn�1(�1)n�1zn=nonverges for jzj = 1 exept at z = �1.(iv) Consider a seriesPn�0 qnzkn; where k � is a �xed positive integerand q 6= 0, independent of n. Note thatan = � qn=k if n = 0; k; 2k; 3k; : : :0 otherwise:Then, aording to the Root test, one has lim supn!1 janj1=n = jqj1=k andso, the power series has the radius of onvergene R = jqj�1=k. The seriesonverges absolutely for jzj < jqj�1=k, uniformly for jzj � � < jqj�1=k, anddiverges for jzj > jqj�1=k.For instane, if q = �1 then an = (�1)n for n � 0 and the orrespondingseries Pn�0(�1)nzkn onverges absolutely for jzj < 1, uniformly for jzj �� < 1, and diverges for jzj > 1. In this speial ase, the terms of the seriesdoes not approah zero when jzj = 1, and therefore, the series diverges forjzj = 1.If we set q = 1=2 then we get the series Pn�0 2�nzkn whih onvergesabsolutely for jzj < 21=k, uniformly for jzj � � < 21=k, and diverges forjzj > 21=k. For jzj = 21=k, j2�nznkj = 1, showing that the series diverges.In partiular, for k = 2 the power series isXn�0 2�nz2n; with an = � 0 if n = 1; 3; 5; : : :2�n=2 if n = 0; 2; 4; : : : ;and so R = p2 is the radius of onvergene for this series.If we set q = 5, then the orresponding seriesXn�0 5nzkn =Xn�0(5zk)nonverges absolutely for jzj < 5�1=k, uniformly for jzj � � < 5�1=k, anddiverges for jzj > 5�1=k. For jzj = 5�1=k, j5nznkj = 1, showing that theseries diverges. In partiular, for k = 3 the above disussion gives the powerseries Xn�0 5nz3n; with an = � 5n=3 if n = 0; 3; 6; : : :0 otherwise;and so R = 5�1=3 is the radius of onvergene for this series.3.70. Theorem. A power seriesPn�0 anzn and the k-times derivedseries de�ned byPn�k n(n�1) � � � (n�k+1)anzn�k have the same radiusof onvergene.



108 Analyti Funtions and Power SeriesProof. Let An = n(n � 1) � � � (n � k + 1)an = n!an=(n � k)!, k � 1.Then jAnj1=n = ���� n!(n� k)!an����1=n = ���� n!(n� k)! ����1=n � janj1=n:Using the partiular ase of Theorem 3.68 (see also Example 3.66) we havelim supn!1 � n!(n� k)!�1=n = limn!1 � (n+ 1)!=(n+ 1� k)!n!=(n� k)! �= limn!1 n+ 1n+ 1� k = 1:Therefore, lim supn!1 jAnj1=n = lim supn!1 janj1=n whih proves our theorem.Sine a power series of the form (3.62) with non-zero radius of on-vergene R onverges (absolutely) for jzj < R, we an study its behavioras a funtion f de�ned by the sum f(z) = Pn�0 anzn: The power seriesobtained by di�erentiating this series term-by-term givesf 0(z) =Xn�1nanzn�1; jzj < R:Next we have3.71. Theorem. IfPn�0 anzn has radius of onvergeneR > 0, thenf(z) =Pn�0 anzn is analyti in jzj < R, f (k)(z) exists for every k 2 N andf (k)(z) = k!ak + Xn�k+1 n!(n� k)!anzn�k (jzj < R):(3.72)where ak = f (k)(0)=k.For example, the geometri series (1�z)�1 =Pn�0 zn whih onvergesfor jzj < 1, after k-times di�erentiation yields1(1� z)k+1 =Xn�k�nk�zn�k = Xm�0 (m+ k)!k!m! zm for jzj < 1:In partiular, z(1� z)�2 =Pn�1 nzn for jzj < 1:Proof. Let f(z) = Pn�0 anzn with the radius of onvergene R. Wehave to prove the existene of f 0(z) in �R. By Theorem 3.70 with k = 1,the series Xn�1nanzn�1



3.3 Power Series as an Analyti Funtion 109onverges for jzj < R and de�nes a funtion, say g(z), in jzj < R. We showthat f 0(z) = limh!0 f(z + h)� f(z)h = g(z) for all z 2 �R:Let z 2 �R be �xed and let h 2 C , 0 < jhj < (R� jzj)=2. Thenjz + hj � jzj+ jhj < jzj+ R� jzj2 = jzj+R2 < R +R2 = R:Now we onsiderf(z + h)� f(z)h =Xn�1 an� (z + h)n � znh � ;where z and z+h are suh that maxfjzj; jz+hjg � r < R and jhj is positive.So, we must show that as h! 0,����f(z + h)� f(z)h � g(z)���� = ������Xn�2 an� (z + h)n � znh � nzn�1�������! 0:First we note that, for � 6= 1 and n � 2, we have the identity1� �n1� � = 1 + �+ �2 + � � � + �n�1and di�erentiating with respet to � shows that1� �n1� � � n�n�1 = (1� �)[1 + 2�+ 3�2 + � � � + (n� 1)�n�2℄:Replaing � by z=w (w 6= z) giveswn � znw � z � nzn�1 = (w � z)[wn�2 + 2wn�3z + � � � + (n� 1)zn�2℄so that for maxfjwj; jzjg � r,����wn � znw � z � nzn�1���� � jw � zj [jwjn�2 + 2jwjn�3 jzj+ � � � + (n� 1)jzjn�2℄� jw � zjrn�2 [1 + 2 + 3 + � � � + n� 1℄= jw � zjn(n� 1)2 rn�2:By Theorem 3.70, the derived series Pn�2 n(n � 1)janjrn�2 is onvergentfor eah r suh that jzj � r < R. Using this we see that as h! 0,������Xn�2 an� (z + h)n � znh � nzn�1������� � jhjXn�2 janjn(n� 1)2 rn�2 ! 0:



110 Analyti Funtions and Power SeriesConsequently, f 0(z) exists and equals g(z). Sine z is arbitrary, this holdsat any interior point in the disk of onvergene.A repeated appliation of this argument shows that all the derivativesf 0, f 00, : : : , f (k); : : : exist in jzj < R and (3.72) holds. Putting z = 0 in(3.72) we have the formula for the oeÆient ak: f (k)(0)=k = ak and weare done.Suppose z0 6= 0 and f(z) = Pn�0 an(z � z0)n, jz � z0j < R: Thenonsider a simple transformation w = z � z0 so that z = z0 + w. Then byTheorem 3.71 we see that the funtion � de�ned by�(w) = f(w + z0) =Xn�0 anwnand the k-times derived series�(k)(w) = k!ak + Xn�k+1 n!(n� k)!anwn�k;have the same radius of onvergene and note that�(k)(w) = f (k)(w + z0)d(w + z0)dz = f (k)(z); jwj < R:From this it follows that if R is the radius of onvergene of the seriesf(z) =Pn�0 an(z � z0)n, thenf (k)(z) = k!ak + Xn�k+1 n!(n� k)!an(z � z0)n�k; jz � z0j < R;so that ak = f (k)(z0)=k!: Note that a0; a1; : : : ; ak; : : : depend on z0. Thus,f beomes f(z) =Xn�0 f (n)(z0)n! (z � z0)n; jz � z0j < R:This is often alled the Taylor series expansion for f in jz � z0j < R. Inthe speial ase when z0 = 0, it is alled the Malaurin series expansion.One of the remarkable results in Complex Analysis is that the onverseof Theorem 3.71 holds. If f is analyti in a domain D, then f an berepresented (loally about eah point z0 2 D) as a Taylor series expansionabout z0: f(z) =Xn�0 an(z � z0)n;where z0 is a enter of the largest disk �(z0;R) � D and z 2 �(z0;R). Forinstane if f(z) = z�1, then f is analyti in the puntured plane C nf0g. Ifz0 6= 0, then we have the Taylor expansionf(z) = 1z � z0 + z0 = 1z0 Xn�0(�1)n (z � z0)nzn0 for jz � z0j < jz0j:



3.3 Power Series as an Analyti Funtion 111However, we shall prove a more general result in Chapter 4 (see Corollary4.95) whih states that for a given analyti funtion de�ned in a domainD and for eah z0 suh that �(z0; r) � D there is always a power seriesonverging in �(z0; r) whose sum is f(z).3.73. Corollary. If f is entire and if z0 2 C , then f (n)(z0) existsfor n = 0; 1; : : : and has the power series expansionf(z) =Xn�0 f (n)(z0)n! (z � z0)n for all z:3.74. Remark. Now it is lear that entire funtions are just thosefuntions whih are de�ned by the sums of the series Pn�0 anzn wherelim supn!1 janj1=n = 0. �In the next theorem (alled the Uniqueness Theorem for power series),we show that a power series representing a given funtion, when obtainedby whatever method, is unique.3.75. Theorem. Suppose f(z) =Pn�0 anzn and g(z) =Pn�0 bnznonverge for jzj < R1 and jzj < R2, respetively. If f(zk) = g(zk) fora sequene fzkg of nonzero omplex numbers in 0 < jzj < Æ suh thatzk ! 0 as k ! 1, or if f(z) = g(z) for all z with jzj < Æ, where 0 < Æ <minfR1; R2g, then an = bn for every n 2 N0 .Proof. Sine f; g are ontinuous in jzj � Æ, being analyti thereon,zk ! 0 and f(zk) = g(zk) =) limk!1 f(zk) = limk!1 g(zk)=) f(0) = g(0):Thus, a0 = b0. To omplete the proof, we use the method of indution.Now suppose that aj = bj for j = 0; 1; : : : ;m� 1: Thenf(zk) = g(zk) =) Xn�manznk = Xn�m bnznk=) Xn�manzn�mk = Xn�m bnzn�mk ; sine zk 6= 0;=) F (zk) = G(zk);where F (z) = Xn�m anzn�m and G(z) = Xn�m bnzn�m:



112 Analyti Funtions and Power SeriesSine the radius of onvergene of Pn�0 anzn and Pn�m anzn�m are thesame, F is ontinuous for jzj � Æ. Similarly, G is ontinuous for jzj � Æ.Thus (see Theorem 2.22),F (zk) = G(zk) =) limk!1F (zk) = limk!1G(zk) =) am = bmand we onlude that an = bn for every n � 0. Note that if f(z) = g(z) forjzj < Æ, we an �nd a sequene fzkgk�1 2 fz : jzj < Æg suh that zk ! 0as k !1 (see Theorem 2.22). The proof is omplete.3.76. Corollary. Suppose f(z) =Pn�0 anzn, with the power serieshaving radius of onvergene R > 0. If 0 is a limit point of the set of zerosof f , then f � 0 for jzj < R.It will be shown, more generally later (Theorem 4.103) that if f; g aretwo analyti funtions whih agree at a sequene of points fzkg having alimit point in their ommon domain of analytiity, then f � g therein.3.4 Exponential and Trigonometri FuntionsIn this setion we desribe the omplex analogues of exponential and trigono-metri funtions of elementary alulus. There are many approahes whihlead to de�nitions of these funtions although our approah is intuitive anddiret. Let us �rst reall the following fats from alulus:(a) Trigonometri funtions are de�ned by means of the ratios of the sidesof a right triangle; for instane, sin2 x+ os2 x = 1, x 2 R.(b) ddx (sinx) = osx; ddx (osx) = � sinx; ddx (ex) = ex;() Further, sinx = x� x23! + x55! � � � � ;osx = 1� x22! + x44! � � � � ;ex = 1 + x+ x22! + x33! + � � � :The properties (b) and () show that sinx and osx are the unique solutionof the seond order ordinary di�erential equationf 00(x) + f(x) = 0subjet to the onditions f(0) = f 0(0) � 1 = 0 and f(0) = f 0(0) � 1 = 1,respetively. On the other hand ex is de�ned to be the solution off 0(x) = f(x); f(0) = 1:In the same way we begin with a funtion f(z) =Pn�0 anzn satisfying



3.4 Exponential and Trigonometri Funtions 113(i) f 0(z) = f(z) for z 2 C , i.e. f is analyti in C(ii) f(x) = ex; x 2 R.Using (i) we �nd that an�1 = nan: Sine f(0) = e0 = 1 = a0, indution onn yields an = 1=n!: Thus we de�ne the omplex exponential funtion asf(z) = exp(z) = ez =Xn�0 znn! :(3.77)Conversely, if the omplex exponential funtion is given by (3.77) then (i)-(ii) follow easily. By the Ratio test, the series (3.77) onverges absolutelyfor all z 2 C and hene, ez is an entire funtion. In the same way one anobtain the series representations of sin z and os z.As (exp z)0 = exp z, we have the following: if g 2 H(D), then so doesF (z) = exp(g(z)) and F 0(z) = g0(z) exp(g(z)) for z 2 D.Next, for a �xed � 2 C , we de�neg�(z) = eze��z(= f(z)f(� � z)):Then for every z 2 C , we have g0�(z) = 0. Therefore, by Theorem 3.31, g�is onstant. Sine g�(0) = e0e� = e� , we must haveeze��z = e� :Taking z = z1 and � = z1 + z2, we see that for every z1; z2 2 C ,ez1+z2 = ez1ez2 :(3.78)The result (3.78) is alled the \Addition theorem" for the exponential fun-tion whih is also a onsequene of the Uniqueness theorem (Setion 4.11).This property an also be obtained diretly using the Cauhy produt ofseries: ez1ez2 = Xn�0 zn1n! Xm�0 zm2m! = Xk�0" kXp=0 zp1p! zk�p2(k � p)!#= Xk�0 " 1k! kXp=0�kp� zp1zk�p2 #= Xk�0 (z1 + z2)kk! = ez1+z2 :For any positive integer m, by indution, (3.78) with z1 = z2 = z showsthat emz = (ez)m:(3.79)



114 Analyti Funtions and Power SeriesFor z = iy, y 2 R, (3.77) giveseiy =Xn�0 inynn! =Xk�0(�1)k y2k(2k)! + iXk�0 (�1)ky2k+1(2k + 1)! :Thus, we have the Euler formulaeiy = os y + i sin y; y 2 R:(3.80)Therefore, for z1 = x and z2 = iy, x; y 2 R, (3.78) shows thatex+iy = ex(os y + i sin y); ez = exeiy:(3.81)Sine eze�z = ez�z = e0 = 1; ez 6= 0 for eah z 2 C . Further,jezj2 = ez(ez) = ezez = ez+z = e2Re zso that jezj2 = (eRe z)2; by (3.79). Thus, from (3.81) and the above, wewrite jezj = eRe z ; arg(ez) = Im z (mod 2�):(3.82)In partiular, we have jezj = 1 () z 2 iR: For m;n integers and k =0; 1; : : : ; n� 1, we have(ez)1=n = (exeiy)1=n = ex=n[ei(y+2k�)=n℄ = e(z+2k�i)=nand so we write (ez)m=n = em(z+2k�i)=n:(3.83)From (3.80) we see in partiular that, if z is real thenos z = eiz + e�iz2 and sin z = eiz � e�iz2i :(3.84)Thus the extension of the exponential to the omplex plane suggests tomake (3.84) as de�nitions of os z and sin z for any z 2 C although thesede�nitions an be realized as a onsequene of the Uniqueness theorem.Hene we make the de�nition{the famous Euler formula:eiz = os z + i sin z; z 2 C :Now onsider f(z) = sin z for z 2 C : Then, by the de�nition of sin z andthe fat that (exp z)0 = exp z, (3.84) givesf 0(z) = ieiz + ie�iz2i = eiz + e�iz2 = os zand so using the de�nition of os z,f 00(z) = ieiz � ie�iz2 = �eiz � e�iz2i = � sin z:



3.4 Exponential and Trigonometri Funtions 115Consequently, we havef (n)(0) = � 0 if n = 2k(�1)k if n = 2k + 1 ; k 2 N0 :Similarly, if f(z) = os z, we obtain f 0(z) = � sin z and f 00(z) = � os z sothat f (n)(0) = � 0 if n = 2k + 1(�1)k if n = 2k ; k 2 N0 :Now we use the Malaurin series expansion (see just above Corollary 3.73),namely f(z) = Pn�0 f (n)(0)n! zn, to get the series expansions for os z andsin z. Therefore, for any z 2 C , the osine and sine series are nowos z =Xn�0(�1)n z2n(2n)!(3.85)and sin z =Xn�0(�1)n z2n+1(2n+ 1)! ;(3.86)respetively. Also, note that (3.85) and (3.86) follow from the de�nitionof eiz and (3.84). Eah of the series onverges absolutely for every z 2 C ,beause Xn�0 jzj2n(2n)! and Xn�0 jzj2n+1(2n+ 1)!are the subseries (i.e. terms hosen from those of) of the onvergent seriesPn�0[jzjn=n!℄ for z 2 C . The remaining irular funtions are then de�nedby tan z = sin zos z ; se z = 1os z �z 6= (2k+1)�2 � ;ot z = os zsin z ; s z = 1sin z (z 6= k�);where k 2 Z. These funtions are analyti exept at points where thedenominators vanish. The hyperboli funtions are de�ned byos(iz) = osh z and sin(iz) = i sinh zso thatosh z = ez + e�z2 ; sinh z = ez � e�z2 ;tanh z = sinh zosh z ; seh z = 1osh z �z 6= (2k + 1)�i2 � ;oth z = osh zsinh z ; sh z = 1sinh z (z 6= k�i);



116 Analyti Funtions and Power Serieswhere k 2 Z. Again these funtions are analyti exept at points where thedenominators vanish. For z1; z2 2 C , the identityei(z1�z2) = eiz1e�iz2(3.87)yields the addition formulae (whih will be proved later also by using theUniqueness theorem)os(z1 � z2) = os z1 os z2 � sin z1 sin z2(3.88)and sin(z1 � z2) = sin z1 os z2 � os z1 sin z2:(3.89)Putting z1 = z2 = z in (3.88) and (3.89), we getos2 z + sin2 z = 1; os 2z = os2 z � sin2 z; sin 2z = 2 sin z os z:Reall the known fats about the sine and osine funtions of a real variableindiated by the following hart:Interval os sin[0; �=2℄ 1& 0 0% 1[�=2; �℄ 0&�1 1& 0[�; 3�=2℄ �1%0 0&�1[3�=2; 2�℄ 0% 1 �1% 0as also the properties os 2k� = 1; sin 2k� = 0, k 2 N0 : Therefore, we havefrom (3.88) and (3.89)os(z + 2k�) = os z and sin(z + 2k�) = sin z(3.90)where k 2 Z. The above fats together with the equation in (3.84) im-mediately yield the following neessary and suÆient onditions for ertainidentities to beome true:(a) os z = 1() z = 2�k,(b) sin z = 1() z = (4k + 1)�=2,() tan z = 1() z = (4k + 1)�=4,(d) os z1 = os z2 () either z1 + z2 = 2�k or z1 � z2 = 2�k,(e) sin z1 = sin z2 () either z1 + z2 = (2k + 1)� or z1 � z2 = 2�k,where k 2 Z. Note that (d) () (e). This fat an be easily seen by takingz1 = �1 � �=2 and z2 = �2 � �=2.3.91. De�nition. A funtion f : D ! C is said to be periodi ifthere exists an ! 6= 0 suh that f(z + !) = f(z) for all z 2 D. The



3.4 Exponential and Trigonometri Funtions 117omplex number ! is then alled a period of f . The funtion f is alleddoubly periodi in D if there are omplex numbers !1; !2 whih are linearlyindependent over R suh that f(z+!1) = f(z+!2) = f(z) for all z 2 D:Sine e2�ki = 1, we �nd that ez+2k�i = eze2k�i = ez: Suppose ! = u+ivis a period for ez. Then by de�nition ez+! = ez; i.e. e! = 1, and je!j =eu = 1 and so u = 0. Heneeiv = 1; i.e. os v = 1 and sin v = 0.By (3.90), this ours only for v = 2k�, where k is some integer. Thisshows that ! is a period of ez i� ! = 2k�i. In partiular, ez is a periodifuntion with period 2�i. Similarly, we havesin(z + !) = sin z; or os(z + !) = os z () ! = 2k�; k 2 Z:3.92. Example. Consider the funtion f(z) = ez: Then we havef(z1) = f(z2) =) ez1�z2 = 1 =) z1 � z2 = 2k�i for some k 2 Z:This shows that f is one-to-one in a domain D i� D does not have even asingle pair of distint points z1 and z2 satisfyingz1 = z2 + 2k�i; k = �1;�2; : : : :For instane, f is univalent in jzj < �; but not in C . Similarly, we see thatf is univalent within any horizontal strip of the form:b < Im z < a; 0 < a� b � 2�:In fat we see that f is univalent in eah stripDk = fz : 2(k � 1)� < Im z < 2k�g; k 2 Z;and maps eah strip onto the w-plane with a ut along (i.e. omitting) thepositive real axis: 0 � x <1. �3.93. Example. Note that for z = x+ iy, we haveez = � exeib if y = b, a onstant,eaeiy if x = a, a onstant.As a further illustration of the exponential funtion, we have(i) The exponential funtion ez maps eah horizontal line y = b onto aray from the origin to in�nity, namely, freib : r 2 (0;1)g.



118 Analyti Funtions and Power Series(ii) The exponential funtion ez maps eah vertial line x = a onto airle entered at the origin and radius ea. Observe that eah pointon this irle is the image of in�nitely many points on the vertiallines as eiy is periodi. Note that these two families of urves (andalso their images) are orthogonal to eah other.(iii) The line y = b and the line x = a interset at (a; b). How about theirimages in the w-plane?(iv) The retangle D = fz : a1 < Re z < a2; b1 < Im z < b2g is mappedinto D0 = fw : ea1 < jwj < ea2 ; b1 < argw < b2g. In partiular,exp z maps the in�nite strip fz : 0 < Im z < �=2g onto the open �rstquadrant fw : Rew > 0; Imw > 0g. �3.5 Logarithmi FuntionsIt is natural to think of a logarithmi funtion as the inverse of the expo-nential funtion. Reall that, when x is real,(a) ex > 0 for all x 2 R(b) ex !1 as x!1() e�x = 1=ex whih by (a) gives ex ! 0 as x! �1(d) ddx (ex) = ex and so ex is monotonially inreasing for all x.This shows that ex de�nes a stritly inreasing di�erentiable funtion fromR onto R+ , the set of positive reals. Hene it has a ontinuous stritlyinreasing inverse funtion alled the natural logarithm (with base e)ln : R+ ! Rwith the property that lnx = y is the solution of ey = x. In partiular, foreah x > 0 there is exatly one y suh that ey = x.We would like to mimi the real variable ase and say that a omplexnumber w in C is alled a logarithm of a omplex number z in C , denotedby w = log z, if ew = z holds. Sine ew 6= 0 for any w 2 C , the number 0has no logarithm; hene, the equation ew = z has no solution in C whenz = 0 and z =1. Consider an arbitrary �xed z 6= 0 in polar formz = jzjeiArg z = rei� (r = jzj > 0; � � < � � �):Let us now solve the equation w = log z. If we let w = u + iv, u; v real,then ew = z beomes eu+iv = rei� whih yieldseu = r; e(v��)i = 1; i.e. u = ln r; v = � + 2k�; k 2 Z:Aordingly, we therefore have for z 6= 0,w = log z = ln jzj+ i(Arg z + 2k�); k 2 Z:(3.94)



3.5 Logarithmi Funtions 119The prinipal value of a logarithm, sometimes denoted by Log , orrespondsto the value of the prinipal value of the argument; that is for z 6= 0,Log z = ln jzj+ iArg z; � � < Arg z � �:(3.95)This agrees with the meaning of ` Log z' for positive real numbers z = x,for whih Arg z = 0, with whih the reader is already familiar. We use thenotation � log z to denote the in�nite set of valuesfln jzj+ i(Arg z + 2k�) : k 2 Zg:It is often onvenient to single out a partiular member in this set. Thus,we formulate the following3.96. De�nition. If w 2 C satis�es ew = z for an arbitrary �xedz 6= 0, then w de�ned byw = � log z = 8>>>><>>>>: ln jzj+ i(Arg z + 2k�)(or)Log z + 2k�i(or)ln jzj+ i arg z;(3.97)is alled the logarithm of z, where k 2 Z.Note that z 7! Log z is a funtion de�ned in C nf0g and every non-zeroomplex number has in�nitely many logarithms whih di�er from eah otherby integral multiples of 2�i. This shows that w = log z is not a funtionin general and is in fat an in�nitely-valued assoiation or relation, within�nitely many values for eah z 6= 0. For eah k, the strip of the typeDk = fu+ iv : (2k � 1)� < v � (2k + 1)�; k 2 Zgis alled a fundamental region for log z (Note that a region in the z-planewhose image just overs the w-plane one is alled a fundamental region forthe funtion w = log z). Sine the union is the w-plane, the set fDkg1k=�1is a omplete set of fundamental regions for the logarithm. In partiular,this observation proves that for eah k 2 Z, exp(Dk) = C nf0g: It is alsoeasy to see that for eah k 2 Z, exp : Dk ! C nf0g is one-to-one and onto.We have(a) Log (�i) = �i�=2, Log (1 + i) = lnp2 + i�=4(b) Log ((1� i)=p2) = �i�=4, ln(�1) = i�() Log (2� 3i) = lnp13� iArtan (3=2)(d) Log (�2 + 3i) = lnp13 + i(� �Artan (3=2))(e) Log i1=4 = i�=8, Log (�z) = ln�+ Log z (� > 0).



120 Analyti Funtions and Power SeriesFrom these examples, we an see that it is not even true in general thatLog (z1z2) = Log z1 + Log z2when we limit our attention to prinipal values. However, for z1 6= 0 andz2 6= 0, the statementslog(z1z2) = log z1 + log z2 (mod 2�);log(z1=z2) = log z1 � log z2 (mod 2�)hold. Suppose that z1 = jz1jeiArg z1 and z2 = jz2jeiArg z2 : Then, for theomplex numbers z1; z2, we writez1z2 = jz1z2jeiArg (z1z2):There is a k1 2 f�1; 0; 1g (see Exerise 1.54(a)) suh thatLog (z1z2) = ln jz1z2j+ iArg (z1z2)= ln jz1j+ ln jz2j+ i(Arg z1 +Arg z2 + 2�k1)= Log z1 + Log z2 + 2�ik1:Thus, Log (z1z2) = Log z1 + Log z2 () Arg z1 + Arg z2 2 (��; �℄: Inpartiular, this statement leads toLog (z1z2) = Log z1 + Log z2for all z1; z2 2 C with Re z1 > 0 and Re z2 > 0. A serious trouble ensuesif the onditions Re z1 > 0 and Re z2 > 0 are dropped in the last equation.This point an also be heked on taking z1 = i and z2 = i. Similarly, wesee that the ondition Arg z1 +Arg z2 2 (��; �℄ is met whenever Im z1 < 0and Im z2 > 0. This means thatLog (z1z2) = Log z1 + Log z2for all z1; z2 with Im z1 < 0 < Im z2.In fat, by Exerise 1.54(b), we similarly haveLog (z1=z2) = Log z1 � Log z2 + 2�ik2;where k2 = k2(z1; z2) is de�ned in Exerise 1.54(b). For instane, let z1 = iand z2 = �1: ThenLog z1 = i�=2; Log z2 = i� and Log (z1z2) = �i�=2:Therefore, Log (z1z2) = Log z1 + Log z2 � 2�i sine k1(i;�1) = �1. Simi-larly, we have(a) Log1 = Log (�1) + Log (�1) + 2�i; sine k1(�1;�1) = 1.
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Figure 3.3: Desription for ontinuity of Arg z at z0 = x0 < 0.(b) Log (�1� i) = Log i+ Log (�1 + i)� 2�i, sine k1(i;�1 + i) = �1.() Log (r1r2ei3�=2) = Log (r1ei3�=4) + Log (r2ei3�=4)� 2�i.It is often onvenient to single out a partiular set in the set � log z.One immediate possibility is to onsider the prinipal value of the loga-rithm Log z and to study analytiity of the funtion Log z whose domainof de�nition is C nf0g. For z 6= 0, letz = rei� and u+ iv = Log z;where jzj = r and �� < � = Arg z � �. Reall thatLog z = ln jzj+ iArg z:If Log z = u(x; y) + iv(x; y), u; v real, thenu(r; �) = ln r and v(r; �) = �:(3.98)The funtion Log z is not ontinuous at points on the negative real axis,sine Arg z fails to possess a limit at the points along this axis; for, letz0 = x0 < 0. Then, for z = x0 + iy with y > 0, we havelimz!z0Arg z = limy!0y>0 Arg (x0 + iy) = �and for z = x0 + iy with y < 0, we havelimz!z0 Arg z = limy!0y<0 Arg (x0 + iy) = ��:Sine every neighborhood of z0 intersets both seond and third quadrantsmaking it possible to approah z0 in two di�erent ways (see Figure 3.3),Arg z annot onverge. However, Log z is single-valued and ontinuous inthe domain D, where D = C nfx + iy 2 C : y = 0; x � 0g: Now we anompute the derivative of the logarithm. From (3.98), it follows thatur = v�r = 1r and vr = �u�r = �:
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Figure 3.4: Slit plane D� = C nfRei� : R > 0; �� 2� < arg� < �g:Thus u and v satisfy the C-R equations (3.47). Moreover, the partial deriva-tives ur; vr et., are all ontinuous in D. This implies the existene of thederivative of Log z in D and so Log z is analyti therein. Sinedwdz = e�i� �w�r ;we readily haveddz ( Log z) = e�i� ��r (ln r + i�) = e�i�r = 1rei� = 1z ; z 2 D:In the same way, we see that arg� z with z = rei� (r > 0, �� 2� < � < �),is ontinuous in the `slit plane' D� = C nfRei� : R � 0g where � 2 R is�xed (see Figure 3.4). Thus, in D�, the funtion f� := log� de�ned byf�(z) := log� z = ln jzj+ i arg� z;(3.99)where arg� z denotes the unique hoie of arg z in the interval (�� 2�; �),is ontinuous with derivativeddz (f�(z)) = 1z ; z 2 D�:Clearly, f� is not ontinuous at points on the ray frei� : 0 � r < 1g.Evidently, exp(f�(z)) = z. For the analyti property of multiple-valuedfuntions, we regard a multiple-valued funtion as a olletion of single-valued funtions. More expliitly we have3.100. De�nition. Suppose F is a multiple-valued funtion de�nedin S. A branh of F is a single-valued analyti funtion f in some domainD � S obtained from F in suh a way that at eah point of D, f assumesexatly one of the possible values of F .



3.5 Logarithmi Funtions 123For example, from our disussion above, for eah �xed � 2 R, thefuntion f� de�ned by (3.99) represents a branh of log z in the slit planeD�. We have reated a ut along � = �, so that the restrition on � = arg� zmakes the funtion f� single-valued and analyti. This ut orrespondingto � = �, i.e. the semi in�nite line fRei� : R � 0g, � 2 R �xed, is regardedas a branh ut for the branh f� of log z. For � = �, f� beomes Log zin D� and is often alled the prinipal branh of log z. The branh ut forLog z is then the negative-real axis from the origin, i.e. f�R : R � 0g.3.101. De�nition. A multiple-valued funtion F de�ned in S is saidto have a branh point at z0 2 C if, when z desribes an arbitrarily smallirle about z0, then for every branh f of F , f(z) does not return to itsoriginal value.For example every z 6= 0 is not a branh point of log z, sine on asuÆiently small irle enlosing the point z, every branh of log z returnsto its original value.3.102. De�nition. A funtion f 2 H(D), where D is a domainD, is alled an analyti/holomorphi branh of log z in D if f is ana-lyti/holomorphi in D and exp(f(z)) = z for eah z 2 D.Let � 2 H(D) suh that 0 =2 �(D). We say f 2 H(D) is an analyti-logarithm of � if exp(f(z)) = �(z) for eah z 2 D. Clearly, if �(z) = zin D then the onept of analyti-logarithm oinides with that of the(analyti) branh of log z. Analyti/holomorphi branhes of log�(z) arealled logarithmi funtions.For instane, in the slit plane D�, the funtion f� de�ned by (3.99) isan example of a logarithmi funtion.3.103. Theorem. Let D be a domain in C . Then, any two logarith-mi funtions f , ef : D ! C are related byef(z) = f(z) + 2�ki(3.104)for some k 2 Z. Conversely, if a logarithmi funtion f : D ! C is relatedby (3.104) with ef : D ! C , then ef is also a logarithmi funtion.Proof. Let f and ef be two logarithmi funtions in D. Then by de�-nitionexpf ef(z)g = expff(z)g; i.e. expf ef(z)� f(z)g = 1 for all z 2 D;whih implies that F (z) = ef(z)� f(z)2�i 2 Z:



124 Analyti Funtions and Power SeriesNote that F is an analyti funtion in D and, in partiular, F is ontinuousin the open and onneted set D. But F is an integer-valued and so Fmaps a onneted set onto a onneted subset of Z, viz. a single point, k,say. Thus, f and ef are related by (3.104).Conversely, if f is a logarithmi funtion in D and ef : D ! C is relatedby (3.104) for some k 2 Z then for all z 2 D, we haveexpf ef(z)g = expff(z)g expf2�ikg = expff(z)g = zand so ef beomes a logarithmi funtion in D, by de�nition.Theorem 3.103 shows that, given a branh of logarithm in a domain,one an obtain all the branhes of logarithm on that domain. For example,we let � = 3�=2 and onsider (3.99). Then f3�=2 is an analyti branh oflog z for z 2 D3�=2. Thus to �nd a numerial value of f3�=2(z0), wherez0 = �1� i, we writef3�=2(�1� i) = lnp2 + i arg3�=2(�1� i) = lnp2 + 5�i4 :From Theorem 3.103, we also note that the value of f3�=2(�1� i) for anyother branh of log z whih is analyti in the slit plane D3�=2 is given bylnp2 + 5�i4 + 2k�i; for some k 2 Z:As another haraterization of logarithmi funtions, we have3.105. Theorem. Let f : D ! C be analyti in a domain D notontaining 0. Then f is a branh of log z in D i� f 0(z) = 1=z for all z 2 Dand expff(a)g = a for at least one a 2 D.Proof. Suppose that f is a branh of log z in D. Then, expff(z)g = zfor all z 2 D so thatf 0(z) expff(z)g = 1; i.e. f 0(z) = 1=z for all z 2 D:To prove the onverse, we need to show thatexpff(z)g = z for all z 2 D:(3.106)To do this, we onsider g(z) = z expf�f(z)g: Then g is analyti in D andsatis�es g0(z) = [1� zf 0(z)℄ expf�f(z)g = 0 for all z 2 D:By Theorem 3.31, g is a onstant, say k. Thus, z expf�f(z)g = k for allz 2 D: Sine expff(a)g = a, we must have k = 1.



3.5 Logarithmi Funtions 1253.107. Example. We now demonstrate that there an be no branhof logarithm in the domain 
 = C n f0g. This fat an be proved by anumber of ways.Suppose on the ontrary that f(z) is a branh of log z in 
. The restri-tion of f to the slit plane D� = C n (�1; 0℄ is then a branh of logarithmin D�. As Log z is the prinipal branh in D�, Theorem 3.103 shows thatfor z 2 D�, f must be of the formf(z) = Log z + 2k�ifor some k 2 Z. But then, f being analyti in 
, f is ontinuous at x0 < 0so thatf(x0) = limy!0y>0 f(x0 + iy) = limy!0y>0 Log (x0 + iy) + 2k�i = (2k + 1)�iand f(x0) = limy!0y<0 f(x0 + iy) = limy!0y<0 Log (x0 + iy) + 2k�i = (2k � 1)�iwhih is a ontradition. Thus, no suh f an exist. �It follows from Theorem 3.105 that every branh f of log z in D isin�nitely di�erentiable in D. A natural question is whether f an be rep-resented by a power series valid in appropriate disks in D. For example,the following result onveniently stated in a di�erent form shows thatLog z =Xn�1 (�1)n�1n (z � 1)n for jz � 1j < 1:3.108. Theorem. In the unit disk �, the power series Pn�1(zn=n)represents the logarithmi funtion �Log (1� z).Proof. Let f(z) = �Log (1� z). Note that the radius of onvergeneof the given series is 1 and so by Theorem 3.71, it represents an analytifuntion, say g(z), in the unit disk � = fz : jzj < 1g. Then, as we have seenearlier, f 0(z) = (1 � z)�1 and sine the power series an be di�erentiatedterm-by-term for z 2 �, by Theorem 3.71, we must haveg0(z) =Xn�1 zn�1 = 11� zso that f 0(z)� g0(z) = 0: Therefore, by Theorem 3.31, f � g is onstant in�. Sine f(0) = �Log1 = 0 = g(0), it follows that f(z)� g(z) = 0 in �.
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Figure 3.5: Choosing suitable branh.3.109. Example. Suppose we wish determine the sum of the series1+P1n=2(z� 4)n=n. We know that the series onverges for jz� 4j < 1 andso, we may let its sum by f(z):f(z) = 1 + 1Xn=2 1n (z � 4)n; jz � 4j < 1:The term-by-term di�erentiation givesf 0(z) = 1Xn=2(z � 4)n�1 = z � 41� (z � 4) = �1 + 15� z ; jz � 4j < 1:Antiderivative gives f(z) = �z � log�(5� z) + where the branh ut must lie to the right of the disk jz�4j < 1, i.e. in thehalf-plane Re z > 5 (see Figure 3.5). As f(4) = 1, we see that  = 5+log� 1whih gives f(z) = �(z � 5)� log�(5� z) + log� 1:For instane if � = 0, then log0 1 = ln 1+ iArg 1 = 0. In this hoie, we getf(z) = �(z � 5)� Log (5� z): �We onlude this setion with a disussion on the generalized `powerfuntions'. Given 0 6= z 2 C , the prinipal value of za, i.e. the a-th powerof z, is de�ned by za = exp(aLog z) and this is what most mathematiiansmean by za on most oasions, espeially if z is real and positive. Theother values of za ould be obtained from exp(a log z) in whih ase za ismulti-valued beause arg z (and hene log z) is multiple-valued.When a is an integer, exp(a log z) = za is single-valued. For let a = n,n an integer. Then, beause log z = ln jzj+ i(Arg z + 2�k).za = en[ln jzj+i(�+2�k)℄ (� = Arg z; k 2 Z)= enLog zei2�(kn) = enLog z;



3.5 Logarithmi Funtions 127and hene za produes the single point. Note that Log z is single-valued.Conversely, za is single-valued only if a is an integer.When a is a real rational number with the redued form m=n, thenexp(a log z) produes exatly n distint values and may be represented as� npzm as in Remark 1.25. For,za = e(m=n)[Log z+i2k�℄ = e(m=n)Log zei(m=n)2k�; k 2 Zand sine e(m=n)Log z is single-valued and ei(m=n)2k� are the n-th rootsof unity, we infer that za has exatly n values orresponding to k =0; 1; 2; : : : ; n� 1.When a is an irrational (real) number or an imaginary number, then zais in�nite-valued. That is the set of all values of za is an in�nite set. Forexample, 1p2 = expfp2( Log 1 + i2k�)g = e2p2k�i; k 2 Z:The values orresponding to di�erent k's are distint.As another example all the values of ii are obtained from the expressionexpfi( Log i+ 2k�i)g = expfi((�i=2) + 2k�i)g = e�(4k+1)�=2;where k 2 Z, and so e��=2 is the prinipal value of ii. Similarly, all thevalues of (�i)i and i1=� are obtained from(�i)i = e�(4k�1)�=2 and i1=� = ei(4k+1)=2;where k 2 Z, respetively.We emphasize that the prinipal branh and other branhes of za areobtained from Log z and log z, respetively. Di�erent branhes of log zyields di�erent branhes of za. For instane, za = eaLog z de�nes a prinipalbranh of za whih is analyti in D� = C nfz : z = x; x � 0g. Moregenerally, we have3.110. Theorem. If we hoose f� de�ned by (3.99) to be a branhof log z, then, in the ut plane D�, (za)0 = aza�1 (same branhes).Proof. By hypothesis, za = exp(af�(z)) is analyti in the ut planeD�, where � 2 R is �xed. By the Chain ruleddz (za) = eaf�(z) �az� = eaf�(z) � aef�(z)� = ae(a�1)f�(z) = aza�1whih gives the result.3.111. Corollary. For n 2 N, z1=n is analyti in the domain of abranh of log z and �z1=n�0 = (1=n)z1=n�1:



128 Analyti Funtions and Power SeriesObserve that if a = 1=n (n � 2), then�exp� 1nf�(z)��n = exp(f�(z)) = zmaking exp ((1=n)f�(z)) a branh of the n-th root funtion in D�, thebranh of the n-th root funtion in D� assoiated with f�(z). A proofsimilar to Theorem 3.108 gives3.112. Theorem. (Binomial Series) For z 2 � = fz : jzj < 1g,(1 + z)a = 1 +Xn�1 a(a� 1) � � � (a� n+ 1)n! zn;where a is an arbitrary omplex number.Proof. Sine the radius of onvergene of the series is 1, the sum on-verges for all z 2 � (and de�nes an analyti funtion in �). Call it f(z).Now the power series an be di�erentiated term-by-term. Thus,(1 + z)f 0(z) = af(z):Further the funtion (1 + z)a = expfaLog (1 + z)g is well-de�ned andanalyti in the unit disk �. Letg(z) = f(z)(1 + z)a = f(z) expf�aLog (1 + z)g:Thus, g is analyti in � andg0(z) = f 0(z) expf�aLog (1 + z)g � f(z) expf�aLog(1 + z)g a1 + z= expf�aLog(1 + z)g �f 0(z)� a1 + z f(z)� = 0:Theorem 3.31(i) gives that g(z) is onstant in �. So, f(z) = k(1 + z)a;where k is some onstant. Sine f(0) = 1 and sine 1a = eaLog 1 = e0 = 1,it follows that k = 1. This proves the theorem.Note. Unless otherwise stated expliitly, from now onwards, za willdenote the value of expfaLog zg. Further, in the partiular ase z = e theexpression za � ea is single-valued for all values of a, sine ea = eRe a+i Im ais de�ned to beeaLog e = e(Rea+iIm a)Log e = eRe aLog e(os(Im aLog e)+i sin(Im aLog e));whih is learly a unique omplex number. This note is to aution thereader when omparing with Euler's notation (see Equation (3.81)).



3.6 Inverse Funtions 1293.6 Inverse FuntionsThe inverse trigonometri funtion w = trig�1 z or artrig z is de�ned bythe equation z = trigw:(3.113)Similarly we de�ne the inverse hyperboli funtion w = hyp�1 z or arhyp zby the equation z = hypw:(3.114)Here `trigw' (\hypw") denotes any of the trigonometri (hyperboli) fun-tions sinw; osw et. (sinhw; oshw, et.). Reall that, as ez is 2�i-periodi, de�ning the logarithm funtion as its inverse led to a multivaluedfuntion. As trigonometri and hyperboli funtions are periodi, it is nat-ural to expet a similar situation when we de�ne their inverses. Indeed, wewill see that the funtions w de�ned by the equations (3.113) and (3.114)are multiple-valued, sine trig and hyp funtions are periodi. For instane,the fat that osw = os(�w)shows that the �rst and third quadrants, and the seond and fourth quad-rants map into the same regions by the osine. First, we wish to showthat given a omplex number z, there exist in�nitely many solutions ofz = sinw: To �nd w, in terms of z, we note thatz = eiw � e�iw2i ; i.e. (eiw)2 � 2izeiw � 1 = 0;whih is a quadrati equation in eiw. Note that eiw 6= 0. Solving for eiw,we have eiw = iz + Zj ; j = 1; 2;where Z1 and Z2 denote the two numbers suh that Z21 = Z22 = 1 � z2.Therefore, w = 1i log(iz + Zj); j = 1; 2(This also gives that sin(C ) = C ). This funtion is alled the inverse sinefuntion and is denoted by sin�1(z) := arsin z:w = sin�1(z) = �i log(iz �p1� z2):(3.115)For instane, if z = 0, (3.115) beomes w = �i log(�1): If we selet +1and the prinipal value for log 1, we have w = 0 and if we selet �1 andprinipal value for log(�1), we have w = �i�. Therefore if Z denotes anyof the two values Z1; Z2;sinw = sin(�i log(iz + Z))= exp(log(iz + Z))� exp(� log(iz + Z))2i= 12i �(iz + Z)� 1iz + Z � = z:



130 Analyti Funtions and Power SeriesNote that log 1 = 2k�i and log(�1) = �i + 2k�i (k 2 Z) also leads us tosinw = z. This shows that any of the values�i log(iz + Z1) + 2k�; � i log(iz + Z2) + 2k� (k 2 Z)are the values and the only values of sin�1 z. Beause of this, for a givenz, there are an in�nite number of solutions for the equation z = sinw (andso for (3.113) and (3.114) in general). For instane,sin�1(i) = �i log(�1�p2) = �i[ Log (�1�p2) + 2k�i℄; k 2 Z;so thatsin�1(i) = (�i[ln(1 +p2) + (2k + 1)�i℄ orresponding to � sign,�i[ln(1=(p2 + 1)) + 2k�i℄ orresponding to + sign:Therefore (sine ln(1=jxj) = � ln jxj),sin�1(i) = i(�1)k ln(p2 + 1) + k�; k 2 Z:Similarly, all possible values of w = sin�1(2) are given byw = 1i hln(2�p3) + i(�=2 + 2k�)i = (2k + 1=2)� � i ln(2 +p3); k 2 Z(Note that (2 +p3)(2�p3) = 1 and so ln(2�p3) = � ln(2 +p3)).The idea used to derive the values of sin�1 z would help us to derive thefollowing: os�1 z = �i log(z �pz2 � 1) = �i log(z + ip1� z2)tan�1 z = 12i log�1 + iz1� iz�sinh�1 z = log(z +pz2 + 1)osh�1 z = log(z +pz2 � 1)tanh�1 z = 12 log�1 + z1� z� ;where pz2 � 1, p1� z2 stands for one of the omplex numbers Z suh thatZ2 = z2� 1 or Z2 = 1� z2 as the ase may be. Besides `=' signi�es one ofthe values.The inverse trig and hyp funtions an be made single-valued by hoos-ing a partiular branh of the log funtion (and the partiular branh ofthe square root funtion if neessary). When the prinipal branh of log ishosen in the formulas trig�1 and hyp�1, the resulting single-valued fun-tion is alled the prinipal branh of trig�1 and hyp�1, respetively. For



3.7 Exerises 131example, with p1� z2 = exp((1=2) Log(1� z2)) the prinipal square rootfuntion, we haveSin�1z := Arsin z = �iLog(iz +p1� z2);is alled the prinipal branh of sin�1 z := arsin z. The derivatives of the(single-valued) inverse trig and hyp funtions an be obtained from theabove formulas or from di�erentiating z = trigw and z = hypw impliitly(see Exerise 3.141).3.7 Exerises3.116. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) The funtion f : D �! C is analyti at z0 2 D if and only if there isa Æ > 0 suh that if fzng is a sequene in �(z0; Æ) nfz0g with zn ! z0,then limn!1 f(zn)� f(z0)zn � z0 = f 0(z0):(b) The funtion f(x+ iy) = x3+ax2y+ bxy2+ y3 is analyti in C onlyif a = 3i, b = �3 and  = �i.() If f = u+ iv is analyti in a domain D suh that au+ bv is onstant,where a, b are real onstants (not both zero), then f is onstant.(d) Let D be a domain in C and D = fz 2 C : z 2 Dg. Then, f 2 H(D)i� g 2 H(D), where g(z) = f(z) = f(z).(e) Let fj (j = 1; 2; : : : ; n) be analyti in a domainD suh that nXj=1 jfj(z)j2is onstant in D. Then eah fj is a onstant funtion.(f) If u is a real-valued funtion in a disk �R suh that u�1+iu is analytiin �R, then u is onstant throughout the disk.(g) There exists a homeomorphism (bijetive and biontinuous map) be-tween the unit disk � and the upper half-plane.(h) The mean value theorem of a real-valued funtion of a real variabledoes not hold in general for omplex-valued funtions.(i) A real-valued funtion u in domain D annot be analyti in D unlessit is a onstant funtion.(j) There exists a non-onstant real-valued funtion u in an open set Dwhih is analyti in D.(k) The funtion f(x+iy) = x2�y2+x+i(2xy+y) represents an analytifuntion in C whereas g(x+ iy) = x2 + y2 + x+ i(2xy + y) is not.



132 Analyti Funtions and Power Series(l) If f and g are funtions that satisfy the C-R equations at a pointa 2 C , then f + g and fg also satisfy the C-R equations at a.(m) The funtion f de�ned byf(z) = u+ iv =8<: Im (z2)z if z 6= 00 if z = 0satis�es the C-R equations at the origin, yet it is not di�erentiablethere.(n) The funtion f de�ned byf(z) = � 0 if z = 0exp(�1=z4) if z 6= 0is not ontinuous at the origin but satis�es the C-R equations at theorigin.(o) The funtion f(z) is analyti in a domain D i� both real and imagi-nary parts of f(z) and zf(z) are harmoni in D.(p) If 
 is a domain whih is symmetri about the real axis and if f is dif-ferentiable at a 2 
 as well as at a 2 
, then f(z) is not di�erentiableat a.(q) The funtion f(x + iy) = x3 + i(y � 1)3 is nowhere analyti but isontinuous in C and di�erentiable on fx+ iy : x+ y = 1g [ fx+ iy :x� y = �1g.(r) An entire funtion f suh that f(x + iy) = u(x) + iv(y) must be ofthe form f(z) = �z + � with � 2 R and � 2 C .(s) If f = u+ iv and g = u+ iV are two analyti funtions de�ned in adomain 
, then Im (f � g) is neessarily a onstant.(t) If f(z) and f(z) are analyti funtions in a domain, then f is nees-sarily a onstant.(u) There exist no analyti funtions f suh that Re f(z) = y2 � 2x.(v) There exist no analyti funtions f suh that Im f(z) = x3 � y3.(w) An analyti funtion f = u + iv in a domain 
 suh that v = u2 isneessarily a onstant.(x) A real-valued funtion u(x; y) is harmoni in D i� u(x;�y) is har-moni in D.(y) If f : D ! D0 is analyti and u : D0 ! R is harmoni, then theomposition u Æ f is harmoni in D.Note: If u(x; y) is harmoni in R2 , then u(x2 � y2; 2xy) is harmoniin R2 . Similarly, if f : D ! C nf0g is analyti then log jf(z)j isharmoni in D. In partiular, if f(z) = z then log jzj is harmoni inC nf0g.



3.7 Exerises 133(z) Let ffn(z)g be a sequene of analyti funtions in a domain D suhthat fn ! f uniformly in D. Then, f 0n ! f 0 uniformly in D.3.117. Determine whether eah of the following statements istrue or false. Justify your answer with a proof or a ounterexam-ple.(a) limn!1(n!)1=n =1.(b) If an � 0, bn � 0 and bn ! b, then lim supn!1 anbn = b lim supn!1 an:() The set of all power series with positive radius of onvergene formsa vetor spae over the �eld C .(d) A power series has an anti-derivative everywhere inside its disk ofonvergene.(e) If R is the radius of onvergene ofPn�0 anzn, then the radii of on-vergene ofPn�0 anz2n andPn�0 a2nzn arepR and R2, respetively.(f) The radius of onvergene of Pn�0(Re an)zn is always greater thanor equal to the radius of onvergene of Pn�0 anzn.(g) If k � 1 is a �xed positive integer, then the seriesPn�1 zknn onvergesfor jzj = 1 exept when z = !j , j = 0; 1; : : : ; k � 1, the k-th roots ofunity.(h) The radius of onvergene of the series Pn�1 (�1)nn(n+1)zn(n+1) is 1.(i) The seriesPn�0((z+1)=(z�1))n onverges for Re z � 0 and divergesfor Re z > 0.(j) The series P1n=0 � z1�z�n onverges for Re z < 1=2.(k) The seriesP1n=0 � znn! + n4zn� onverges for jzj > 1 and diverges every-where else.(l) Eah of the seriesP1n=1 nzn1�zn andP1n=1 zn(1�zn)2 onverges uniformlyin the losed disk jzj � r, r 2 (0; 1). The two series are atually thesame.(m) If f is analyti in a domain D and if a; b are onstants, then f(z) =aebz and f 0(z) = bf(z) are equivalent statements in D.(n) ez assumes all values exept zero; i.e., the equation ez = ! is solvablefor any 0 6= ! 2 C .(o) For z = x+ iy,(i) ez > 0 when y is an even multiple of �(ii) ez < 0 when y is an odd multiple of �(iii) ez is purely imaginary when y is an odd multiple of �=2(iv) jeiz j < 1 when y > 0



134 Analyti Funtions and Power Series(v) jeiz j > 1 when y < 0(vi) jez � 1j � ejzj � 1 � jzjejzj for any z 2 C(vii) j exp(z2)j � exp(jzj2)(viii) j sin zj2 + j os zj2 = 1() z = x, a real.(p) For z = x+ iy, sinh y � ���ossin (x� iy)��� � osh y:(q) If f is any one of the six hyperboli (irular) funtions, then, for allz 2 C , f(z) = f(z).(r) Eah of the trigonometri, hyperboli funtions os z, sin z, osh z andsinh z takes every value  2 C ountably many times.(s) For x real, os�1(x) + sin�1(x) = �=2:(t) The roots of the equation tan z + ot z = 2 are at z = (4k + 1)�=4,k 2 Z.(u) If f(z) = e1=z, then jf(z)j is onstant on jz � rj = r (r > 0).(v) If z1; z2; : : : ; zn 2 C suh that Re (zk) > 0 and Re (z1 � � � zk) > 0 foreah k = 1; 2; : : : ; n, then Log (Qnk=1 zk) =Pnk=1 Log zk.(w) Re z1=2 > 0 for all z 2 C nf0g.(x) If f(z) = zi = eiLog z (prinipal branh is hosen), then there existsa onstant C > 0 suh jf(z)j � C for all z in the domain of de�nitionof f .Note: What happens if i in this problem is replaed by ib, where bis �nite real number.(y) There does not exist an analyti funtion f in a neighborhood of 0whose square is z.(z) For z = rei� with � 2 (��; �), we have jzaj � jzjReae�jIm aj.3.118. Let f(z) = x2 + iy2. Does it satisfy the C-R equations at theorigin? Is f di�erentiable at the origin? Is f analyti at the origin?3.119. If f(z) = jx2 � y2j+ 2ijxyj, then show thatf(z) = � z2 if 0 < Arg z < �=4 and �� < Arg z < �3�=4�z2 if �=2 < Arg z < 3�=4 and ��=2 < Arg z < ��=4.3.120. An entire funtion f = u+iv has the feature that uxvy�uyvx =1 in C . Demonstrate that f has the form f(z) = az + b, where a and b aresome onstants with jaj = 1.3.121. Suppose that f = u + iv is entire suh that ux + vy = 0 inC . Demonstrate that f has the form f(z) = az + b where a; b are someonstants with Re a = 0.



3.7 Exerises 1353.122. Suppose that f(z) is de�ned in the unit disk � suh that bothf2(z) and f3(z) are analyti in �. Prove or disprove that f(z) is analytiin �.3.123. If f is analyti in a neighborhood N of the origin suh thatf(z1 + z2) = f(z1) + f(z2) for all z1; z2 2 N , then show that f(z) = az forsome omplex onstant a.3.124. If a 2 R, then show that u(x; y) = e�2axy osa(x2 � y2) isharmoni in R2 . Find all its harmoni onjugates v(x; y) in R2 . Writef = u+ iv as a funtion of z with f(0) = 1.3.125. If f 2 H(
) and jf j is harmoni in 
, then show that f is aonstant funtion.3.126. Is it always possible to �nd a funtion v whih is a harmonionjugate to u in the same domain where u is harmoni? Justify youranswer by giving an example.3.127. Let R1 and R2 be the radius of onvergene of the power seriesf(z) =Pn�0 anzn and g(z) =Pn�0 bnzn, respetively. Find the radius ofonvergene of f(z)�g(z) and f(z)g(z). Also �nd the radius of onvergeneof Pn�0 n�anzn, and Pn�0 �nanzn; where � > 0.3.128. Find the region of onvergene and uniform onvergene of theseries:(i) Xn�0� z1 + z�n (ii) Xn�0 zn1 + z2n :3.129. If f(z) = z(1� z)�2, then use the relation (1� z)2f(z) = z toompute the Malaurin series of f(z).3.130. We know that f(z) = ez is a solution of the di�erentialequation f 0(z) � f(z) = 0. Suppose that g is a solution of the �rst orderdi�erential equation g0(2z) + g(z) = 0 suh that g is analyti at 0. Thenshow that g is entire.3.131. Let a 2 R be �xed. Find the set of z 2 C for whihP1n=1 ni(z2+a)represents an analyti funtion.3.132. Using the `�-Æ' de�nition verify the ontinuity of f(z) = z2 atz0 2 C . For z 6= 0, let z = rei� (r = jzj; � = Arg z). Find the region ofontinuity for g1(z) = prei�=2 and g2(z) = �iprei�=2.



136 Analyti Funtions and Power Series3.133. If z1 and z2 satisfy one of the following onditions(a) Re z1 > 0, Re z2 > 0 () Im (z1z2) > 0; Im (z1z2) � 0(b) Im z1 < 0 < Im z2 (d) Im (z1z2) < 0; Im z2 < 0;then show that za1za2 = (z1z2)a (Assume that all the powers involved havetheir prinipal values).Note: If z1 = 1 = z2 = �1, then pz1z2 =p(�1)(�1) = p1 = 1 whereaspz1pz2 = p�1p�1 = i � i = �1. Thus, one needs to be areful whenperforming algebrai manipulations with real/omplex powers.3.134. Let z 62 (�1; 0℄. Using the prinipal logarithms on eah side,show that za = (z)a:3.135. Suppose f(z) = zz. Using the prinipal logarithm �nd f 0(z),f 0(i), Re f(z) and Im f(z).3.136. Let a be a onstant. Consider the prinipal value of za and anon-prinipal value of z�a.(a) In general, is zaz�a = 1 always true?(b) Suppose the prinipal values of both za and z�a are used. Is zaz�a =1 true?3.137. Let F (z) be the branh of the funtion (z + i)1=4 suh thatF (1) equals the value �21=8ei�=16. Find F (0), F (i) and F (�1).3.138. Find all the values of log(z1=2) and log(z1=3) in Cartesian form.3.139. At what points is eah of the funtions Log (1�z2), Log (1+z2),Log (1� iz2), Log (1 + iz2), analyti? Explain.3.140. If f(z) is the prinipal branh of z1=3, �nd f 0(�1� i).3.141. Prove the following formulas for the inverse trigonometri fun-tions: ddz �Arsin�1z� = 1p1� z2 ; ddz �Arsinh�1z� = 1pz2 � 1ddz �Aros�1z� = 1p1� z2 ; ddz �Arosh�1z� = 1pz2 � 1ddz �Artan�1z� = 11 + z2 ; ddz �Artanh�1z� = 11� z2 :3.142. Find all solutions of(a) ez = �2i (b) ez = 1 + i () sin z = 2:



Chapter 4Complex Integration
The purpose of Setion 4.1 is to develop the tehnial mahinery that isrequired to introdue the omplex line integral, also alled the ontourintegral. In Setion 4.2, we de�ne the omplex line integral and disusssome basi properties and examples of omplex line integrals. In Setion4.5, we present a powerful onept of \the number of times" a losed ontourwinds around a point. In Setion 4.7, we show that every analyti funtionin a simply onneted domain possesses derivatives of all orders. As aonsequene, in Setion 4.10, we disuss ertain important properties ofanalyti funtions. For example, every analyti funtion whih is analytiat a point a an be expressed as a Taylor series in the `viinity of a' andas an appliation of the integral representation for the Taylor oeÆient anof f , we obtain an estimate for an. We present the Uniqueness/Identitytheorem in Setion 4.11. Setion 4.12 fouses on Laurent series whih isatually a natural generalization of the Taylor's series where the enter ofexpansion is not a point of analytiity. Essentially, our e�ort is to �nd aLaurent series expansion for a funtion that is analyti in an annulus regionfz : r < jzj < Rg.4.1 Curves in the Complex PlaneA ontinuous urve (or simply a urve or a path) in C is a ontinuousmapping  from a losed interval [a; b℄, a < b, a; b 2 R, into C . Here thepoints (a) and (b) are alled initial and terminal points of the urve,respetively. A parametri representation of a ontinuous urve  is givenby (t) = x(t) + iy(t); t 2 [a; b℄;where x(t) and y(t) are ontinuous real-valued funtions on [a; b℄. Here theinterval [a; b℄ is alled a parametri interval of . A urve  with parametriinterval [a; b℄ suh that (a) = (b) is alled a losed urve. If (t) is one-



138 Complex Integrationto-one, that is, for t1; t2 in [a; b℄ with t1 6= t2 we have (t1) 6= (t2), weall the urve a Jordan ar. For example, (t) = eit; t 2 [0; �℄, is a Jordanar. A Jordan ar  suh that (a) = (b), is alled a Jordan urve.8 Adomain D bounded by a Jordan urve is alled a Jordan domain. With thisnotation, we refer to the point (t) as \a point on the urve ", althoughstritly speaking, (t) is on the image of the mapping  in C :([a; b℄) = f(t) : t 2 [a; b℄g:So, we regard a urve as the range of a ontinuous omplex funtion de�nedon the interval [a; b℄. If [a; b℄ and [; d℄ are two losed bounded intervals inR, then (by letting �(t) = At + B with �(a) =  and �(b) = d and thensolving for A and B) we observe that � : [a; b℄! [; d℄ de�ned by�(t) = � da� b t+ ad� ba� b ; t 2 [a; b℄;is a bijetive and biontinuous map of [a; b℄ onto [; d℄. If  : [; d℄! C is aurve with parametri interval [; d℄, then  Æ � is a path with parametriinterval [a; b℄, whose image is the same as that of . Thus, we an make ahoie of the parametri interval at our onveniene.Note that it is possible for two di�erent urves to have the same image.For instane, 1 and 2 de�ned by1(t) = 2t(1 + i); 0 � t � 1=2; and 2(t) = t2(1 + i); 0 � t � 1;both represent the same straight line segment [0; 1 + i℄ in C . If we let3(t) = eit and 4(t) = e2it, then we see that the images 3([0; 2�℄) and4([0; 2�℄) are the same in eah ase. But they represent di�erent urves.If a urve  : [a; b℄ ! C is given by (t) = x(t) + iy(t); t 2 [a; b℄, thenthe opposite/reverse urve � of  is de�ned by(�)(t) = (a+ b� t); a � t � b:Thus � desribes the same urve as , but in the \reverse diretion"with the initial and terminal points interhanged. For example, let (t) =eit; 0 � t � �: If t varies from 0 to �, then (t) desribes the upper halfof the unit irle jzj = 1 with initial point (0) = 1 and terminal point(�) = �1. Therefore, the reverse urve � of  is de�ned by(�)(t) = (� � t); 0 � t � �;with starting point (�)(0) = �1 and terminal point (�)(��) = 1.8A prominent result used in the theory of omplex variables is the elebrated JordanCurve Theorem whih says that every Jordan urve  divides the omplex plane intotwo parts, the interior and the exterior of . For this deep result, for instane we refer toM.H.A. Newman, Elements of topology of the plane sets of points, Cambridge UniversityPress, London, 1964.
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a t b γ1(a) c t d

γ1(t)
γ1

γ2(d)
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Figure 4.1: Sum 1 + 2.If 1, 2 are two urves with [a; b℄ as their parametri interval, then �1and �2 de�ned by�1 (t) = 1(2t� a); t 2 �a; a+ b2 � ; �2 (t) = 2(2t� b); t 2 �a+ b2 ; b�also de�ne same urves, and�1 �a+ b2 � = 1(b); �2 �a+ b2 � = 2(a):If 1, 2 are suh that 1(b) = 2(a), then we an de�ne a ontinuousfuntion 1 + 2 (� 1 [ 2) on [a; b℄ by1 + 2 = � �1 (t) if t 2 [a; (a+ b)=2℄�2 (t) if t 2 [(a+ b)=2; b℄:Thus, the formal sum 1 + 2 is said to represent the sum or union or joinof 1 and 2. Roughly speaking, 1+2 onsists of the points of 1 followedby those of 2. Similarly, 1 � 2 is de�ned to be 1+ (�2). For instane,if, for a �xed r > 0,1 : 1(t) = rt (0 � t � 1) and 2 : 2(t) = reit (0 � t � 3�=2);then, with the notation  = 1 + 2 (see Figures 4.2 and 4.1), we write1 + 2 : (t) = � rt for 0 � t � 1rei(t�1) for 1 � t � 3(�=2) + 1:A urve  : [a; b℄ ! C an be written, sine we an hoose the parametriinterval onveniently, equivalently in the forme : [0; 1℄! C ; i.e. e(t) = (a+ (b� a)t); t 2 [0; 1℄:
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Figure 4.2: Sum of two urves 1, 2.A polygon  with verties z0; z1; z3; : : : ; zn is parameterized byk(t) = (k + 1� t)zk + (t� k)zk+1; t 2 [k; k + 1℄;where 0 � k � n� 1 and  = 0 + 1 + � � � + n�1.A urve  de�ned on [a; b℄ is alled simple if it does not interset itself,that is, if (t1) 6= (t2) for t1 6= t2, where the possible exeption (a) = (b)is allowed. In the latter ase the urve is said to be a simple losed urve.For example, irles, ellipses, retangles, and triangles are simple losedurves. For instane, urve  de�ned by (t) = os t (�� � t � �) is thesegment [�1; 1℄ traversed twie from �1 to 1 and then from 1 to �1, andtherefore onsidered as a losed urve. But eah point of [�1; 1℄ is a selfintersetion point for the urve so that it is not simple. Note that a simplelosed urve is a Jordan urve.Now we shall deal with ontinuously di�erentiable urves.4.1. De�nition. A urve  : [a; b℄ ! C is said to be ontinuouslydi�erentiable on [a; b℄ or a urve of lass C1 on [a; b℄ or simply a C1-urveon [a; b℄ if the funtion (t) = x(t) + iy(t) is ontinuously di�erentiable on[a; b℄, i.e. x0(t) and y0(t) exist on [a; b℄ and are ontinuous funtions on [a; b℄(Note that (t) is di�erentiable on [a; b℄ means that 0(t) exists on (a; b),and limh!0+ (a+ h)� (a)h ; limh!0� (b+ h)� (b)hboth exist. We denote these limits by 0(a+) (or 0+(a)) and 0(b�) (or0�(b)), respetively. We all 0(a+) and 0(b�) as the right-hand deriva-tive at a and the left-hand derivative at b, respetively). A ontinuouslydi�erentiable urve is referred to as a smooth urve.9For example, (t) = t3, t 2 [�1; 1℄, is a Jordan ar of lass C1, sine�1 � s < t � 1 implies (s) < (t)9While de�ning "smooth urve" some authors insist an additional ondition that0(t) 6= 0 on [a; b℄. So the reader is advised to be aware of this inonsisteny whilereferring other texts in omplex variables.
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a t1 t2 t3 b γ (a)

γ (t1)

γ (t2)
γ (t)

γ (t3)

γ (b)

Figure 4.3: Desription for pieewise C1 urve.and (t) is a di�erentiable funtion of t on [�1; 1℄. Similarly, (t) = t3+it2,t 2 [�1; 1℄, is also a Jordan ar of lass C1, sine (t) is a ontinuouslydi�erentiable funtion of t on [�1; 1℄ and�1 � s < t � 1 implies j(s)j =ps6 + s4 <pt6 + t4 = j(t)j:Further, the line segment [z1; z2℄ from z1 to z2 parameterized by(t) = (1� t)z1 + tz2; t 2 [0; 1℄;is ontinuously di�erentiable. Similarly, the irular ar parameterized by(t) = z0 + reit; t 2 [a; b℄ � [0; 2�℄;is ontinuously di�erentiable. The ase a = 0 and b = 2� yields a irlewith enter z0 and radius r.A urve (t); a � t � b, is alled pieewise C1 (or pieewise smoothurve) if there is a subdivision a = t0 < t1 < � � � < tj � � � < tn = b ofthe interval [a; b℄ suh that the restrition of  to eah subinterval [tj ; tj+1℄,0 � j � n � 1 is a smooth urve (see Figures 4.3). A ontour is just aontinuous urve that is pieewise smooth. Given a domain D in C andtwo points z1 and z2 in D (need not be distint), there exists a ontour inD with initial point z1 and terminal point z2. This fat is lear beauseany two points in D an be onneted by a polygonal path in D.Consider (t) = t+ ijtj; t 2 [�1; 1℄: Then (see Figure 4.4)(t) = � t� it if t 2 [�1; 0℄t+ it if t 2 [0; 1℄:It is easy to see that the restritions of  to [�1; 0℄ and to [0; 1℄ are smooth,even though  is not smooth beause 0(t) fails to exist at t = 0. Note that0(t) is disontinuous at 0 but  is pieewise ontinuously di�erentiable,sine 0(t) = 1� i on [�1; 0) and 0(t) = 1+ i on (0; 1℄. Aordingly,  is apieewise smooth urve.
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−1 1 −1 O 1 x(t)

y(t)

z(1) = 1 + iz(−1) = −1 + i

Figure 4.4: The urve z(t) = t+ ijtj; t 2 [�1; 1℄.4.2 Properties of Complex Line IntegralsWe assume the following fats from real analysis: if a real-valued funtionF is ontinuous on [a; b℄, then the Riemann integral R ba F (t) dt exists. Itis a trivial exerise to extend this de�nition for a ontinuous funtion F :[a; b℄! C , where F = U + iV . Indeed,Z ba F (t) dt = Z ba U(t) dt+ i Z ba V (t) dt:A omplex-valued funtion f is said to be ontinuous on a ontinuouslydi�erentiable urve  : [a; b℄ ! C (or more generally on a ontour) if�(t) = f(z) = f((t)) = u(t) + iv(t) is ontinuous for a � t � b.Suppose f is a omplex-valued funtion that is ontinuous on an openset D � C and that  : [a; b℄ ! C is a ontour with ([a; b℄) � D. Wede�ne the omplex line integral or ontour integral of f along the ontour, denoted by R f(z) dz, as follows:Z f(z) dz = Z ba f((t))0(t) dt = n�1Xj=0 Z tj+1tj f((t))0(t) dt;(4.2)where a = t0 < t1 < � � � < tn�1 < tn = b, and [tj ; tj+1℄, j = 0; 1; : : : ; n�1,being the intervals in whih  is di�erentiable, and the integrals in the sumare Riemann integrals. The ontour  is alled the path of integration ofthe ontour integral. Note that the produt given by F (t) = f((t))0(t) ispieewise ontinuous on [a; b℄. So the seond integral in (4.2) is well-de�ned.For example, if (t) = a+reit is a irle, then for an arbitrary ontinuousfuntion f de�ned on  : jz � aj = r,Zjz�aj=r f(z) dz = Z 2�0 f(a+ reit)ireit dt:In the most important speial ase, namely, f(z) = (z � a)�1, we easilyhave Zjz�aj=r f(z) dz = Z 2�0 ireitreit dt = 2�i:



4.2 Properties of Complex Line Integrals 143Note that the expression under the integral sign on the right of (4.2) anbe obtained by the formal substitutionz = (t); dz = 0(t) dt:If f = u+ iv and z = x+ iy, x; y; u; v being real-valued, i.e.f((t)) = f(x(t) + iy(t)) = u(x(t); y(t)) + iv(x(t); y(t));then (4.2) is reallyZ f(z) dz = n�1Xj=0(Z tj+1tj [u(x(t); y(t))x0(t)� v(x(t); y(t))y0(t)℄ dt+ i Z tj+1tj [v(x(t); y(t))x0(t) + u(x(t); y(t))y0(t)℄ dt) :Using a hange of variable in the de�nition of the Riemann integral, onehasZ f(z) dz = Z [u(x; y) dx� v(x; y) dy℄ + i Z [u(x; y) dy + v(x; y) dx℄;sine 0(t) = x0(t) + iy0(t). In the above equality it is taitly assumed thatin the integrands (x(t); y(t)) being on the urve , that either y is a funtionof x or x is a funtion of y. Also note that the limits of integration willdepend on the values of x(a); x(b) or y(a); y(b) as the ase may be. It shouldbe observed that the expressions under the integral signs an be formallyequated asf(z) dz = (u+ iv)(dx+ i dy) = (u dx� v dy) + i(v dx+ u dy):Note that if  in (4.2) is real-valued, then the path of integration is part ofR. On the other hand the path of integration is in the z-plane.4.3. De�nition. A pieewise smooth urve  with parametri inter-val [a; b℄ is said to be a reparameterization of �(t) (A � t � B) i� there isa C1-map � : [A;B℄ ! [a; b℄ suh that �0(t) > 0, �(A) = a, �(B) = b and�(t) = (�(t)). Sometimes  and � are said to be equivalent.The onditions, �0(t) > 0, �(A) = a and �(B) = b are to ensure thediretion of traing  as � does. Suppose that f is ontinuous in an openset D ontaining all the points of (t). Then, we haveZ� f(z) dz = Z� f(�(t))�0(t) dt



144 Complex Integration= Z BA ff(�(t)g0(�(t))�0(t) dt= Z �(B)�(A) f((t))0(t) dt= Z ba f((t))0(t) dt= Z f(z) dz:Therefore, it is immaterial whih parameterization is used. Often the om-putation is simpli�ed if we use some partiular equivalent path in evaluatingan integral. For ertain situations, the hoie is by an important propertywhih will be stated in later theorems (see Theorem 4.16). Suppose wewant to evaluate I = Z f(z) dz; f(z) = zn;(4.4)where (t) = eit, 0 � t � 2�, and n is any integer. It follows thatI = rn+1 Z 2�0 ie(n+1)it dt = 8><>: rn+1 �eit(n+1)n+ 1 �����2�0 if n 6= �12�i if n = �1;that is, Z f(z) dz = � 0 if n 6= �1;2�i if n = �1:(4.5)We also note that (4.5) ontinues to hold if  and f in (4.4) are replaedby any irle entered at z0 and (z � z0)n, respetively. This means thatZjz�z0j=r(z � z0)n dz = � 0 if n 6= �1 and integer2�i if n = �1:We now have the following useful appliation. For n 2 N,Z 2�0 os2n(t) dt = Z 2�0 �eit + e�it2 �2n dt= 122n Z 2�0 2nXk=0�2nk �ei(2n�2k)t dt= 122n 2nXk=0�2nk �Z 2�0 e2i(n�k)t dt= �22n�1�2nn �:4.6. Example. We evaluate Ij = Rj x dz, j = 1 to 7, where



4.2 Properties of Complex Line Integrals 145(i) 1 is the straight line segment from 0 to a+ ib (a; b 2 R)(ii) 2 is the irle jzj = R(iii) 3 is the boundary of the square [0; 1℄� [0; 1℄ with C onsidered as R2(iv) 4 is the ellipse x2=a2 + y2=b2 = 1(v) 5 is the line from 0 to 2i and then from 2i to 4 + 2i(vi) 6 is the line segment from 0 to 1, 1 to 1+ i and then from 1+ i to 0(vii) 7 is given by 7(t) = t+ it2 on [0; 1℄.(i) 1 may be parameterized by 1(t) = (a+ ib)t; 0 � t � 1: Clearly,I1 = Z 10 [Re 1(t)℄ 01(t) dt = Z 10 ta(a+ ib) dt = a(a+ ib)2 :(ii) Parameterizing 2 by 2(t) = Reit, 0 � t � 2�, we haveI2 = Z 2�0 (R os t)(iReit) dt= iR2 Z 2�0 [os2 t+ i sin t os t℄ dt= iR2 �Z 2�0 1 + os 2t2 dt+ i2 Z 2�0 sin 2t dt�= iR2 " 12 �t+ sin 2t2 �����2�0 + i2 ��os 2t2 �����2�0 #= iR2�:(iii) In this ase, we have (see Figure 4.5)I3 =  Z AO + Z BA + Z CB + Z OC !x dz:For the sake of onveniene, we parameterize OA;AB;BC and OC, asfollows: C1(t) = (1� t) � 0 + t � 1 = tC2(t) = (1� t) � 1 + t � (1 + i) = 1 + tiC3(t) = (1� t) � (1 + i) + t � i = 1� t+ iC4(t) = (1� t) � i+ t � 0 = (1� t)i;where t 2 [0; 1℄ and 3 = C1 + C2 + C3 + C4 (see Figure 4.5). Utilizingthese, i.e. without reparameterizing, we haveI3 = 4Xk=1 Z 10 (ReCk(t))C 0k(t) dt
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Figure 4.5: Curve 3 = C1 +C2 + C3 + C4.= Z 10 t dt+ Z 10 1 � i dt+ Z 10 (1� t)(�1) dt+ Z 10 0 � (�i) dt= 12 + i� 12 + 0 = i:(iv) Write 4 as 4(t) = a os t+ ib sin t; 0 � t � 2�: Then,I4 = Z 2�0 (a os t)(�a sin t+ ib os t) dt= �a22 Z 2�0 sin 2t dt+ iab Z 2�0 os2 t dt = iab�:The ases (v), (vi) and (vii) may be evaluated similarly and are left as asimple exerise. �4.7. De�nition. If  : [a; b℄ ! C is a smooth and reti�able urvesuh that (t) = x(t)+ iy(t), then its (Eulidean) length L() is de�ned byL() = Z jd(t)j = Z ba j0(t)j dt = Z ba px0(t)2 + y0(t)2 dt:(4.8)If  is merely pieewise smooth and reti�able, then its length is the sumof the integrals (4.8) over all the smooth paths of .We onsider a few simple examples to demonstrate the use of the formula(4.8). The length of a irle of radius r (use the parametri equation (t) =a+ reit, 0 � t � 2�, so that 0(t) = ireit) is found to beZ 2�0 jireitj dt = 2�ras expeted. The line segment [z1; z2℄ parameterized by (t) = (1� t)z1 +tz2, 0 � t � 1; has its lengthL() = Z 10 j0(t)j dt = Z 10 jz2 � z1j dt = jz1 � z2j:



4.2 Properties of Complex Line Integrals 147Similarly, the perimeter of the retangle may be obtained using this formulawith a onvenient parameterization. Finally, if  is an ellipse given byx2a2 + y2b2 = 1;then its parametri form is (t) = a os t+ ib sin t, t 2 [0; 2�℄, so thatL() = Z 2�0 pa2 os2 t+ b2 sin2 t dt = a Z 2�0 q1 + [(b2=a2)� 1℄ sin2 t dt:What is the value of this integral? Does there exist a simple formula toompute the ar length of an ellipse with semi-axes of length a and b?There is a seond type of line integral that may be introdued. Let : (t), a � t � b, be a smooth urve and s(t) denote the ar-lengthfuntion for . Let f be a ontinuous funtion on D with ([a; b℄) � D.Then, R f(z) jdzj is de�ned to be the approximating sums of the formS(; P ) = nXj=1 f(z�j )js(tj)� s(tj�1)j;where P : a = t0 < t1 < � � � < tn�1 < tn = b ranges over all possiblepartitions of the interval [a; b℄. Here z�j lies on  between (tj�1) = zj�1 and(tj) = zj . The standard proedure then shows that (with s0(t) = j0(t)j)Z f(z) jdzj = Z f ds = Z ba f((t))j0(t)j dt:If f is real-valued, then R f ds is a real number. Clearly, f(z) = 1 givesthat R f ds = L().As we have seen earlier, the omplex integral may be put in the formZ f(z) dz = Z(u dx� v dy) + i Z(v dx+ u dy):Therefore, the usual rules of integration for real integrals must also applyto ontour integrals. The following theorem summarizes some useful prop-erties of omplex line integrals. The onlusion of Theorem 4.9 ontinuesto hold if ; 1; 2 are pieewise smooth (= ontour) although we state andprove the theorem for smooth urves for the sake of simpliity .4.9. Theorem. Let  be a smooth urve de�ned on [a; b℄ and let fand g be ontinuous funtions on an open set D ontaining ([a; b℄) and let� be a omplex onstant. Then,(i) Z f(z) dz = � Z� f(z) dz:



148 Complex Integration(ii) Z [�f(z) + g(z)℄ dz = � Z f(z) dz + Z g(z) dz:(iii) If L = L() is the length of the urve and M = maxt2[a;b℄ jf((t))j; then���R f(z) dz��� �ML: This property is alled the standard estimate forintegrals, or M-L inequality.(iv) Z1+2 f(z) dz = Z1 f(z) dz+Z2 f(z) dz whenever 1 and 2 are twosmooth urves suh that 1(b) = 2(a) and j([a; b℄) � D for j = 1; 2.Proof. Note thatZ� f(z) dz = Z ba f((b+ a� t)) d((b+ a� t))= Z ab f((s)) d((s)); by a hange of variable s = b+ a� t,= � Z ba f((s)) d((s))= � Z f(z) dz:The ase (i) now follows. The ase (ii) follows from the de�nition and thelinearity property of the Riemann integral.To prove (iii), we notie that L = R jdzj = R ba j0(t)j dt and for a real-valued Riemann integrable funtion � on [a; b℄, we know that�����Z ba �(t) dt����� � Z ba j�(t)j dt:(4.10)If R f(z) dz = 0, there is nothing to prove. Therefore, we let R f(z) dz 6= 0and write Z f(z) dz = Z ba f((t))0(t) dt = Rei�; say,where R > 0 and � = Arg �R f(z) dz� : We haveR = Z ba e�i�f((t))0(t) dt = Z ba Re [e�i�f(t))0(t)℄ dt:We apply (4.10), with �(t) = Re [e�i�f((t))0(t)℄, to get�(t) � ��e�i�f((t))0(t)℄��so that R � R ba jf((t))j j0(t)j dt: Sine jf((t))j � M for all t 2 [a; b℄and sine for positive integrands the Riemann integral is larger for a largerintegrand, we have the assertion in (iii).



4.2 Properties of Complex Line Integrals 149(iv) As 1 and 2 are smooth urves with 1(b) = 2(a),  = 1 + 2 isthen de�ned by (t) = � 1(2t� a) if a � t � (b+ a)=22(2t� b) if (b+ a)=2 � t � b:The assertion now follows from the de�nition after noting that for 1 and2 a reparameterization has been made.4.11. Remark. In general, Re hR f(z) dzi 6= R Re [f(z)℄ dz as anbe seen by hoosing (t) = it and f(z) = 1. This is to aution the readerto be areful while taking real and imaginary parts of an integral. �4.12. Example. From Theorem 4.9(iv) we obtain the following:(i) If (t) = (1 + i)t; t 2 [0; 1℄, the line segment from 0 to 1 + i, then forany point � on  we have j�j � p2, j�3 +2j � 23=2+2 =M , say, andj�3 + 2j � 23=2 � 2. As a result of this, we have the estimates����Z(z3 + 2) dz���� �M Z jdzj = (23=2 + 2)p2 = 4 + 2p2and ����Z(z3 + 2)�1 dz���� � p223=2 � 2 = 12�p2 ;sine the line segment [0; 1 + i℄ has length p2.(ii) Consider (t) = eit, 0 � t � �. Then, ���R z�1ez dz��� � ML() = e�beause the length L() is � andM = maxt2[0;�℄ ���e(t)=(t)��� = maxt2[0;�℄ eos t = e:(iii) If (t) = (1� t)(1+ i)+ t(1+3i), 0 � t � 1, the direted line segmentfrom 1+ i to 1+3i, then ���R z�2 dz��� �ML() = 1 beause the lengthL() is j1 + 3i� (1 + i)j = 2 andM = maxt2[0;1℄ ���� 12(t) ���� = maxt2[0;1℄ 11 + (1 + 2t)2 = 12 :(iv) If jf(z)j �M on , then we diretly have ���R f(z) dz��� �ML():(v) The following inequalities may also be heked in a similar fashion:



150 Complex Integration(a) �����Zjzj=1 ez dz����� � 2�e, �����Zjzj=1 e1=z dz����� � 2�e, �����Zjzj=1 1z dz����� � 2�.Later, we shall atually see that the value of �rst integral is 0while the seond and the third eah has the value 2�i.(b) ����Z(z + 1)2 dz���� � 9p5, where  is the line segment parameter-ized by (t) = 2� t(2� i); t 2 [0; 1℄.() ����Z eiz2 dz���� � �(e� 1)4e , where (t) = eit, 0 � t � �=4.(d) ����Z [(Re z)2 + i(Im z)2℄ dz���� � 2, where  is the interval [�i; i℄ onthe imaginary axis. �4.13. De�nition. Let  be a urve with parametri interval [a; b℄ andlet ffng be a sequene of funtions on an open set D ontaining ([a; b℄).If for a funtion f de�ned on D, jfn((t)) � f((t))j ! 0 uniformly on[a; b℄, we say that fn ! f uniformly on . If for a funtion f on D,jSn((t)) � f((t))j ! 0 uniformly on [a; b℄, where Sn = Pnk=1 fk, we saythat Pn�1 fn ! f uniformly on .4.14. Theorem. (Interhange of limit and integration) Let ffngbe a sequene of ontinuous funtions de�ned on an open set ontaining aontour . Suppose that fn ! f uniformly on . Then,limn!1 Z fn(z) dz = Z f(z) dz:Proof. Let � > 0 and let fn onverge uniformly on  with parametriinterval [a; b℄. Then, there is an N suh thatjfn((t))� f((t))j < � for t 2 [a; b℄ and n � N:First we observe that f is ontinuous on  (see Theorem 2.57). UsingTheorem 4.9(iv), we have����Z fn(z) dz � Z f(z) dz���� = �����Z ba [fn((t))� f((t))℄0(t) dt������ Z ba jfn((t))� f((t))j j0(t)j dt< � Z ba j0(t)j dt for n � N:As � > 0 is arbitrary, the proof is omplete.A straightforward proof gives



4.2 Properties of Complex Line Integrals 1514.15. Corollary. (Interhange of summation and integration)Let Pn�1 fn be a series of ontinuous funtions de�ned on an open setontaining a ontour  andPn�1 fn ! f uniformly on a ontour . Then,Xn�1 Z fn(z) dz = Z f(z) dz:There are two versions of the fundamental theorem of alulus for real-valued funtions:(i) ddx �Z xa f(t) dt� = f(x) for x 2 [a; b℄ where f is ontinuous on [a; b℄and one-sided derivatives are meant at a or b(ii) Z ba f 0(t) dt = f(b)� f(a) whenever f 0(t) is ontinuous on [a; b℄.The following weaker form of Cauhy's Theorem (see Theorem 4.33), whihis atually the analogue of the seond statement of the fundamental theoremof alulus, is helpful, and integration of familiar funtions is failitated bythis result.4.16. Theorem. (Weak form of Cauhy's theorem) If f = u+ iv isanalyti in an open set D ontaining a ontour  with parametri interval[a; b℄, i.e. ([a; b℄) � D, thenZ f 0(z) dz = f((b))� f((a)):That is, the value of the integral is independent of the path. In partiular,we have R f 0(z) dz = 0 if  is losed.Proof. Let f be analyti on D and  be, initially, a smooth urve with([a; b℄) � D. Then, we must have (see Corollary 2.21 and (3.3))f((t)) = f((t0)) + ((t)� (t0))f 0((t0)) + ((t)� (t0))�((t));for t near t0 2 [a; b℄, where � Æ  is a ontinuous funtion of t on [a; b℄ suhthat limt!t0 �((t)) = 0. Therefore, as t0 is arbitrary, the Chain rule fordi�erentiation gives ddt [f((t))℄ = f 0((t))0(t)on [a; b℄ and f((t)) is ontinuously di�erentiable for t 2 [a; b℄. The resultnow follows from the \seond statement of the fundamental theorem ofalulus for real variable". Indeed, we letf((t)) = f(x(t)+iy(t)) = u(x(t); y(t))+iv(x(t); y(t)) = U(t)+iV (t); say;



152 Complex Integrationso that ddt [f((t))℄ = f 0((t))0(t) = ddt (U(t)) + i ddt (V (t)):Sine  is smooth, we integrate both sides of the last expression to getZ f 0(z) dz = Z ba ddt [f((t))℄ d t= U(t) + iV (t)jba= f((b))� f((a)):Suppose that  is pieewise smooth. Then, we an by de�nition hoose apartition P : a = t0 < t1 < � � � < tn = b suh that the restrition k of to (tk; tk+1); k = 0; 1; : : : ; n� 1, is smooth. In view of Theorem 4.9(iii)and what has been just proved,Z f 0(z) dz = n�1Xk=0 Zk f 0(z) dz = n�1Xk=0 f(k(tk+1))� f(k(tk))= f((b))� f((a));again as asserted.Theorem 4.16 is also known as the fundamental theorem of line integrals(or ontour integration) in the omplex plane. Moreover, Theorem 4.16shows that, if F (z) = f 0(z) then one hasZ z2z1 F (z) dz = f(z2)� f(z1):In partiular, for losed urves  independent of paths, we onlude thatR F (z) dz = 0.One of the objetives in Setion 4.3 is to extend this for those funtionsF (z) for whih no f suh that F (z) = f 0(z) is at hand. The examples ofsuh funtions are os(z2), sin(z2), exp(z2), et. On the other hand, it willbe shown thatZ os(z2) dz = Z sin(z2) dz = Z exp(z2) dz = 0for eah losed ontour .4.17. Example. Consider Ij = Rj z dz; j = 1; 2; 3; where(i) 1 is the direted line segment from 0 to 1 + i;(ii) 2 is the ar of the irle 2(t) = 1 + eit joining 0 and 1 + i;



4.2 Properties of Complex Line Integrals 153(iii) 3 is the direted line segment from 0 to 1 and then from 1 to 1 + i.In this example we observe that f(z) = z is nowhere analyti and so R z dzneed not be independent of the hoie of the urve  onneting the points0 and 1 + i. In fat, it an be heked easily thatI1 = 1; I2 = 1 + i(�=2� 1) and I3 = 1 + i:Thus I1 6= I2, I2 6= I3 and I1 6= I3, even though 1, 2 and 3 have thesame initial and the same terminal points. �Let z1 = �1, z2 = 1 and z3 = i. Consider 1 = [z1; z2℄ [ [z2; z3℄, and2 = [z1; z3℄. Then both 1 and 2 are urves of lass C1 whose initial andthe terminal points are the same. But it is easy to see thatZ1 z dz = i and Z2 z dz = �i:Reall that f(z) = z is nowhere analyti and hene, has no primitive in adomain ontaining the points �1; 1 and i. The above examples show thatthe integral of a omplex funtion depends on the path of integration.However, there are a few important Corollaries to Theorem 4.16. Keep-ing in mind the de�nition of primitive, we have4.18. Corollary. If F is a primitive of f on D and  : [a; b℄! C isa smooth urve in D, then R f((t))0(t) dt = F ((b))� F ((a)):For instane, if n � 0 is an integer thenZ z2z1 zn dz = zn+12 � zn+11n+ 1sine `zn+1=(n+ 1) + onstant' is a primitive of zn on C . If n < �1 is aninteger, the above equality holds provided the path of integration omits theorigin. In partiular, R zn dz = 0 if  is any smooth losed path omittingthe origin and n 6= �1.4.19. Example. Let  : [0; 1℄! C be de�ned by(t) = 1� t� sin�t+ i(t+ os�t)whih is an ar onneting 1 + i to 0 as in Figure 4.6. To evaluateI = Z z2 dz = Z 10 2(t)0(t) dtwe �rst note that, sine z2 is analyti in C ,  lies in the domain of de�nitionof z2. Sine the value of the integral is independent of the hoie of the
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Figure 4.6: Curve (t) = 1� t� sin�t+ i(t+ os�t).urve onneting 1 + i to 0, we haveI = Z 10 21(t)01(t) dt;where 1(t) = (1� t)(1 + i) + t � 0; t 2 [0; 1℄: Thus, we easily �nd thatI = Z 10 (1 + i)2(1� t)2[�(1 + i)℄ dt = � (1 + i)33 :Indeed, by Corollary 4.18, we diretly obtain that I = F (1(1))�F (1(0));where F (z) = z3=3 +K, and so I = F (0)� F (1 + i) = �(1 + i)3=3: �4.20. Corollary. Let f(z) =Pn�0 anzn with its radius of onver-gene R > 0. Then, for any losed ontour  in�R, we have R f 0(z) dz = 0:Corollary 4.20 follows from the fat that f possesses a primitive F in�R, namely, F (z) =Pn�0(n+ 1)�1anzn+1.4.21. Corollary. Theorem 3.31(i) follows from Corollary 4.18.Proof. By the assumption of Theorem 3.31(i), we note that f is aprimitive of the zero funtion g(z) = 0 on D. Therefore, for any disk�(z0; r) entirely within D and eah � 2 �(z0; r),0 = Z z0� 0 � dz = f(�)� f(z0)so that f(z) = f(z0) for z 2 �(z0; r).4.22. Example. Let us evaluate R(z2+z) dz where  = 1+2+3as in Figure 4.7. First we note that f(z) = z2 + z is analyti in C and soit is analyti in any domain ontaining the points �1 and 1. Therefore,Theorem 4.16 allows us to hoose any path onneting �1 and 1. The mostonvenient path in this ase is the line segment  onneting �1 and 1:(t) = (1� t)(�1) + t(1) = 2t� 1; t 2 [0; 1℄:
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Figure 4.7: Curves onneting �1 and 1.
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Figure 4.8: Region for the analytiity of Log (1 + z).Therefore, as f((t))0(t) = [(2t� 1)2 � (2t� 1)℄(2) = 8t2 � 4t, we haveZ f(z) dz = Z 10 f((t))0(t) dt = 8 Z 10 t2 dt� 4 Z 10 t dt = 83 � 42 = 23 :Moreover, sine f(z) = F 0(z) with F (z) = z33 + z22 +K; we an diretly useCorollary 4.18 to obtain R f(z) dz = F ((1))� F ((0)) = 2=3: �4.23. Example. We next evaluate I = R dz1+z , where  is any on-tour in D = fz : Im z > 0g, whih joins �1 + i to 1 + 2i (see Figure4.8). Suppose that we onsider the prinipal logarithm. We observe that(1 + z)�1 is the derivative of F (z) = Log (1 + z) and, sine F is analytiin C nf(�1;�1℄g, F is analyti in D. Then the value of the integral isindependent of the path joining �1 + i and 1 + 2i and hene,Z dz1 + z = Z F 0(z) dz= F (1 + 2i)� F (�1 + i)= Log [2(1 + i)℄� Log i= [lnp8 + i�4 ℄� i�2 = lnp8� �i=4: �



156 Complex Integration4.24. Example. Suppose we wish to evaluate the integral R dzz ,where  is an ar joining 1� i to 1 + i. Then, in this ase, it is neessaryto onsider a domain D ontaining the ar . Note that the integrand1=z is analyti in C nf0g. As we have observed before if � 2 R is �xed,D� = C nfRei� : R > 0g and arg� z is the hoie of arg z in (� � 2�; �),then f�(z) = ln jzj+ i arg� zis the anti-derivative of 1=z in D�. Suppose we hoose � = �. Then,j arg� zj < �; D� = D� = C nf�R : R > 0gand therefore, f�(z) beomes the prinipal logarithm Log z. So if  is anyurve in D� whih joins 1� i to 1 + i, then by Corollary 4.18I = f�(z)j1+i1�i = Log zj1+i1�iwhih givesI = Log (1 + i)� Log (1� i) = i[Arg (1 + i)�Arg (1� i)℄ = i��4 + �4�so that I = �i=2:Suppose we hoose � = 2�. Then,0 < arg� z < 2�; D2� = C nfR : R > 0g:Therefore if  is any urve in D2� whih joins 1� i to 1 + i, thenI = f2�(z)j1+i1�i = i[arg2�(1 + i)� arg2�(1� i)℄ = i h�4 � �2� � �4�iso that I = �3�i=2:If 1 and 2 are given by1(t) = eit; t 2 [��=4; �=4℄ and 2(t) = eit; t 2 [�=4; 2� � �=4℄;then 1 2 D� and 2 2 D2�. Then  = 1 + 2 is a losed urve and, inthis ase, we haveZjzj=1 dzz = Z1 dzz � Z�2 dzz = �i2 ���3�i2 � = 2�i:With this idea, it is also lear that Rjzj=r<1 Log (1 + z) dz = 0; sine thefuntion Log (1 + z) is analyti in C nf(�1;�1℄g. �



4.3 Cauhy-Goursat Theorem 1574.3 Cauhy-Goursat TheoremThe simplest version of Cauhy's theorem utilizes a theorem from alulusknown as `Green's Theorem' whih states that given two real-valued fun-tions M = M(x; y) and N = N(x; y), whih are ontinuous together withtheir partial derivatives inside and on a simple losed ontour ZM dx+N dy = Z Z
 ��N�x � �M�y � dx dy;(4.25)where 
 is the interior of .4.26. Theorem. If f is analyti with f 0 ontinuous inside and on asimple losed ontour , then R f(z) dz = 0:Proof. Let f(z) = u(x; y) + iv(x; y) and 
 = Int , the interior of .Then, aording to the disussion in Setion 4.2, the integral of f over an be written asZ f(z) dz = Z(u dx� v dy) + i Z(u dy + v dx):(4.27)Sine f is analyti in 
 (and hene f is ontinuous in 
), u and v are alsoontinuous therein and f 0(z) = ux(z)+ ivx(z) = vy(z)� iuy(z). Further, asf 0 is ontinuous in 
, the partial derivatives of u and v are also ontinuousin 
. By applying Green's Theorem (see (4.25)) to eah of the integrals onthe right of (4.27), we obtainZ f(z) dz = Z Z
(�vx � uy) dx dy + i Z Z
(ux � vy) dx dy:But, in view of the C-R equations, both terms of these double integrals arezero in 
.The ontinuity requirement on f 0 may be dropped from Theorem 4.26.The result without this ondition is alled the Cauhy-Goursat Theorem.More expliitly, the Cauhy-Goursat theorem asserts that the integral of afuntion, that is analyti in a simply onneted domain D, along any losedontour  � D is always zero.In the following theorem we show that Cauhy's theorem is true forarbitrary analyti funtions inD if we restrit the urve to be the triangularurve ontained in D. By a (losed) triangle in C we mean T , the set ofpoints in C of the form �1z1 + �2z2 + �3z3, where 0 � �j � 1 (j = 1; 2; 3),with �1 + �2 + �3 = 1. Denote by �T the boundary of T , omposed of thethree line segments [z1; z2℄, [z2; z3℄, [z3; z1℄, desribed one in the positivediretion. Note that T is geometrially the losed triangle and is thereforeompat.
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z1

z2

z3

Figure 4.9: Triangular urve.4.28. Theorem. (Cauhy-Goursat Theorem) Let f be analytiin an open set D � C and let z1; z2; z3 be in D. Assume that the losedtriangle T with verties z1; z2; z3 is ontained in D. Then, R�T f(z) dz = 0:Proof. Let m1;m2 and m3 be the mid points of the segments [z1; z2℄,[z2; z3℄ and [z3; z1℄, respetively. Then we get four smaller triangles Tk,1 � k � 4, as shown in Figure 4.9. We note thatjm1 �m2j = ����z1 + z22 � z2 + z32 ���� = jz1 � z3j2 :Similarly, jm2 �m3j = jz2 � z1j2 ; jm3 �m1j = jz3 � z2j2and hene, L(�Tk) = 12L(�T ) for eah k = 1; 2; 3; 4; where �Tk denotes theboundary of Tk and L(), as usual, denotes the length of . De�neI = Z�T f(z) dz and Ik = Z�Tk f(z) dz for k = 1; 2; 3; 4:Then, from the properties of omplex integrals, we see thatI = 4Xk=1 Ik ; i.e. Z�T f(z) dz = 4Xk=1 Z�Tk f(z) dz;(4.29)sine we are integrating the R.H.S of (4.29) twie in the opposite diretions(as we see learly in Figure 4.9) over eah of the boundary �Tk whih is notpart of the sides of the triangle T and onsequently orresponding boundaryintegrals anel eah other (by the reversal rule, see Theorem 4.9(i)). Thetriangle inequality gives us thatjI j � 4Xk=1 jIkj:



4.3 Cauhy-Goursat Theorem 159Consequently, there exists at least one k in f1; 2; 3; 4g suh that the in-equality jIkj � jI j=4is satis�ed, for otherwise jI j � P4k=1 jIk j < 4(I=4) = I whih is a ontra-dition. If more than one k satis�es the inequality, we retain the least. Werelabel suh a triangle as T 1. The diameter of T 1, viz. the length of itslargest side, is one-half of the diameter of T , that isdiam (T 1) = 12diam (T );where the diameter of a bounded set S is de�ned to be supfja�bj : a; b 2 Sg.Thus, with I(1) = R�T 1 f(z) dz, we obtainjI j � 4jI(1)j; L(�T 1) = 12L(�T ); and diam (T 1) = 12diam (T ):Apply the argument with T 1 in plae of T to obtain another triangle T 2.Repeating the subdivision proess to suessively obtained triangles, wehave following relations:(i) for eah n, Tn � Tn�1 (T 0 = T ),(ii) if I(j) = R�T j f(z) dz, then jI(j)j � 4jI(j+1)j (I(0) = I),(iii) L(�T j+1) = 12L(�T j),(iv) diam (T j+1) = 12diam (T j), where j = 1; 2; : : : :Note also that diam (�T j) � L(�T j): In partiular, at the n-th stage(i)0 Tn � Tn�1 � � � � � T 2 � T 1 � T 0 = T ,(ii)0 jI j � 4njI(n)j,(iii)0 L(�(Tn) = � 12�n L(�T ),(iv)0 diam (Tn) = � 12�n diam (T ).Sine limn!1 diam (Tn) = 0 and, by (i)0, T 1 � T 2 � � � � � Tn � � � �is a nested sequene of non-empty ompat subsets of C , the intersetion\1n=0Tn is non-empty and so it follows that this intersetion ontains atleast one point, say z0, ommon to all triangles Tn (a use has been madeof Cantor's theorem). In partiular, z0 2 T , so f is analyti at z0. Sine fis analyti at z0, for a given � > 0, there exists Æ > 0 suh thatf(z) = f(z0) + (z � z0)f 0(z0) + (z � z0)�(z);with � ontinuous and j�(z)j < � for jz � z0j < Æ: Therefore, we haveZ�Tn f(z) dz = [f(z0)� z0f 0(z0)℄ Z�Tn dz + f 0(z0) Z�Tn z dz+ Z�Tn(z � z0)�(z) dz:



160 Complex IntegrationWe know that if  is any losed ontour, then R dz = R(z � z0) dz = 0:As the �rst two integrals vanish,Z�Tn f(z) dz = Z�Tn(z � z0)�(z) dz:By (i)0, we also note that, for suÆiently large n, the triangle Tn is on-tained in fz : jz � z0j < Æg. Using the standard estimate (see Theorem4.9(iv)) together with the above observations, we getjI(n)j = ����Z�Tn f(z) dz����= ����Z�Tn(z � z0)�(z) dz����� � maxz2�Tn jz � z0j � L(�Tn)� � � diam (Tn)L(�Tn)� � ��12�n diam (T )�12�n L(�T ); by (iii)0 and (iv)0;= �4�ndiam (T )L(�T ):Taking (ii)0 into aount we have the inequalities4�njI j � jI(n)j � �4�ndiam (T )L(�T ):Consequently, we have jI j � �diam (T )L(�T ). Sine � > 0 in this inequalityis an arbitrary positive number, we must have I = 0 and so the proof isomplete.If  is a quadrilateral, it an be divided into two triangles T and T 0 (seeFigure 4.10) so thatZ f(z) dz = Z�T f(z) dz + Z�T 0 f(z) dz = 0;sine the integrals along AC and CA anel eah other. In general, if  isany simple polygon then we an deompose suh a polygon into trianglesso that Z f(z) dz = 0:An important point in the above proof is that it is not neessary to as-sume the ontinuity of the derivative f 0(z) of f(z). Next we present a simpleextension of Theorem 4.28 with a relaxed ondition on the di�erentiabilityof f .4.30. Theorem. Let D be an open set and let f be analyti on Dexept possibly at a 2 D. Assume that f is ontinuous on D. Then, wehave R�T f(z) dz = 0 for every losed triangle T in D.
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A(z1) B(z2)

C(z3)

D(z4)
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Figure 4.10: Triangles T = [z1; z2; z3℄ and T 0 = [z1; z3; z4℄.Proof. For a losed triangle T in D, we may simply assume that alies in T , for the result is a onsequene of Theorem 4.28 otherwise. Givena positive integer, we an subdivide T into n2 ongruent triangles Tjk byadjoining the midpoints of opposite sides. Then, we haveZ�T f(z) dz = nXj=1 nXk=1 Z�Tjk f(z) dzsine the dividing segments anel in pairs. If a is not a point of Tjk, then,by Theorem 4.28, R�Tjk f(z) dz = 0. If a belongs to the triangle Tjk, thenthe M-L inequality shows that�����Z�Tjk f(z) dz����� � Z�Tjk jf(z)j jdzj �M L(�Tjk) = ML(�T )n ;where M = maxz2�T jf(z)j. Note that jf(z)j is a ontinuous funtion onthe ompat set C. Note that the point a at the worst an belong to oneof the four triangles �Tjk. It follows that����Z�T f(z) dz���� = ������ Xa2�Tjk Z�Tjk f(z) dz������ � Xa2�Tjk �����Z�Tjk f(z) dz����� � 4ML(C)n :Sine n was arbitrary, ��R�T f(z) dz�� = 0 and the proof is omplete.4.31. Theorem. Let D be a domain that is starlike with respet toa and f be analyti on D. Then, there exists an analyti funtion F on Dsuh that F 0(z) = f(z) in D. In partiular, RC f(z) dz = 0 for every losedontour C in D.Proof. Sine D is starlike (see Figure 4.11) with respet to a, [a; z℄ � Dfor every z 2 D. De�ne F on D byF (z) = Z[a;z℄ f(�) d�:
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Figure 4.11: Starlike domain with respet to a.Note that F (a) = 0. Fix z 2 D nfag. Then there exists h 2 C with jhjsuÆiently small suh that �(z; jhj) � D and [z; z + h℄ � �(z; jhj) � D.As D is starlike, the triangle T = [z; a; z + h℄ lies in D. By Theorem 4.28,0 = Z�T f(�) d� =  Z az + Z z+ha + Z zz+h! f(�) d�;or Z z+ha f(�) d� � Z za f(�) d� = Z z+hz f(�) d�:Therefore, we haveF (z + h)� F (z)h � f(z) = 1h Z z+hz f(�) d� � f(z)h Z z+hz d�and so����F (z + h)� F (z)h � f(z)���� = ����� 1h Z z+hz [f(�)� f(z)℄ d������� 1jhj " sup�2[z;z+h℄ jf(�) � f(z)j# jhj;using the standard integral estimate (see Theorem 4.9(iv)). Continuity off immediately yields that����F (z + h)� F (z)h � f(z)����! 0 as h! 0;and so F 0(z) exists and is equal to f(z). Sine z is arbitrary, F 0(z) = f(z)in D. That is, F is a primitive of f on D, as required. The seond partfollows from Theorem 4.16.Sine every disk is a starlike domain, Theorem 4.31 yields the "loalform" of Cauhy's theorem.
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Figure 4.12: Closed polygon with verties on C.4.32. Corollary. (Cauhy's Theorem for a Disk) Let f be analytiin a disk �(z0;R) (or more generally, f is ontinuous in �(z0;R) andanalyti in �(z0;R) nfag for some a 2 �(z0;R)). Then, R f(z) dz = 0 forevery losed ontour  in �(z0;R).The funtion f(z) = 1=z de�ned in the annulus A = fz : 1 < jzj < 2gshows that the onlusion of Theorem 4.31 fails if D is not a starlike domainwith respet to a point in D. Further, the ontour in Theorem 4.31 anhave self-intersetion.Now we are in position to prove the long waited \Cauhy integral the-orem".4.33. Theorem. (Cauhy's Integral Theorem) If f is analyti in asimply onneted domain D, then there exists a funtion F in D suh thatF 0(z) = f(z). In partiular, R f(z) dz = 0 for eah simple losed ontour in D.Proof. Let C be a simple losed ontour in D, and D0 = C [ intC.So, D0 � D is ompat and hene, for every z 2 D0 there exists Æz > 0suh that �(z; Æz) � D. Now D1 = [z2D0�(z; Æ) is ompat and so f isuniformly ontinuous on D1. Let � > 0 be given. Then there exists a Æ > 0suh that jf(z)� f(�)j < �2L(C)for all z; � 2 D1 and jz � �j < Æ. Here L(C) denotes the length of C.Now without loss of generality we may assume that Æz � Æ=2 for everyz 2 D0. Sine C is ompat, there exist points z0; z1; : : : ; zn = z0 inC suh that C � [n�1k=0�(zk; Æzk): Let � be a losed polygon in D1 withverties z0; z1; : : : ; zn, see Figure 4.12. Therefore,jf(z)� f(zk)j < �2L(C) for k = 1; 2; : : : ; n,(4.34)
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Figure 4.13: Region bounded by two urves C1; C2.whenever z 2 [zk�1; zk℄, k = 0; 1; 2; : : : ; n� 1. Further,0 = Z� f(z) dz = nXk=1 Z zkzk�1 f(z) dz= nXk=1 Z zkzk�1 [f(z)� f(zk) + f(zk)℄ dz= � nXk=1 Z zkzk�1 [f(zk)� f(z)℄ dz + nXk=1 f(zk) Z zkzk�1 dz= � nXk=1 Z zkzk�1 [f(zk)� f(z)℄ dz + nXk=1 f(zk)(zk � zk�1);that is, nXk=1 f(zk)(zk � zk�1) = nXk=1 Z zkzk�1 [f(zk)� f(z)℄ dz:(4.35)By (4.34) and (4.35), we have����� nXk=1 f(zk)(zk � zk�1)����� � �2L(C) nXk=1 jzk � zk�1j < �2 :Sine limn!1 nXk=1 f(zk)(zk � zk�1) = ZC f(z) dzand sine � is arbitrary, the theorem is proved.Suppose f is analyti in a ring shaped spae bounded by two simplelosed ontours C1 and C2 as shown in Figure 4.13.Let  be any ontour or a line from C1 to C2, also shown in Figure 4.13.Then the region bounded by C = C1 +  � C2 �  is simply onneted.
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C1

C2

C3 C4

Cn

CFigure 4.14: Illustration for Cauhy's deformation of ontourFrom Theorem 4.33,0 = ZC f(z) dz = ZC1 f(z) dz + Z f(z) dz � ZC2 f(z) dz � Z f(z) dz= ZC1 f(z) dz � ZC2 f(z) dz; by Theorem 4.9(i);whih gives RC1 f(z) dz = RC2 f(z) dz: This result is referred to as theCauhy deformation theorem. In Figure 4.14, we illustrate Cauhy's theo-rem for domain with (n�1) holes. In a manner similar to that used above,we get ZC1+C2+ ���+n f(z) dz = 0:(4.36)Equation (4.36) an be written in the formIC1 f(z) dz = � �IC2 f(z) dz + � � � + ICn f(z) dz�= I�C2 f(z) dz + � � � + I�Cn f(z) dz:In other words, by integrating along eah inner ontour in the ounterlok-wise diretion, so that the (n�1) inner ontours have negative orientation,it follows that the value of the integral along the outer ontour is equal tothe sum of the values along the inner ontours.Annulus regions are lassi�ed as follows: Let a 2 C and 0 � r < R � 1.Then the open subsetD = D(a; r; R) = fz 2 C : r < jz � aj < Rgof C is alled the annulus or irular ring around a with inner radius rand outer radius R. If r = 0 and R < 1, then D is a disk with enterremoved, i.e. the puntured disk: D = D(a; 0; R) = �(a;R) nfag. If r = 0and R = 1, then D(a; 0;1) = C nfag. Finally, D de�ned above is theexterior irle exluding the point 1 if R = 1 and r > 0. In partiular,the theorem of Cauhy's deformation of ontour gives the following:



166 Complex Integration4.37. Theorem. Let 0 � R1 < r < R2 � 1, and g(z) be analytiin the annulus domain D = fz 2 C : R1 < jz � aj < R2g: If Cr = fz :jz � aj = rg, then RCr g(z) dz is independent of r.4.4 Consequene of Simply ConnetivityHow do we produe a non-vanishing analyti funtion f in a simply on-neted domain 
? Take an arbitrary analyti funtion h in 
. Then, thedesired funtion f is given by f(z) = exp(h(z)): In the following theoremwe atually show that every non-vanishing analyti funtion f arises in thisway.4.38. Theorem. Let 
 be a simply onneted domain and f 2 H(
)with f(z) 6= 0 on 
. Then, there exists a h 2 H(
) suh that eh(z) = f(z):Proof. As f(z) 6= 0 on 
, f 0(z)=f(z) is analyti on 
. By Theorem4.33 (see also Corollary 4.61) there exists an h 2 H(
) suh thath0(z) = f 0(z)f(z) for z 2 
:We laim that f(z)e�h(z) = 1 for z 2 
. To do this, we de�ne g(z) =f(z)e�h(z). Clearly, g 2 H(
) andg0(z) = (f 0(z)� f(z)h0(z))e�h(z) = 0 for z 2 
:Fix  2 
. Then, g(z)� g() = Z z g0(�) d� = 0so that f(z)e�h(z) = g() or f(z) = eh(z)g(): As g() 6= 0, we an setg() = ek for some k. Thenf(z) = exp(h(z) + k) = exp(H(z));where H(z) = h(z) + k.Another onsequene of this result is the following square root property.4.39. Theorem. Assume the hypotheses of Theorem 4:38. Then, fhas an analyti square root- that is there exists a g 2 H(
) with g2(z) =f(z) for z 2 
:Proof. The desired onlusion follows if we hoose h as in the previoustheorem and set g(z) = exp(h(z)=2).We have a diret proof of Theorem 4.38 at least when 
 = C .



4.5 Winding Number or Index of a Curve 1674.40. Theorem. Let f 2 H(C ) with f(z) 6= 0 on C . Then, thereexists a h 2 H(C ) suh that f(z) = eh(z).Proof. By hypothesis, f 0(z)=f(z) belongs to H(C ) and therefore, itadmits a Taylor series (about the origin) onverging in the whole of C :f 0(z)f(z) = 1Xk=0 akzk for z 2 C :De�ne 1Xk=0 akk + 1zk+1 = g(z); i.e. f 0(z)f(z) = g0(z):(4.41)Sinelim supn!1 ���� ann+ 1 ����1=n = lim supn!1 (n+ 1)�1=njanj1=n = lim supn!1 janj1=n = 0;the radius of onvergene of the series (4.41) that represents the funtion gis in�nity and therefore, g 2 H(C ). Set H(z) = eg(z): Then,H 0(z)H(z) = g0(z) = f 0(z)f(z) ; i.e. f(z)H 0(z)� f 0(z)H(z) = 0 for z 2 C ;whih gives ddz �H(z)f(z) � = 0 for z 2 C ;so that H(z) = kf(z) for some onstant k. Note that H(0)=f(0) = k, k 6= 0and so there exists a 2 C suh that ea = k. Thus, H(z) = eaf(z) so thateg(z)�a = f(z): Hene, h(z) = g(z)� a is the desired funtion.4.5 Winding Number or Index of a CurveSuppose that  is a losed ontour in C . Let a be a given point in C nfg.Then, there is a useful formula that measures how often  winds around a.For example if  : (t) = fz : z � a = reit; 0 � t � 2k�g, then  enirlesthe point a k times (ounterlokwise). Further,Z dzz � a = Z 2k�0 ireitreit dt = 2k�i; i.e. 12�i Z dzz � a = k:From this we also observe that if  enirles the point a k-times in thelokwise diretion, then 12�i Z dzz � a = �k:
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a

b
a

a
b

c

b

n(γ ; a) = 1
n(γ ; b) = 0

n(γ ; a) = −1
n(γ ; b) = 0

n(γ ; a) = 1
n(γ ; b) = 0
n(γ ; c) = 2Figure 4.15: Desription for winding number.In either ase, 12�i R dzz�a is an integer. Here is the analyti de�nition of thewinding number of a, whih aptures the intuitive notion of \the numberof times  wraps around a in the ounterlokwise diretion" (see Figure4.15):4.42. De�nition. Let  be a losed ontour in C that avoids a pointa 2 C . The index (or winding number) of  about a, denoted by n(; a) orInd (; a), is given by the integraln(; a) = 12�i Z dzz � a:Atually, from our later disussion, Cauhy's theorem will imply thatn(; a) = n(0; a) for all losed urves 0 that are homotopi to  as losedurves in C nfag.In the following we will ollet some properties of the index n(; a).4.43. Theorem. For every losed ontour  in C and a 2 C n,n(; a) is an integer.Proof. If the parametri interval of  is [0; 1℄, then (0) = (1). Con-sider the funtions g : [0; 1℄! C and h : [0; 1℄! C , de�ned byg(t) = Z t0 0(s) ds(s)� a and h(t) = ((t)� a)e�g(t);(4.44)respetively. Then, g(0) = 0 and g is ontinuous on [0; 1℄. Likewise h isontinuous on [0; 1℄. Moreover, for t 2 [0; 1℄, g is pieewise smooth and hasthe derivative g0(t) = 0(t)(t)� aat every point t where 0(t) is ontinuous. Consequently, h has the deriva-tive h0(t) = [0(t)� g0(t)((t) � a)℄e�g(t) = 0



4.5 Winding Number or Index of a Curve 169at every point t where 0(t) is ontinuous. Beause  is pieewise smooth,h0(t) = 0 fails to hold only at a �nite number points in the interval [0; 1℄.Thus, by the ontinuity of h, it follows that h must redue to a onstant kon [0; 1℄. In partiular,h(0) = h(1); or (0)� a = e�g(1)((1)� a):Sine (1) = (0), the last equation means that e�g(1) = 1. We onludethat g(1) = 2�ik for some integer k. Hene, by (4.44), we have n(; a) =k 2 Z.To avoid the little tehniality, one ould simply supply the proof ofTheorem 4.43 just for smooth urves as it is easy. For onveniene, weshall replae a in Theorem 4.43 by � and obtain4.45. Theorem. If  is a losed ontour in C , then the mapping� 7�! n(; �) is a ontinuous funtion of � at any point � 62 .Proof. Let D be an open set ontaining no point of , a 2 D, andÆ = dist (a; ). Then Æ > 0 and for z 2 , jz � aj � Æ. Now, for all h withjhj < Æ=2, we have jz � a� hj � jz � aj � jhj � Æ � Æ=2and so, using the standard estimate for integrals (see Theorem 4.9(iv)), wehave jn(; a+ h)� n(; a)j = ���� 12� Z � 1z � a� h � 1z � a� dz����� jhj2� Z ���� 1(z � a� h)(z � a) ���� jdzj� jhj2�(Æ=2)ÆL()whih tends to zero as h approahes 0, where L() denotes the length of .Hene, as a is arbitrary, n(; �) is a ontinuous funtion of � in C nfg.Integer-valuedness and the ontinuity of n(; �) yield4.46. Corollary. The funtion n(; �); � 2 C nfg, is onstant inthe omponents of C nfg.4.47. Theorem. We have n(; �) = 0 in the unbounded omponentof the losed ontour .



170 Complex IntegrationProof. Suppose that  � �R. Then, for any � in the unboundedomponent of C n�R, we havejn(; �)j = ���� 12� Z dzz � � ���� < 12� L()j�j �R;sine jz � �j � j�j � jzj > j�j � R. So jn(; �)j < 1 for j�j suÆiently large(for instane for j�j > L()2� + R). Sine jn(; �)j is a non-negative integerand is onstant for every �, it follows that n(; �) = 0 for every � in theunbounded omponent of .Returning to the initial example where we had 12�i R dzz�a = k 2 Zwhenever (t) = a+re2�ikt, we an use this result to onlude that n(; a) =k for jz � aj < r and n(; a) = 0 for jz � aj > r.The onept of the winding number is useful to haraterize what ismeant by the inside (interior) and the outside (exterior) of a losed urve, respetively, in the following way:Int () = fz 62  : n(; z) 6= 0g and Ext () = fz 62  : n(; z) = 0g:Moreover, a losed urve  : [a; b℄ ! C is said to be positively oriented ifn(; z) > 0 for every z inside  and is negatively oriented if n(; z) < 0 forevery z outside . As we have seen, for the irle ��(z0; r) about z0, thepositive orientation is ounterlokwise. More preisely, we have followingresults whih we state without proof.4.48. Theorem. If  onsists of �nitely many losed ontours 1; 2; : : : ; kin C , then for every a 62 k (i.e. not on any one of the j),(i) n(; a) = n(1; a) + n(2; a) + � � � + n(k; a)(ii) n(�1; a) = �n(1; a):4.6 Homotopy Version of Cauhy's TheoremIn this setion we disuss more general onditions under whih we may varythe urve  ontinuously and so that R f(z) dz unhanged when f 2 H(D)and  is ontained in D. For this, we introdue the important notion ofhomotopy of ontinuous maps. We onsider two urves whih are parame-terized by the same interval [0; 1℄ and formulate the following de�nition.Let 0; 1 be two urves in a domain D � C with parametri interval[0; 1℄ having ommon initial and terminal points:a = 0(0) = 1(0); b = 0(1) = 1(1):The set of all urves in D whih onnet a and b is denoted by �(D; a; b).If a = b, then we say that the urve is losed and a is alled the base point.
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γ0

γ1

b = γ0(1) = γ1(1)a = γ0(0) = γ1(0)Figure 4.16: Desription for homotopi urves.�(D; a; a) is then the family of all losed urves (loops in D with base pointa). 4.49. De�nition. Let 0 and 1 2 �(D; a; b). We say that 0 and1 are homotopi (or that 0 is homotopi to 1) with �xed end points ifthere exists a ontinuous map F : [0; 1℄� [0; 1℄! C suh that(i) F (t; u) 2 D for all 0 � t; u � 1(ii) F (t; 0) = 0(t) and F (t; 1) = 1(t) for all 0 � t � 1(iii) F (0; u) = a and F (1; u) = b; for all 0 � u � 1.We write 0 ' 1 (or F : 0 ' 1) to indiate that 0 is homotopi to 1.To have a better understanding of the de�nition, we writeu(t) = F (t; u)and say that F is a homotopy between 0 and 1. Note that, for eahu 2 [0; 1℄, u : [0; 1℄! D is a ontinuous map with u(0) = a and u(1) = b.At the start, u = 0 and u = 0; as u varies, the map u varies ontinuouslyso that at the end u = 1 we have u = 1, i.e. 0 an be transformedontinuously into 1 in D (see Figure 4.16). We observe the following:(i) De�nition 4.49(iii) means that the homotopy F �xes both initial andterminal points.(ii) If 1 2 �(D; a; b) is a losed urve (i.e. a = 1(0) = 1(1) = b),0(t) � a for all t 2 [0; 1℄ (i.e. 0 is a onstant urve) and 0 ' 1,then we say that the urve 1 an be ontinuously deformed into thepoint a. The point a is alled the base point of 1. In other words, if is a losed urve with base point a then  is said to be homotopito 0 in D, or simply null-homotopi (written as  ' 0) if  ' 0. Thefamily of losed urves in D with base point a is denoted by �(D; a).(iii) Homotopy is an equivalene relation in �(D; a; b). Clearly 0 ' 0.For 0; 1 2 �(D; a; b), we have0 ' 1 =) 1 ' 0:



172 Complex IntegrationTo hek this, let F : 0 ' 1 be a homotopy arrying 0 into 1.Then, H de�ned by H(t; u) = F (t; 1 � u) is a homotopy arrying 1into 0, i.e. H : 1 ' 0.For 0; 1; 2 2 �(D; a; b); we have0 ' 1 and 1 ' 2 =) 0 ' 2:To verify this, let F : 0 ' 1 and G : 1 ' 2. De�ne H byH(t; u) = �F (t; 2u) if 0 � u � 1=2G(t; 2u� 1) if 1=2 � u � 1:Then, H : 0 ' 2. This proves our laim.4.50. De�nition. A domainD is said to be simply onneted if everylosed urve in D is homotopi to a point in D.If D is a simply onneted domain, then for any pair 0; 1 2 �(D; a; b)we have 0 ' 1 by (iii) above, whereas any losed urve in D is homotopito zero.Suppose D is starlike with respet to a, and 1 be a losed urve in D.Putting F (t; u) = u1(t) + (1� u)a; u 2 [0; 1℄;we see that F (t; u) is a ontinuous funtion de�ned on the retangle f(t; u) :t; u 2 [0; 1℄g suh that F (t; u) 2 D. AlsoF (t; 0) = 0(t); F (t; 1) = 1(t); for all 0 � t � 1F (0; u) = u1(0) + (1� u)a = ua+ (1� u)a = aand F (1; u) = u1(1) + (1� u)a = ua+ (1� u)a = a;sine 1 2 �(D; a). So, 1 ' 0 in D and thus D is simply onneted.If D is a onvex domain then it is starlike and so it is simply onneted.Therefore, if 0 and 1 are any two losed urves in �(D; a) then 0 ' 1in D.4.51. De�nition. Let D be an open set and 0 and 1 be two urvesde�ned on [0; 1℄. We say that 0 and 1 are lose together if there existsa partition P of [0; 1℄, P : 0 = t0 < t1 < � � � < tn = 1, and a sequeneof disks Dj ; j = 0; 1; : : : ; n � 1, ontained in D suh that for eah j =0; 1; : : : ; n� 1, Dj ontains the images 0([tj ; tj + 1℄) and 1([tj ; tj + 1℄).Let 0 and 1 be losed urves in D that are lose together. Let 0(tj) =zj , 1(tj) = �j : Consider f 2 H(D) and let gj be a primitive of f on Dj ,



4.6 Homotopy Version of Cauhy's Theorem 173
ζj

ζj+1

zj
zj+1

z0 = γ0(t0) = γ1(t0) = ζ0

zn = γ0(tn) = γ1(tn) = ζn

z0

zn

Figure 4.17: Desription for lose together urves.whih exists by Theorem 4.31. Further, if 0 and 1 are losed urves oflass C1 and are lose together, thenI0 = Z0 f(z) dz = n�1Xj=0 [gj(zj+1)� gj(zj)℄and I1 = Z1 f(z) dz = n�1Xj=0 [gj(�j+1)� gj(�j)℄so that I0 � I1 = [gn�1(zn) � gn�1(�n)℄ � [g0(z0) � g0(�0)℄: Sine 0 and1 are losed and sine the primitives gn�1 and g0 di�er by a onstant,I0 � I1 = 0 and hene I0 = I1.The following theorem summarizes the above disussion.4.52. Theorem. Let D be an open set in C and 0 and 1 be twolosed ontours in D. Suppose that 0 and 1 are lose together. Then, foreah f 2 H(D), we have R0 f(z) dz = R1 f(z) dz:Let  : [0; 1℄ ! D be a urve in an open set D. Then, ([0; 1℄) isompat. De�ne �(t) = min�2C nD j(t)� �j:Then, �(t) > 0 on [0; 1℄. Clearly � is ontinuous and � has a minimum on[0; 1℄. Further,  is uniformly ontinuous on [0; 1℄. Let R = min0�t�1 �(t).Therefore, for � = R=2 > 0 there exists a Æ > 0 suh thatj(t)� (u)j < R=2 whenever jt� uj < Æ (t; u 2 [0; 1℄):Choose points t0 = 0 < t1 < � � � < tn = 1 in [0; 1℄ suh that jtj � tj+1j < Æ.Then (see Figure 4.17),([tj ; tj+1℄) � �((tj);R=2) = Dj � D:



174 Complex IntegrationFor all suh j, let j : [tj ; tj+1℄ ! D be the restrition of  to [tj ; tj+1℄.Sine the disk �((tj);R=2) is onvex and lies in D, by Theorem 4.31, wehave �R �Pn�1j=1 Rj� f(z) dz = 0 for eah analyti funtion f on D. Thatis, Z f(z) dz = n�1Xj=1 Zj f(z) dz:(4.53)This also follows from the properties of the Riemann integral. Note alsothat, by Theorem 4.31, there exists an Fj on Dj suh that F 0j(z) = f(z) onDj . Thus, if j is of lass C1, (4.53) and Corollary 4.18 giveZ f(z) dz = n�1Xj=1 Zj f(j(t))0j(t) dt= n�1Xj=1 Zj F 0j(j(t))0j(t) dt= n�1Xj=1 Zj d[Fj(j(t))℄= n�1Xj=1[Fj(zj+1)� Fj(zj)℄where (tj) = zj .Our next result is the famous Cauhy's theorem.4.54. Theorem. (Homotopy Version of Cauhy's Theorem) LetD be domain in C and 0 and 1 be two losed ontours in D suh that0 ' 1 in D. Then, for eah f 2 H(D), we have R0 f(z) dz = R1 f(z) dz:Proof. Let F : 0 ' 1 be a homotopy in D. Sine F is ontinuous onthe square R = [0; 1℄� [0; 1℄ whih is ompat, the image F (R) is ompatand F is uniformly ontinuous on R. Hene, F (R) has a positive distanefrom C nD. Choose partitionsu0 = 0 < u1 < � � � < um = 1t0 = 0 < t1 < � � � < tn = 1and let Rjk = [tj ; tj+1℄�[uk; uk+1℄ (j = 0; 1; : : : ; n�1; k = 0; 1; : : : ;m�1),a retangle. Then, F (Rjk) = Djk � D. De�ne �k by�k(t) = F (t; uk); k = 0; 1; : : : ;m:Then, �k's are ontinuous and the urves �k, �k+1 are lose together. ByTheorem 4.52,Z�k f(z) dz = Z�k+1 f(z) dz; k = 0; 1; : : : ;m� 1:



4.6 Homotopy Version of Cauhy's Theorem 175As �0 = 0 and �m = 1, the desired equality follows.4.55. Corollary. If D is a simply onneted domain in C , then, forany f 2 H(D) and any losed ontour  in D, we have R f(z) dz = 0:Proof. Let 0 be a onstant urve. Then, 00(t) = 0 and so R0 f(z) dz =0: The result follows from Theorem 4.54 upon taking 1 = .Another version (see also Corollary 4.61) of Corollary 4.55 is the follow-ing.4.56. Corollary. If D is a simply onneted domain in C , then,for any f 2 H(D), and 0; 1 2 �(D; a; b) in D, we have R0 f(z) dz =R1 f(z) dz:Proof. Using Corollary 4.55, we obtain R0�1 f(z) dz = 0 and thedesired onlusion now follows.4.57. Corollary. If 0 and 1 are two losed ontours in a domain Dof C suh that 0 ' 1 then, for eah a 2 C nD, we have n(0; a) = n(1; a):4.58. Example. Let 0 and 1 be de�ned by0(t) = e2�it and 1(t) = e�2�it; t 2 [0; 1℄:Then, 0 and 1 are the irle jwj = 1. De�ne F (t; u) = e2�it�2iu sin(2�t):Then, F : 0 ' 1 in D = C .Further, if D = C nf0g and f(z) = 1=z thenZ0 f(z) dz = Z0 1z dz = Z 10 1e2�it 2�ie2�it dt = 2�iso that n(0; 0) = 1. Similarly we see that n(1; 0) = �1. Thus, 0 and 1are not homotopi in D = C nf0g. �4.59. Example. Consider two irles0(t) = Re2�it and 1(t) = (R+ 1)e2�it (t 2 [0; 1℄);where R > 0 is �xed. De�ne F (t; u) = (R+ u)e2�it: Then, for t; u 2 [0; 1℄,F (t; 0) = 0(t); F (t; 1) = 1(t) and F (0; u) = F (1; u) = R+ u:Further, we also have jF (t; u)j � R + 1 for all u 2 [0; 1℄. Therefore, F is ahomotopy of 0 to 1 in any region D ontaining �R+1. �



176 Complex Integration4.60. Example. Let 0(t) = 2t and 1(t) = 1 + e�i(1�t), t 2 [0; 1℄:De�ne F (t; u) = (1� u)0(t) + u1(t): Then, jF (t; u)j � 2 for all u 2 [0; 1℄.Clearly, F : 0 ' 1 in any region D ontaining �2. �Next we give an alternate proof of Theorem 4.33 in the following form.4.61. Corollary. If f is analyti in a simply onneted domain D,then there is a funtion F in D suh that F 0(z) = f(z), and F is uniqueup to an additive onstant.Proof. Let z0 2 D. For eah z 2 D, let z be a urve in D from z0 toz. De�ne F by F (z) = Zz f(�) d�:By Corollary 4.57, the value of F (z) is independent of the hoie of z.Therefore, for any ontour  in D from z1 to z2 we haveF (z2)� F (z1) = Z f(�) d�:(4.62)In partiular, (4.62) holds for any line segment in D onneting z1 and z2.That is F (z2)� F (z1) = Z z2z1 f(�) d�:Here z2 is suÆiently lose to z1 so that [z1; z2℄ � D. It follows, from themethod of proof of Theorem 4.31 (take z = z1, z + h = z2 in Theorem4.31), that F 0(z) = f(z) in D.Now let G be any other funtion in D suh that G0(z) = f(z). ApplyingCorollary 4.18, it follows that for any points z1; z2 in D and any ontour in D from z1 to z2, we haveF (z2)� F (z1) = Z F 0(z) dz = Z f(z) dz = Z G0(z) dz = G(z2)�G(z1)and therefore, F �G is onstant in D.4.7 Cauhy Integral FormulaThe Cauhy integral formula expresses a remarkable fat about an analytifuntion. Its values everywhere inside a simple losed ontour are om-pletely determined by its values on the boundary. The integral representa-tion allows us to show that analyti funtions are in�nitely di�erentiable.In fat the values of eah derivative of an analyti funtion are determinedjust by the values of the funtion on the boundary. Later in Setion 4.10,we use the integral representation to obtain power series expansions foranalyti funtions.



4.7 Cauhy Integral Formula 1774.63. Theorem. (Cauhy Integral Formula) If D is a simply on-neted domain and  is a losed ontour in D, then for f 2 H(D) anda 2 D nfg, f(a)n(; a) = 12�i Z f(�)� � a d�:(4.64)Proof. Let f 2 H(D) and onsiderF (z) = 8<: f(z)� f(a)z � a for z 6= af 0(a) for z = a:Then, F is analyti in D nfag and ontinuous on D. Hene, by Corollary4.32, RC F (�) d� = 0 for every losed ontour C in some disk �(z0; Æ) � Dwith a 2 �(z0; Æ). If we rearrange this, then we obtain12�i ZC f(�)� f(a)� � a d� = 12�i ZC f(�)� � a d� � f(a)n(C; a) = 0:Thus, we have proved a loal version of the Cauhy integral formula. Thegeneral version follows one we prove that F 2 H(D). This an be donewith the same idea used in Theorem 4.30.Most of the appliations of the above theorem are in the ase when f isanalyti inside and on  where  is a simple losed ontour and a is inside. We have then n(; a) = 1, so that (4.64) beomesf(a) = 12�i Z f(�)� � a d�:From the formula given by (4.64), in the ase of a point a for whih n(; a) 6=0, it follows that \the value of f at an interior point" is determined by \itsboundary values." This fat has many valuable onsequenes in omplexanalysis, whih we shall soon see in a number of examples.4.65. Example. Using the Cauhy integral formula for simple losedontour (i.e. when n(; a) = 1) we have(a) Zjzj=1 sin zz dz = 2�i(sin z)jz=0 = 0(b) Zjzj=1 os zz(z � 4) dz = 2�i os zz � 4 jz=0 = ��2 i() Zjz�aj=1 e2�zz � a dz = 2�ie2�a(d) Zjzj=2 ez + z2z � 1 dz = 2�i[e+ 1℄



178 Complex Integration(e) If f(z) = sin(�z2) + os(�z2), then by Cauhy's deformation of on-tour Zjzj=4 f(z)(z � 2)(z � 3) dz = Zjz�2j=1=2 f(z)=(z � 3)z � 2 dz+ Zjz�3j=1=2 f(z)=(z � 2)z � 3 dz= 2�i(�f(2) + f(3)) = 0:(f) By Cauhy's deformation of ontourZjzj=4 ezz(z � 1) dz = Zjzj=1=2 ez=(z � 1)z dz + Zjz�1j=1=2 ez=zz � 1 dz= 2�i(�1 + e):(g) Zjzj=1 os(ez)z dz = 2�i os 1 = �i(ei + e�i). �Suppose that f(x) is a ontinuous real-valued funtion de�ned on theinterval [a; b℄ and F 0(x) = f(x) on [a; b℄. Then, the \mean/average value"of f(x) on [a; b℄ is given by1b� a Z ba f(x) dx = F (b)� F (a)b� a :In view of the mean-value theorem, the right hand side expression is equalto F 0() (whih is now f() beause of our assumption) for some  2 (a; b).As an immediate speial ase of Theorem 4.63, we have an importantresult whih shows that for funtions analyti inside and on a irle, theaverage of the values on the irumferene is equal to the value of thefuntion at the enter of the irle.4.66. Theorem. (Gauss's Mean-Value Theorem) If D is a domainand �(z0; r) � D, then for f 2 H(D) and a 2 �(z0; r),f(a) = 12�i Z��(z0;r) f(�)� � a d� = 12� Z 2�0 f(a+ �ei�) d�where � > 0 is suh that �(a; �) � �(z0; r):Proof. By hypothesis, n(; a) = 1 with  = ��(z0; r). Let ��a = �ei�.Then, d� = i�ei� d� and the result follows.



4.7 Cauhy Integral Formula 179If f 2 H(�) and L is the length of the image urve �r of ��r (0 < r < 1)under f , then it is easy to see that L � 2�rjf 0(0)j. Indeed,L = Z�r jdwj = Z��r jf 0(z)j jdzj= r Z 2�0 jf 0(rei�)j d�� r ����Z 2�0 f 0(rei�) d�����= 2�rjf 0(0)j; by the mean value property.4.67. Example. Let us evaluate the integral I = Rjzj=r Re z dz: Onthe irle jzj = r, we have z = rei� and zz = r2 so that jdzj = rd� = rdz=izand Re z = z + z2 = 12 �z + r2z � :Using this simple observation, the given integral may be rewritten asI = 12 Zjzj=r z dz + r22 Zjzj=r dzz :Observe that the �rst integral vanishes by Cauhy's theorem while the valueof seond integral is 2�i, by Cauhy's integral formula. Thus, the value ofthe given integral I is i�r2. Similarly, we obtain the following:Zjzj=r Im z dz = ��r2 and Zjzj=r Im z jdzj = r2i Zjzj=r �z � r2z � dziz = 0:Finally, on the irle jz � aj = r, we have (z � a)(z � a) = r2 so thatz = a+ r2=(z � a) and therefore,Zjz�aj=r z dz = aZjz�aj=r dz + r2 Zjz�aj=r dzz � a = 2�ir2: �4.68. Example. Let f be analyti inside and on the ellipse C givenby �z = x+ iy : x2a2 + y2b2 = 1� ; a � b > 0:Suppose that(i) jf(z)j �M1 for z 2 C1 = fz 2 C : Re z � 0g and,(ii) jf(z)j �M2 for z 2 C2 = fz 2 C : Re z < 0g.



180 Complex IntegrationUsing the Cauhy integral formula, let us �nd an upper bound for jf(0)j.To do this, we onsider an auxiliary funtion �(z) de�ned by�(z) = f(z)f(�z) for z 2 C = C1 [ C2:Clearly, �(z) is analyti inside and on the ellipse C. First we observe thefollowing:(i) z 2 C () fz : jz �pa2 � b2j+ jz +pa2 � b2j = 2ag, see Example1.33.(ii) z 2 C1 i� �z 2 C2, whenever Re z > 0 and z 2 C. This observationshows that j�(z)j = jf(z)f(�z)j �M1M2 for z 2 Cj (j = 1; 2). Notethat Re z = 0 i� Re (�z) = 0, and so j�(z)j < M21 when Re z = 0 butz 6= 0.(iii) For z 2 C, we have b � jzj � a.By the Cauhy integral formula,�(0) = 12�i ZC �(z)z dz = 12�i �ZC1 �(z)z dz + ZC2 �(z)z dz� :Therefore, if L() denotes the length of the urve  then L(C) = L(C1) +L(C2) and we obtain the estimatejf(0)j2 = j�(0)j � 12� �����ZC1 �(z)z dz����+ ����ZC2 �(z)z dz������ 12� �M1M2b L(C1) + M1M2b L(C2)�= M1M2L(C)2�bwhih gives that jf(0)j �rM1M2L(C)2�b :What happens when a = b? In this speial ase, the ellipse beomes theirle jzj = a. So, L(C) = 2�a and jf(0)j � pM1M2: �4.69. Example. Let us disuss the proess of evaluating the integralI = Z Artan zz2 � 1 dz;where losed ontour  is yet to be spei�ed. Using the partial frationdeomposition, we an rewriteI = 12 Z Artan zz � 1 dz � 12 Z Artan zz + 1 dz:
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(i) γ encloses both − 1 and 1 (ii) γ does not enclose both − 1 and 1Figure 4.18: Illustration for winding number.Here Artan z is the prinipal branh of the inverse tangent funtion de�nedby Artan z = � i2 Log �1 + iz1� iz� :What is the region of analytiity of Artan z? To �nd this we need toremove those points z 2 C for whih1 + iz1� iz = u; u 2 R with u � 0:Note that 1 + iz1� iz = (1 + iz)(1 + iz)j1� izj2 = 1� jzj2 + 2iRe zj1� izj2and therefore, the points to be removed from C are those points z for whihRe z = 0 and jzj � 1. This gives x = 0 and jyj � 1 and thus, Artan z isanalyti on C n fiy : y 2 R; jyj � 1g: Now,  ould be spei�ed as anylosed ontour whih does not touh the two slits. For example,(i) if  is as in Figure 4.18(i), thenI = 2�1[2�i n(; 1)f(1)� 2�i n(;�1)f(�1)℄where f(z) = Artan z. We omputef(1) = � i2 Log �1 + i1� i� = � i2 Log i and f(�1) = � i2 Log (�i):Therefore, I = �i h2��4�� 1���4�i = i3�24 :
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(iii) n(γ, 1) = 1, n(γ, −1) = 0 (iv) n(γ, 1) = 0, n(γ, −1) = −2Figure 4.19: Curve enloses either 1 or �1.(ii) if  is as in Figure 4.18(ii), i.e.  does not enlose both �1 and 1,then Z Artan zz2 � 1 dz = 0:(iii) if  enloses only one of the two points 1 and �1, namely, the point1 (see Figure 4.19(i)) thenZ Artan zz2 � 1 dz = Z g(z)z � 1 dz; g(z) = Artan zz + 1 :We ompute g(1) = (1=2)Artan1 = �=8 and therefore, in this ase,Z Artan zz2 � 1 dz = 2�i n(; 1)g(1) = 2�i�8 = i�24 :(iv) Similarly, if  enloses only the point z = �1, then we writeZ Artan zz2 � 1 dz = 2�i n(; 1)�(�1); �(z) = Artan zz � 1 :Sine n(;�1) = �2 and �(�1) = �(1=2)Artan(�1) = �=8; it fol-lows that (see Figure 4.19(ii))Z Artan zz2 � 1 dz = 2�i(�2)��8� = � i�22 : �For the proof of our next theorem, we need the following:4.70. Theorem. Let � be a omplex-valued funtion whih is on-tinuous in an open set D ontaining a ontour . Then, for all z 62 , thefuntion Fn de�ned byFn(z) = Z �(�)(� � z)n d�; n = 1; 2; : : : ;(4.71)
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Figure 4.20: A disk �(z; Æ) disjoint from ([a; b℄).is analyti and satis�es the equation F 0n(z) = nFn+1(z); or equivalentlyF (k)(z) = k! Z �(�)(� � z)k+1 d�; k = 1; 2; : : : ;(4.72)with F1(z) = F (z).Proof. Let  : (t), 0 � t � 1, be a given ontour in D. Then,  beingontinuous on [0; 1℄, ([0; 1℄) is ompat. The funtion � being ontinuouson ([0; 1℄), there exists M > 0 suh thatj�(�)j �M on ([0; 1℄):For z 62 , let �(z; Æ) (e.g. hoose Æ = dist (z; )) be a disk about z disjointfrom ([0; 1℄) so that j� � zj � Æ for � on the urve . Suppose further thata 2 �(z; Æ=2) and jhj � 12 �Æ2 � ja� zj� = Æ0; say :Then, as ja+ h� zj � ja� zj+ jhj � Æ4 + ja� zj2 < Æ4 + Æ4 = Æ2 ;a+ h 2 �(z; Æ=2) (see Figure 4.20) and so (with F1(z) = F (z)), we haveF (a+ h)� F (a)h = Z �(�)(� � a)(� � a� h) d�:Hene, F (a+ h)� F (a)h � Z �(�)(� � a)2 d� = h Z �(�)(� � a)2(� � a� h) d�:(4.73)For � on , we note that j� � aj � j� � zj � ja� zj � Æ � Æ=2 = Æ=2 andj� � a� hj � j� � aj � jhj � Æ2 � 12 �Æ2 � ja� zj� = Æ4 + ja� zj2 � Æ4 :



184 Complex IntegrationTherefore, using the standard estimate for integrals (see Theorem 4.9(iv)),it follows that the modulus of the right hand side of (4.73) is less than orequal to jhjML()(Æ=2)2(Æ=4)whih learly approahes zero as h! 0. Sine a was an arbitrary point ofD,this implies that F1 (= F ), de�ned by (4.71), is analyti for all z 2 D nfgand that F 0(z) = Z �(�)(� � a)2 d�; i.e. F 01(z) = 1 � F2(z):Now the ase when n = 1, i.e. k = 1 in (4.72), follows. Therefore, to provethe general ase we proeed by indution on n. Assume that the resultholds for some value of k � 1. The integral formula (4.72) for F (k)(z) thenyields the expressionF (k)(a+ h)� F (k)(a) = k! Z � 1(� � a� h)k+1 � 1(� � a)k+1 ��(�) d�:Now, we must show that (4.72) holds for F (k+1)(a). To do this, sine(k + 1) Z[a;a+h℄ du(� � u)k+2 = 1(� � a� h)k+1 � 1(� � a)k+1 ;we writeF (k)(a+ h)� F (k)(a)h � (k + 1)! Z �(�)(� � a)k+2 d�= (k + 1)! Z " 1h Z[a;a+h℄ du(� � u)k+2 � 1(� � a)k+2 #�(�) d�= (k + 1)!h Z "Z[a;a+h℄� 1(� � u)k+2 � 1(� � a)k+2� du#�(�) d�= (k + 2)!h Z "Z[a;a+h℄ Z[a;u℄ dv(� � v)k+3! du#�(�) d�= M(h); say.Now v 2 [a; u℄ � [a; a+ h℄ and so for all � on ,j��vj � j��aj� jv�aj � j��aj� jhj � Æ2 � 12 �Æ2 � ja� zj� = Æ4 + ja� zj2and therefore, j� � vj � Æ=4: HenejM(h)j � (k + 2)!jhj M � L(): jhj � jhj(Æ=4)k+3 ;



4.7 Cauhy Integral Formula 185whih approahes zero as h! 0. Hene, F (k+1) exists at a and is given byF (k+1)(a) = (k + 1)! Z �(�)(� � a)k+2 d�; k = 1; 2; : : : :Sine a was an arbitrary point of D, the onlusion of the theorem followsby indution.We now apply Theorem 4.70 to the Cauhy integral formula to obtain4.74. Theorem. (Cauhy Integral Formula for Derivatives) Underthe assumptions of Theorem 4:63, we havef (k)(a)k! n(; a) = 12�i Z f(�)(� � a)k+1 d�; k = 0; 1; 2; : : : :In partiular, for n(; a) = 1, we havef (k)(a)k! = 12�i Z f(�)(� � a)k+1 d�; k = 0; 1; 2; : : : :Proof. Let �(z) = f(z) in Theorem 4.70. ThenF1(z) = Z f(�)� � z d� = 2�if(z)n(; z);by the Cauhy integral formula for all points z inside . Note that n(; z)is an analyti funtion of z on D nfg and is ontinuous on D nfg. Sinen(; z) is an integer, it is onstant in the neighborhood of z. Thus, n(; z)is loally onstant. Therefore,F (k)1 (z) = 2�if (k)(z)n(; z):But, by Theorem 4.70, we haveFk+1(z) = F 0k(z)k = F 00k�1(z)k(k � 1) = � � � = F (k)1 (z)k! = 2�ik! f (k)(z)n(; z);that is, 12�i Z f(�)(� � z)k+1 d� = f (k)(z)k! n(; z)and the result follows, by replaing z by a.4.75. Corollary. If f is analyti in a domain D then the derivativesof all orders exist and eah of its derivatives f (k) is analyti in D and maybe obtained by di�erentiating under the integral sign in the Cauhy integralformula.



186 Complex IntegrationProof. In Theorem 4.74 take a 2 D and  = f� : j� � aj = rg � D.Then f (k)(a) exists for all k = 1; 2; 3; : : : , so f (k)(z) is di�erentiable in aneighborhood of a and is therefore analyti at a. Sine a 2 D was arbitrary,the result follows.Let us now demonstrate how di�erent this orollary is from the situationof a funtion of a real variable. For example, onsider f(x) = (x+1)5=3 forx 2 R: Then for x 2 R we havef 0(x) = 53(x+ 1)2=3 and f 0(�1) = 0:On the other hand,f 00(x) = 109 (x+ 1)�1=3 for x 6= �1but f 00(�1) does not exist. For the omplex analog of the same funtion,namely f(z) = (z + 1)5=3, the point z = �1 is a branh point and theanalyti branh of f(z) exists in C nfx+ i0 : x � �1g.Thus, it is possible for a funtion of real variable g(x) in (a; b) � Rto have a derivative g0(x) without g0(x) being ontinuous therein. Here isanother example. Consider g : R ! R de�ned byg(x) = �x2 sin(1=x) for x 6= 00 for x = 0:Then, we see that g is ontinuously di�erentiable on R but g0(x) is notontinuous at the origin. How about h(x) = jxj3 on R?4.76. Example. Let D = f(x; y) : jxj � a; jyj � b; a � bg, aretangular region. Suppose that f 2 H(D) satis�es the inequality jf(z)j �M on �D. Then, jf 0(0)j � 2M(a+ b)�b2 :Indeed, by Theorem 4.74 and the fat that j�j � b on �D, we have theinequalityjf 0(0)j = ���� 12�i Z�D f(�)�2 d����� � 12� Mb2 L(�D) = M(4a+ 4b)2�b2whih gives the desired result. �4.77. Corollary. If f = u+ iv is analyti in a domain D, then allthe partial derivatives of u and v exist and are ontinuous in D.Proof. As f 0 = ux + ivx = vy � iuy in D and sine f 0 is analyti, theonlusion for the �rst partial derivatives follows. Asf 00 = uxx + ivxx = vyx � iuyx = vxy � iuxy = �uyy � ivyy



4.7 Cauhy Integral Formula 187and sine f 00 is analyti, the result for the seond partial derivatives follows.Finally, the proof follows by indution.4.78. Example. Let us use the Cauhy integral formula to evaluateRjz�1j=1(z)n dz, n 2 Z. To do this, we use the parameterization z� 1 = eitso that z = 1 + e�it = 1 + 1z � 1 = zz � 1 :Therefore, Zjz�1j=1(z)n dz = Zjz�1j=1 zn(z � 1)n dzwhih is learly 0, by Cauhy's theorem, whenever n = 0;�1;�2; : : : . Iff(z) = zn (n 2 N), then, by Cauhy's integral formula, the value of theintegral is seen to be 2�in. �4.79. Theorem. (Cauhy's Inequality) Let f be analyti in theopen disk �(a;R) and jf(�)j � M for � 2 ��(a; r), 0 < r < R. Then, foreah k 2 N one has jf (k)(a)j �Mk!r�k:Proof. Apply the standard estimate (see Theorem 4.9) to the Cauhyintegral formula for derivatives with  = ��(a; r) and �nd thatjf (k)(a)j � k!2� � Mrk+1 � 2�r = Mk!rk :4.80. Remark. The number M in Theorem 4.79 depends on theirle j� � aj = r. But notie that for k = 0, one has jf(a)j � M forany irle entered at a as long as this irle lies entirely within the disk�(a;R). This observation shows that an upper bound M of jf(z)j on anyirle about a annot be smaller than jf(a)j.It is also important to know how di�erent this result is from the ase ofa real-valued funtion of a real variable. So we raise the following question:Does the Cauhy inequality hold in the real variable ase? Consideru(x) = sin(1=x) for x 2 R+ = fx 2 R : x > 0g:Then, u is di�erentiable on R+ , ju(x)j � 1 for x 2 R+ andu0(x) = �x�2 os(1=x)whih is unbounded, sine u0 (1=(2n�)) = �4n2�2 for every n 2 N:Another simple example may be given by the funtion un(x) = sinnx.Then, for eah n 2 Z, jun(x)j � 1 on R. Further, u0n(x) exists for all x 2 Rand u0n(0) = n so that u0n(x) is unbounded on R when n!1. �The above theorem ombined with Theorem 3.71 gives the followingresult known as Cauhy's Inequality for Taylor's oeÆients.



188 Complex Integration4.81. Theorem. Let f(z) =Pn�0 an(z� z0)n be a series with posi-tive radius of onvergene R. If 0 < r < R and M(r) = maxjz�z0j=r jf(z)j,then, for eah k 2 N, jakj � r�kM(r).4.82. Example. Consider the geometri series (1�z)�1 =P1k=0 zk,jzj < 1: Then, for this funtion (with z0 = 0; R = 1, and f(z) = (1� z)�1in Theorem 4.81), we have M(r) = (1 � r)�1 for 0 < r < 1, sine thefuntion w = (1� z)�1 maps jzj = r onto����w � 11� r2 ���� = r1� r2 :So, jakj � (1� r)�1r�k for k 2 N: But we note that ak = 1 for eah k 2 Nand hene, the estimate is not good! �4.83. Example. Suppose that f 2 H(�), f(z) = P1n=1 anzn andjf(z)j � jzj=(1 � jzj). Then, by Cauhy's inequality, it an be easily seenthat janj < ne for n 2 N. Indeed, for eah r 2 (0; 1),janj � 1(1� r)rn�1 :In partiular, for r = 1� 1=(n+ 1), this inequality givesjanj � (n+ 1) �n+1n �n�1 = n �1 + 1n�n < ne: �Next we give a straightforward appliation of the Cauhy integral for-mula.4.84. Theorem. (Weierstrass' Theorem for Sequenes) Let D beopen and fn : D ! C be analyti for eah n 2 N. If fn ! f uniformly oneah ompat subset of D, then f is analyti in D. Moreover, for eah k,f (k)n (z)! f (k)(z) uniformly as n!1 for eah ompat subset of D.Proof. Sine D is open, there exists an open disk, D0 = �(z0; �),entered at z0 with D0 � D. By hypothesis, fn ! f uniformly on D0: InD0, f is the uniform limit of ontinuous funtions; hene f is ontinuouson D0. It follows from Cauhy's theorem that RC fn(z) dz = 0 for anylosed ontour C suh that C and its interior lie in D0. But, sine fn ! funiformly on the ompat set C, we have����ZC fn(z) dz � ZC f(z) dz���� = ����ZC [fn(z)� f(z)℄ dz����� �supz2C jfn(z)� f(z)j�� length of C! 0 as n!1:



4.7 Cauhy Integral Formula 189Thus, ZC f(z) dz = limn!1 ZC fn(z) dz = 0and, sine C is arbitrary, it follows from Morera's Theorem (see Theorem4.86) that f is analyti in D.Next let  = fz : z � z0 = reit; 0 � t < 2�g. Then, the length of  isL() = 2�r. The Cauhy integral formula yieldsjf (k)n (z0)� f (k)(z0)j = ���� k!2�i Z fn(z)(z � z0)k+1 dz � k!2�i ZC f(z) dz(z � z0)k+1 ����� �supz2 ����fn(z)� f(z)(z � z0)k+1 ����� � k!2� (2�r)= k!rk � �supz2 jfn(z)� f(z)j�! 0 as n!1;whih proves the seond part. Sine z0 2 D is arbitrary, for eah k,f (k)n (z)! f (k)(z) loally uniformly on D.We observe that, in the real ase, a sequene of in�nitely di�erentiablefuntions an onverge uniformly to a nowhere di�erentiable funtions.Theorem 4.84 applied to partial sums of a series gives the following:4.85. Theorem. (Weierstrass' Theorem for Series) Let D be openand fn : D ! C be analyti for eah n 2 N. If a seriesPn�1 fn onvergesuniformly on eah ompat subset of D, then the sum f = Pn�1 fn isanalyti in D. Moreover, the series an be di�erentiated term-by-term foreah z0 2 D.Note that Weierstrass' theorem an be applied to the seriesPn�1 anzn,sine eah term in this series is analyti in C . Further, we note that the uni-form onvergene ofPn�1 fn on D does not neessarily imply the uniformonvergene of Pn�1 f (k)n on D. For example, letfn(z) = zn+1n(n+ 1) :Then, jfn(z)j < n�2 for z 2 � and all n 2 N. By Weierstrass' M-test(see Theorem 2.59), the series Pn�1 fn is uniformly onvergent on �. Onthe other hand, f 00n (z) = zn�1 and so, by Example 2.55,Pn�1 f 00n (z) is notuniformly onvergent on �.
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Figure 4.21: Two urves onneting a and z1.4.8 Morera's TheoremIf n 2 N and jaj > 1, then Cauhy's theorem immediately yields thatI = Zjzj=1 dz(z � a)n = 0:This is due to the fat that the integrand in I is analyti for all z in �,sine jaj > 1. On the other hand, we know thatJ = Zjz�aj=r dz(z � a)n = � 0 if n 2 Znf1g,2�i if n = 1:Here the non-zero result arises beause of the fat that the integrand in Jis not analyti at z = a and this point lies inside the irle jz�aj = r whihviolates the ondition of Cauhy's theorem. A partial onverse of Cauhy'stheorem is the following. The power of this theorem resides in the fat thatonly the ontinuity of f is assumed.4.86. Theorem. (Morera's Theorem) Suppose that f is ontinuousin an open set D with the property that RC f(z) dz = 0 for eah losedontour C in D. Then, f is analyti in D.Proof. Let a be an arbitrary �xed point in D. Sine the integralRC f(z) dz = 0 holds for eah losed ontour C, for any two ontours C1and C2 in D (see Figure 4.21) whih onnet a with z1, we have0 = ZC1�C2 f(z) dz = ZC1 f(z) dz � ZC2 f(z) dz:This means that the value of the integral R z1a f(z) dz does not depend uponthe path whih onnets a with z1. De�neF (z) = Z za f(�) d� for z 2 D:



4.8 Morera's Theorem 191Sine D is open, there exists an r > 0 suh that �(z; r) � D. Let jhj besuÆiently small so that z + h 2 �(z; r). Sine R za f(�) d� is independentof the path, as usual, we may writeF (z + h)� F (z) = Z z+hz f(�) d�so that F (z + h)� F (z)h � f(z) = 1h Z z+hz [f(�)� f(z)℄ d�:Sine f is ontinuous, as in the proof of Theorem 4.31, it follows that����F (z + h)� F (z)h � f(z)����! 0 as jhj ! 0and so F is di�erentiable with F 0(z) = f(z) in �(z; r). Sine F is analytiin �(z; r), it follows from the Cauhy integral formula for derivatives thatf is analyti in �(z; r). Sine z was an arbitrary point of D, we onludethat f is also analyti in D.4.87. Remark. Suppose thatf(z) = 8<: 1(z � 1)2 if z 2 �(1; r) nf1g1 if z = 1 ; g(z) = 8<: os zz2 if z 2 � nf0g0 if z = 0:Then (see Example 4.4), for any simple losed ontour C in �(1; r), we haveRC f(z) dz = 0: However f is not analyti for z 2 �(1; r), sine f is noteven ontinuous at z = 1. Note that Morera's Theorem is not appliablesine the ontinuity requirement is not satis�ed.Similarly for the g(z) de�ned above, we know that Rjzj=1 g(z) dz = 0:Again g is not analyti in �, sine g is not ontinuous at z = 0. �Most often we use Morera's Theorem but for a di�erent situation otherthan that is stated.4.88. Corollary. (Riemann's Removability Theorem) Supposethat f is ontinuous on a domain D and analyti on D nfz0g for somez0 2 D. Then, f is analyti on D.Proof. It is enough to prove the result for a disk jz � z0j < �. ByCauhy's theorem for a disk, we have RC f(z) dz = 0 for all losed ontoursC inside the disk jz � z0j < �. Hene, f is analyti on jz � z0j < � byMorera's Theorem.
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Figure 4.22: Curve in a ring shaped region.4.9 Existene of Harmoni ConjugateCorollary 4.75 helps us in �nding a harmoni onjugate of a harmoni fun-tion. We shall now give the idea behind the formal solution to the statementof Theorem 3.39. Suppose � = �(x; y) is the real part of an analyti fun-tion f in a simply onneted domainD and suppose we an �nd  =  (x; y)suh that f = �+ i . The C-R equations would then imply f 0 = �x � i�yand so if  is a path whih onnets z to z0 in D,f(z)� f(z0) = Z f 0(�) d� = Z [�x � i�y℄ d�whih is the only possible solution if we are given �. The following exampleshows that we annot hoose D to be just a domain.4.89. Example. For u(x; y) = lnpx2 + y2 in D = fz : R1 < jzj <R2g where R2 > R1 � 0, there does not exist a v(x; y) suh that f = u+ ivis analyti in D. To prove this assertion, we suppose that f = u + iv isanalyti in D. Then, f 0 is also analyti in D. By hypothesis,ux(x; y) = xx2 + y2 and uy(x; y) = yx2 + y2so thatf 0(z) = ux(x; y) + ivx(x; y) = ux(x; y)� iuy(x; y) = x� iyx2 + y2 = zzz = 1z :So, by Theorem 4.16, the value of the integral R zz0 f 0(z) dz is independentof the path joining z0 and z in D (see Figure 4.22). Thus, we havef(z)� f(z0) = Z zz0 f 0(�) d� = Z zz0 1� d�:In partiular, if we hoose the losed ontour j�j = R with initial pointz0 = R and the terminal point z = Re2�i (R 2 (R1; R2) ), then the abovegives that0 = f(Re2�i)� f(R) = Zj�j=R 1� d� = Z 2�0 iRei�Rei� d� = 2�i
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z0 = (x0, y0)

(x, y0)

z = (x, y)

Figure 4.23: Determination of onjugate harmoni.and this ontradition shows that no suh v(x; y) an exist in D suh thatf = u+ iv is analyti in D. �Proof of Theorem 3.39. Sine � is harmoni in D, Mx � Ny = 0;where M = �x and N = ��y. Now M and N are di�erentiable funtionsof (x; y) in D and Ndx +Mdy is an exat di�erential for (x; y) 2 D, i.e.there exists a funtion  suh thatd = Ndx+Mdy; for (x; y) 2 D:With respet to a referene point (x0; y0) 2 D, let  be a path (see Figure4.23) onsisting of the line segment onneting (x0; y0) to (x; y0) and (x; y0)to (x; y). De�ne (x; y) = Z N dx+M dy + k= Z xx0 ��y(t; y0) dt+ Z yy0 �x(x; s) ds+ k(4.90)where k is some real onstant. The partial derivative of (4.90) with respetto y is given by y(x; y) = ��y �Z yy0 �x(x; s) ds� = �x(x; y);sine the �rst integral in (4.90) is independent of y. Similarly, taking thepartial derivative of (4.90) with respet to x yields x(x; y) = ��y(x; y0) + ��x �Z yy0 �x(x; s) ds� :(4.91)Using the di�erentiation formula under the integral sign for the seond termin (4.91), we have (as in the proof of Theorem 3.53) x(x; y) = ��y(x; y);  y(x; y) = �x(x; y):x



194 Complex IntegrationThus, � and  satisfy the C-R equations for F = �+ i and  is harmoniin D. By Theorem 3.26, F = � + i is analyti in D. Thus, a harmonionjugate always exists in D and the proof is ompleted.4.92. Remark. We observe the following:(i) If the domain is multiply onneted and � is harmoni there, then theonjugate funtion beomes multiple-valued. For instane if�(x; y) = lnpx2 + y2;then the orresponding multiple-valued onjugate funtion is (x; y) = Artan �yx�+ 2k� + onstant; k 2 f�1;�2; : : : g:(ii) From Theorem 4.33, we note that an arbitrary harmoni funtion �in a simply onneted domain an always be onsidered as the real(or imaginary) part of an analyti funtion in D. �4.10 Taylor's TheoremIn Theorem 3.71, we have shown that every power seriesPn�0 an(z�a)n isin�nitely di�erentiable in its disk of onvergene �(a;R). Moreover, an =f (n)(a)=n! and it does not depend on R. Now, we use omplex integrationto show that every analyti funtion in a domain an be expressed loallyas a onvergent power series. This fat opens the door to a systematidisussion of the loal strutural properties of analyti funtions.4.93. Theorem. If f is analyti in �R, then f has a Malaurin seriesexpansion f(z) =Pn�0 anzn for all z 2 �R, wherean = f (n)(0)n! = 12�i Z f(�)�n+1 d�; n = 0; 1; 2; : : :with  = f� : j�j = rg and 0 < r < R.Proof. For a given z 2 �R, hoose r suh that r < R and let  be = f� : j�j = rg. By the Cauhy integral formula,f(z) = 12�i Z f(�)� � z d�:We know that, for all jz=�j < 1,1� � z = 1� � 11� z=� =Xn�0 zn�n+1



4.10 Taylor's Theorem 195and the onvergene is uniform on , and for a �xed z. Now f(�) is boundedon , sine it is a ontinuous funtion on the ompat set . We formf(�)� � z =Xn�0 fn(�) with fn(�) = f(�)�n+1 zn:(4.94)Viewed as a series of funtions of �, the series (4.94) onverges uniformlyon . Indeed, in ��, f(�) is bounded for eah � < r, with bound M , say,and jfn(�)j � " supj�j=� jfn(�)j# � Mrn+1 �n = Mr ��r�nand so Pn�0 fn(�) is uniformly onvergent on ��, by the Weierstrass M -test. Therefore, the series (4.94) may be integrated term-by-term so that12�i Z f(�)� � z d� =Xn�0� 12�i Z f(�)�n+1 d�� zn =Xn�0 anzn:Sine z 2 �R is arbitrary, we have f(z) = Pn�0 anzn for all jzj < R andso the assertion now follows from Cauhy's integral formula for derivatives.Uniqueness of the oeÆients an follows from the Uniqueness theorem forTaylor series. By Theorem 4.16, the value of the integral is independent ofthe hoie of the urve in jzj < R.Using the simple transformation z � a = w, we obtain the followingresult whih shows that every analyti funtion an be expressed loallyas a onvergent power series. However, we observe that several power se-ries (sometimes perhaps in�nitely many) may be required to represent fthroughout the domain.4.95. Corollary. (Taylor's Theorem) If f is analyti in a domainD then for z 2 �(a;R) � D, f has the Taylor series expansionf(z) =Xn�0an(z � a)n; an = f (n)(a)n! = 12�i ZC f(�)(� � a)n+1 d�;where C = f� : j� � aj = rg and 0 < r < R.If f is analyti in a domain D with a 2 D, then f admits a Taylorseries expansion about a: f(z) = P1n=0 an(z � a)n: What is the radiusof onvergene of the series we have obtained? It may happen that theirle of onvergene enloses points outside D. By Corollary 4.95 what weknow is that if f is analyti in �(a; r), then the series about a onverges tof(z) in that disk. The series onverges in at least the largest disk enteredat a that is ontained in D. Clearly, r may be inreased until the irle



196 Complex Integrationjz�aj = r enounters a singularity of f(z). Thus, the radius of onvergeneR is the largest number R suh that f(z) extends to be analyti on the diskjz�aj < R and the extended funtion is alled an analyti ontinuation of f .We shall have a preliminary disussion on this issue in Chapter 10. However,the example given below will give a little avor of this idea. When f(z)is a single-valued analyti branh of a multi-valued funtion, then branhpoints give obstales just as muh as a singularity. Thus, the radius ofonvergene is the distane from the enter of the expansion to the nearestsingularity or branh point.4.96. Examples. We know that f(z) = Log (1 � z) is analyti inthe ut plane C n fx + i0 : x � 1g. In partiular, f is analyti in jzj < 1and has a Taylor series expansion in jzj < 1 about 0:f(z) = 1Xn=0 anzn; an = f (n)(0)n! :Note that 1 is the largest number R suh that f extends to be analyti inthe disk jzj < R. It follows that f(0) = Log1 = 0 and for n � 1,f (n)(0) = � 1 � 2 � � � (n� 1)(1� z)n ����z=0 = �(n� 1)!:So, for jzj < 1, Log (1� z) = � 1Xn=1 znn :Note that an appliation of the Ratio/Root test quikly on�rms that theseries onverges absolutely for jzj � � < 1. Next, we onsider the funtiong de�ned by g(z) = Log (1 + z)z :Then g 2 H(D), D = C n (fx + i0 : x � �1g [ f0g). Although z = 0 isa singularity, g an be extended to be analyti at z = 0 (it is a removablesingularity of g but we shall disuss various singularities in Chapter 7)beause Log (1 + z) = 1Xn=1(�1)n�1 znn ; jzj < 1:Moreover, if we let Log (1 + z)z = 1Xn=0 an(z � 6)nthen the radius of onvergene of this series is R = 7 (the distane from thebranh point �1 to 6) not the distane from 0 to 6. �



4.10 Taylor's Theorem 1974.97. Example. Let f(z) = Log z for z 2 C n fx+ i0 : x � 0g anda = �1 + i = p2e3�i=4. Then f(a) = lnp2 + 3�i=4 and for n � 1,f (n)(z) = (�1)n�1(n� 1)!znand an = f (n)(a)n! = (�1)n�1n2n=2 e�3�in=4so that the power series expansion of f about a isf(z) = 1Xn=0 (�1)n�1e�3�in=4n2n=2 (z � a)n:It is easy to see (for example, by the Ratio test) that the radius of onver-gene of the series on the right is R = p2. Again, this does not ontraditthe disontinuity of Log z at the point z = �1, beause Log z extends tobe analyti for jz � (�1 + i)j < p2 although the extension does not oin-ide with Log z in the part of the disk that lies in the lower half-plane, seeChapter 10 for a disussion on analyti ontinuation. �4.98. Example. Consider f : R ! R given byf(x) = 11 + x4 :This funtion admits a real power series about any point a 2 R. Yet thepower series about a = 0, given byf(x) = 1Xn=0(�1)nx4nhas (�1; 1) as its interval of onvergene. On the other hand, its omplexanalog f(z) = 11 + z4has singularities at zk = ei�(1+2k)=4; k = 0; 1; 2; 3. Clearly, the distanefrom 0 to the nearest singularity is 1, whih neessarily is the radius ofonvergene for the orresponding series about 0. �Consider the funtion f(z) = z�1: Then, f is analyti on C nf0g. There-fore, for all z 6= 0, f (n)(z) = (�1)nn!zn+1 ; n = 0; 1; 2; : : : ;



198 Complex Integrationand so by Taylor's Theorem, we have the Taylor series expansion of f aboutz0 6= 0, 1z =Xn�0 (�1)nzn+10 (z � z0)n for z 2 �(z0; jz0j):After k-fold di�erentiation this gives1zk+1 =Xn�k(�1)n�k �nk� 1zn+10 (z � z0)n�kfor z 2 �(z0; jz0j). The substitution z0 = �1 with the transformationz = w � 1 yields the Malaurin series of (1� w)�k�1:1(1� w)k+1 =Xn�k�nk�wn�k for w 2 �;(4.99)whih is the k-fold di�erentiation of the geometri series Pn�0 wn.We remark that the oeÆient formulae (see Corollary 4.95) may notbe diretly useful in writing the Taylor expansion for analyti funtions.The formula (4.99), the orresponding formulae for ez, sin z, os z et., andformulae for the Cauhy produt are more often useful in suh problems.4.100. Example. Let us develop the funtion f de�ned byf(z) = 11� z � z2into a Taylor series about 0. By partial fration deomposition we �nd thatf(z) = 1� � � � 1z � � � 1z � � �= 1� � � � 1� � 11� z=��� 1� � 11� z=��� ;where � = p5� 12 ; � = �p5 + 12 :Note that � < j�j, �� = �1 and ��� = �p5. Therefore, the Taylor seriesof f about 0 isf(z) = 1� � � 24Xn�0 zn�n+1 �Xn�0 zn�n+135 (jzj < �);= 1p5Xn�0 ��n+1 � �n+1(��)n+1 � zn (jzj < �);



4.11 Zeros of Analyti Funtions 199sine the �rst series onverges for jzj < j�j while the seond series onvergesfor jzj < � so that the ombined series onverges for jzj < minf�; j�jg = �.As �� = �1, we rewrite the above equation as11� z � z2 = 1p5Xn�024 p5 + 12 !n+1 � 1�p52 !n+135 zn; jzj < �:For jzj < � = (p5� 1)=2, we may write11� z � z2 =Xn�0 anzn; i.e. 1 = (1� z � z2)24Xn�0 anzn35 :By uniqueness of Taylor's oeÆients of f about 0, on equating the oeÆ-ients of zn on both sides, we see thata0 = a1 = 1 and an+1 = an + an�1:Note that the sequene fangn�0 obtained here gives the Fibonai sequene1; 1; 2; 3; 5; 8; 13; : : : . �4.11 Zeros of Analyti FuntionsWe now disuss the zeros of analyti funtions using the Taylor series ex-pansion as a tool. Suppose that f is analyti, f(z) 6� 0 in an open set Dand f vanishes at some point a 2 D. Then f admits a Taylor series abouta: f(z) = a1(z � a) + a2(z � a)2 + � � � ; jz � aj < R;where fz : jz�aj < Rg � D. Sine f(z) 6� 0, not all the oeÆients ak anvanish. This shows that there is a positive integer m � 1 suh thata1 = � � � = am�1 = 0; but am 6= 0:Then we say that f has a zero (�nite) of order m at a. Also, the integerm is referred to as the multipliity of the zero of f at a. Zeros of order 1are often alled simple zeros. In ase f has a zero of order m at a, we mayrewrite f(z) asf(z) = am(z � a)m + am+1(z � a)m+1 + � � � = (z � a)mg(z);where g(z) is analyti at a and g(a) = am 6= 0 (Note that the radius ofonvergene of am + am+1(z � a) + � � � is exatly same as that ofam(z � a)m + am+1(z � a)m+1 + � � � ):The above disussion leads to



200 Complex Integration4.101. Proposition. A funtion f analyti at a has a zero of orderm at a i� f(z) = (z � a)mg(z), where g is analyti at a and g(a) 6= 0.Further, one an use this Proposition to establish the L'Hôspital rulefor omplex funtions, see Exerise 4.161.A zero of an analyti funtion f is said to be isolated if it has a neigh-borhood in whih there is no other zero of f . An important onsequene ofthe following result is the Identity theorem for analyti funtions.4.102. Theorem. Every zero of an analyti funtion f (6� 0) is iso-lated.Proof. Suppose that f has a zero of order m at a. Then there exist anR > 0 suh that f(z) = (z � a)mg(z); jz � aj < R;where g is analyti at a and g(a) 6= 0. Let jg(a)j = 2� > 0. Then for this �,sine g is ontinuous at a, there exists a Æ > 0 suh thatjg(z)� g(a)j < � whenever jz � aj < Æ:Therefore when jz � aj < Æ we havejg(z)j = jg(a)� [g(a)� g(z)℄j � jg(a)j � jg(z)� g(a)j > 2�� � = �:Thus, g(z) 6= 0 in �(a; Æ) (We remind the reader that we have alreadynotied this point while disussing the limit of a funtion, see Theorem2.10). But jz� ajm 6= 0 in 0 < jz� aj < Æ. Hene, f(z) = g(z)(z� a)m 6= 0in this neighborhood exept at a. This ompletes the proof.The following theorem plays an important role in omplex funtion the-ory. In simplest terms this theorem, whih is an extension of Theorem3.75, ompletely haraterizes an analyti funtion in a domain D just byits behavior in a small subset of D.4.103. Theorem. (Identity/Uniqueness Theorem) Suppose thatf is analyti in a domain D. If S, the set of zeros of f in D, has a limitpoint z� in D. Then f(z) � 0 in D.The hypothesis that D is onneted in Theorem 4.103 is neessary. Forexample, if D = C nfz : 1 � jzj � 3g and if f : D ! C is de�ned byf(z) = � 0 for jzj < 12 for jzj > 3,then f 2 H(D) and its zero set ( jzj < 1) has a limit point in D, yet f isnot identially zero in D.4.104. Remarks. The following observations are important:



4.11 Zeros of Analyti Funtions 201(i) Consider a real-valued funtion f of a real variable de�ned byf(x) = � e�1=x if x � 00 if x < 0:For x 6= 0, it is lear that f has derivatives of all orders. In fat, it isa simple exerise to see that f is in�nitely di�erentiable at all pointsof R and, in partiular,f (n)(x) = 0 for x � 0 and all n = 0; 1; 2; : : : :However, f(x) does not vanish in R. Thus, in the ase of real-valuedfuntions the behavior of in�nitely di�erentiable funtions in one re-gion of its domain of de�nition has no e�et on its behavior on someother region. However, the Uniqueness theorem shows that this is notthe ase with funtions of a omplex variable as we shall soon see itsremarkable role in a number of elementary onnetions as well.(ii) The hypothesis that the limit point a lies in D is not superuous. Forexample, onsider f(z) = sin� 11� z� :Then, f 2 H(�) and the zeros of f are given by z = 1 � 1=(n�)(n 2 Z). But the zeros of f that lie inside � arezn = 1� 1n� (n 2 N)and zn ! 1 as n !1 yet, f(z) 6� 0. Obviously, f is not analyti at1 and 1 62 �.(iii) Consider f(z) = exp (z=(1� z))�1 for z 2 �. Then, f 2 H(�). Thezeros of f are obtained from solving z=(1� z) = 2n�i: This giveszn = 2n�i1 + 2n�i (n 2 Z)so that f has in�nitely many zeros and, sine jznj < 1 for eah n 2 Z,it follows that eah of them lies inside �. In fat,����zn � 12 ���� = 12 �����1 + 2n�i1 + 2n�i ���� = 12whih implies that the zeros of f atually lie in � \ ��(1=2; 1=2).Thus, f(z) 6� 0 and yet f has in�nitely many zeros in � on whih fis analyti. Obviously, f is not analyti at z = 1 and the point 1 isa limit of point of the above sequene of zeros of f . In fat, we mayrewrite f(z) as f(z) = e�1 exp� 11� z�� 1:



202 Complex IntegrationThe reader with knowledge of isolated singular points an quiklyreognize the point z = 1 as an essential singularity of f and also ofthe funtion f onsidered in (ii).(iv) From the last two examples in (ii) and (iii), we also observe that thereare non-onstant analyti funtions in � having in�nitely many zerosin �. �A diret onsequene of Theorem 4.103 is that if a set of zeros of ananalyti funtion in a domain D ontains an in�nite sequene of distintpoints that has its limit point inD, then the funtion is identially zero inD.Sets suh as an interval (a; b) of R and an open disk in C always an ontainan in�nite sequene of points that onverges in the set itself. Consequently,the Uniqueness theorem is often helpful in heking the validity in theomplex plane of ertain funtional identities known to be true in R or inan open subset of R. For instane, onsiderf1(z) = sin2 z + os2 z � 1 and f2(z) = osh2 z � sinh2 z � 1:We know from elementary mathematis that the identitiesf1(z) = 0 and f2(z) = 0(4.105)hold when z is real. Sine trigonometri funtions sin z; os z; osh z andsinh z are all entire, both f1 and f2 are analyti in C . Sine the x-axisontains a sequene of distint points (for example 1=n, �1=n) onvergingto an element in it, the Uniqueness theorem immediately shows that theidentities in (4.105) hold for all z 2 C (Note that every point of R is a limitpoint).Similarly, we an easily derive the following identities as easy onse-quenes of the Uniqueness theorem:1 + tan2 z = se2 z; for all z 2 C n f(2k + 1)�=2 : k 2 Zg ;1 + ot2 z = s2 z; for all z 2 C nfk� : k 2 Zg;1� tanh2 z = seh 2z; for all z 2 C n f(2k + 1)�i=2 : k 2 Zg ;1 + sh 2z = oth2 z; for all z 2 C nfk�i : k 2 Zg;(see also Setion 3.4). Another interesting identity we derived earlier in(3.78) is ez1+z2 = ez1 � ez2 :Assume that this holds when z1 and z2 are real. Then to hek the validityof this for all z1 and z2 in C , using the Uniqueness theorem, we proeed asfollows: Let z2 = x2, a �xed real and z1 = z, a omplex variable. Thenez+x2 = ez � ex2



4.11 Zeros of Analyti Funtions 203holds when z is real and so, by the Uniqueness theorem, this identity istrue for all z 2 C . Fixing z as z1, in partiular, ez1+x2 = ez1 � ex2 : Thisbeing true for all real x2, it follows, by the same argument thatez1+z = ez1 � ez for all z 2 C :Taking z = z2 we get ez1+z2 = ez1 � ez2 : Similarly, it an be seen thatsin(z1 + z2) = sin z1 os z2 + os z1 sin z2os(z1 + z2) = os z1 os z2 � sin z1 sin z2;whih hold for all real values of z1 and z2, ontinues to hold for omplexvalues of z1 and z2.At this point we remind the reader that not all the familiar propertiesof the funtions sin, os, tan et. as funtions of a real variable remain truewhen these are viewed as funtions of a omplex variable. We know thatsinx and osx are bounded by 1 for all real x. On the other hand if y > 0we haveos(iy) = ey + e�y2 > 1 + y22 and j � i sin(iy)j = ey � e�y2 > ywhih shows that there exists no onstant K for whih j os zj < K andj sin zj < K in C .Our next example deals with the binomial expansion. Letf(z) = 1(1� z)k+1 ; and g(z) =Xn�k�nk�zn�k:Then, from real variable alulus, we know that f(z) � g(z) = 0 whenz = x is real and jxj < 1. Clearly f is analyti for z 2 C nf1g. The radiusof onvergene of the series with sum g is 1. Therefore, in partiular, fand g are analyti for z 2 �. The Uniqueness theorem immediately yieldsf(z) = g(z) for all z 2 �, i.e.1(1� z)k+1 =Xn�k�nk�zn�k for all z 2 �:Using the same method, we an obtain a generalized version of thebinomial expansion(1� z)a = 1� az + a(a� 1)2! z2 + a(a� 1)(a� 2)3! z3 � � � � ; jzj < 1;where a is an arbitrary omplex number (see also Theorem 3.112).Proof of Theorem 4.103. Let fzng be a sequene of zeros of f in Dsuh that zn ! z�, where z� is also a point in D. Then we note that, sinezn ! z�, f(zn) = 0 for all n, and f is ontinuous at z�,f(z�) = limn!1 f(zn) = 0:



204 Complex IntegrationThen, by Theorem 4.102, either f(z) � 0 in a neighborhood of z� or f(z) 6=0 in some puntured neighborhood �(z�; Æ) nfz�g � D. The seond partof the statement ontradits f(zn) = 0 sine, for suÆiently large n, znlies in this puntured neighborhood of the limit point z�. So we must havef(z) � 0 in any disk �(z�;R) � D.To omplete the proof we have to show that f(z) � 0 in the whole ofD, and for this we split D into two sets:A = f� 2 D : � is a limit point of SgB = f� 2 D : � 62 Ag;where S is the set of zeros of f in D. ThenD = A [ B and A \B = ;:Let � 2 A. Then, sine � 2 A is a limit point of S, f(z) � 0 in a neigh-borhood of �. Thus eah point in A is an interior point of A. Indeed, ifz0 2 �(�; Æ) for some Æ > 0, then jz0 � �j < Æ. Set� = Æ � jz0 � �j and z 2 �(z0; �), i.e. jz � z0j < �:Then jz � �j � jz � z0j+ jz0 � �j < �+ jz0 � �j = Æ:It follows that �(z0; �) � �(�; Æ); so A is open and is non-empty, by hy-pothesis.To show B is open, let � 0 2 B. Sine � 0 is not a limit point of S, byontinuity of f at � 0, there exists Æ > 0 suh that f(z) 6= 0 throughout�(� 0; Æ) � D. Sine D is onneted and nonempty, it annot be written asthe union of two non-empty disjoint open sets. Hene we must have eitherA = ; or B = ;. But by hypothesis z� 2 A. It now follows that A 6= ; andtherefore B = ;.Thus A = D and every � 2 D is a limit point of the zeros of f so thatf � 0 in D.The following result is also referred to as the Uniqueness theorem whihis onsidered to be a fundamental result for an introdution to the oneptof analyti ontinuation (see Chapter 10).4.106. Theorem. Suppose that f and g are analyti in a domainD. If S, the set of zeros of f � g in D, has a limit point z� in D, thenf(z) � g(z) in D.Proof. Apply Theorem 4.103 to h = f � g.4.107. Example. The Uniqueness theorem provides another exam-ple of fundamental di�erenes between omplex-valued funtions and real-valued funtions. For example, for k 2 N, de�ne fk : R ! R byfk(x) = �x2k sink(2�=x) for x 6= 00 for x = 0:



4.11 Zeros of Analyti Funtions 205Then, for eah k, fk is ontinuously di�erentiable on R and fk(1=n) = 0for all n 2 N, yet fk and fm are distint funtions for k 6= m.Next, we onsider a new funtion gk : C ! R de�ned by gk(z) = fk(jzj);where fk is as above. Then, for eah k, gk is ontinuous in C and gk(1=n) =0 for all n 2 N, yet gk and gm are distint funtions in C for k 6= m. Thisexample demonstrates that two di�erent ontinuous funtions in a domainD an assume the same values on an in�nite set whih has a limit pointin D. It follows that the Uniqueness theorem does not hold for ontinuousfuntions. �4.108. Corollary. Suppose that f and g are analyti in a domainD suh that f(z)g(z) = 0 for eah z 2 D. Then either f(z) = 0 for z 2 Dor g(z) = 0 for eah z 2 D.Proof. Suppose that f(a) 6= 0 for some a 2 D. Then, by the ontinuityof f , there exists a disk �(a; Æ) � D suh that f(z) 6= 0 in �(a; Æ). Butthen g(z) = 0 for all z 2 �(a; Æ). By the Uniqueness theorem, g(z) � 0 inD. 4.109. Corollary. Suppose that f is analyti in a domain D andf 0(z) = 0 in some disk ontained in D. Then f(z) is onstant in D.Proof. By Theorem 3.31, f is a onstant in a disk D1 � D, say .Therefore, every point of D1 is a limit point of fz : f(z)�  = 0g. By theUniqueness theorem, f(z)�  = 0 throughout D.4.110. Example. Let S = f1=n : n = 1; 2; : : : g. Then S � [0; 1℄and S has a limit point 0.(i) Suppose that f 2 H(C ) and f(z) = os z for z 2 S. Then by theUniqueness theorem, sine 0 2 C , f(z) = os z in C . Note that f isdetermined throughout C just by its values at the points 1=n.(ii) Let f(z) = e2�i=z � 1, z 6= 0. Then f is analyti for all z 2 C nf0gand f(zn) = 0 for zn = 1=n, n 2 Z. Even though zn ! 0 as n !1,we annot laim f(z) � 0, sine the ondition that the limit point 0must lie in C nf0g is not satis�ed. Notie that zn is an isolated zeroof f for eah n = 1; 2; : : : whereas 0 is not in C nf0g. In this example,f annot even be de�ned at z = 0 so as to make f to be ontinuousat 0. Similarly, the funtion F de�ned by F (z) = sin(�=z) for z 6= 0,is analyti in C nf0g and F (1=n) = 0 for n 2 Z. Is F identially zero?Is it possible to extend F to make it ontinuous at 0?(iii) Let f(z) = expfLog zg. Sine Log z is seen to be analyti in D�,where D� = C nfz = x : x � 0g, f is analyti in D�. We know thatexpfLog zg = z for z = x > 0. Therefore, we haveexpfLog zg = z for z 2 D�;



206 Complex Integrationas we have obtained this fat earlier but by a di�erent approah. �In general, using the Uniqueness theorem, we onlude the following:4.111. Corollary. If f1(z), f2(z), : : : are analyti funtions de�nedin a domainD and satisfy a ertain algebrai identity (or funtional identitysuh as in (4.105)) on a set with a limit point in its domain of analytiity,then these funtions satisfy the same identity throughout the domain ofanalytiity.4.112. Example. If f 2 H(�) and jf(z)j � 1� jzj in �, then it iseasy to see that f(z) = 0 in �. Indeed, if a 2 �r (0 < r < 1) is �xed, then,by the Cauhy integral formulaf(a) = 12�i Zj�j=r f(�)� � a d� = 12� Z 2�0 f(rei�)rei�rei� � a d�so that the standard estimate (see Theorem 4.9(iv)) givesjf(a)j � (1� r)rr � jaj ! 0 as r ! 1:Thus, f(z) = 0 on �r as a is arbitrary. By the Uniqueness theorem,f(z) = 0 on �. �By the method of proof of Theorem 4.103, we next show that an analytifuntion in a domain annot vanish together with all its derivatives at somepoint inside the domain unless it is identially zero.4.113. Theorem. (Uniqueness Theorem for Power Series) Let fbe analyti in a domain D. Suppose that at some point a 2 D, f (n)(a) = 0for all n = 0; 1; 2; : : : . Then, f(z) � 0.Proof. Let a 2 D. There exists an r > 0 suh that �(a; r) � D. ByCorollary 4.95, f(z) =Xn�0 f (n)(a)n! (z � a)nholds for z 2 �(a; r) � D so that, by hypothesis, f(z) = 0 on �(a; r);whih in turn implies that f(z) � 0 on D by Theorem 4.103.We now disuss analyti funtions in relation to the simple operation ofmultipliation on their Taylor series.



4.12 Laurent Series 2074.114. Theorem. Suppose that the power series Pn�0 anzn andPn�0 bnzn are onvergent for jzj < R1 and jzj < R2 with sums f(z) andg(z), respetively. Then, we havef(z)g(z) =Xn�0 nzn; n = nXk=0 akbn�k; for jzj < minfR1; R2g = R:Proof. By Theorem 3.71, f and g are analyti for jzj < R withan = f (n)(0)=n! and bn = g(n)(0)n!and fg is analyti for jzj < R. Therefore, by the Cauhy produtf(z)g(z) =Xn�0 nznonverges for jzj < R and hene is analyti. Thus, by Taylor's theoremn = (fg)(n)(0)n! = nXk=0 akbn�k = nXk=0 1n! n!k!(n� k)!f (k)(0)g(n�k)(0):4.12 Laurent SeriesSuppose that f is not de�ned, or is not analyti, at a point a. Then,we annot express it in a neighborhood of a as a onvergent power seriesexpansion of the form f(z) =Pn�0 an(z� a)n; for, if we ould do so then,by Theorem 3.71, f would be analyti at a.For instane, onsider f(z) = sin(1=z): The series representation for fis obtained by onsidering the series for sin z and replaing z by 1=z, whihgives a series involving negative powers of z:f(z) = 1z � 13! 1z3 + � � � ; z 6= 0:It onverges for all z with z 6= 0. More generally, a series of the formXn�0 bn(z � a)�n(4.115)an be thought of as a power series in the variable 1=(z � a). Letting� = 1=(z � a), the above series beomes an ordinary power series in �:Xn�0 bn�n:(4.116)The next theorem shows how the properties of power series in negativepowers suh as (4.115) an be dedued from the orresponding propertiesof ordinary power series. In view of (4.116) and Theorem 3.64, we have4.117. Theorem. Let r = r�1� = lim supn!1 jbnj1=n.



208 Complex Integration(i) If r = 0, then the series (4.115) onverges absolutely for every z 2C1 nfag.(ii) If 0 < r < 1, then the series (4:115) onverges absolutely for all zwith jz � aj > r, the onvergene being uniform on jz � aj � � > rand diverges for jz � aj < r.(iii) If r =1, then the series (4:115) diverges for all �nite z.We say that an \in�nite series" of the form P1n=�1An onverges toa limit L i� both Pn�0An and Pn�1A�n onverge and the sum of theirlimit is L. Equivalently, we say that the double seriesP1n=�1An onvergesto L i� given � > 0 there exists an N suh that����� mXk=�nAk����� < � whenever m;n � N:It is important to observe that m and n are independent here. In fat, theexistene of the limit limn!1Pnk=�n Ak does not in general imply that theorresponding double series P1n=�1An onverges.Let R�1 = lim supn!1 janj1=n and r = r�1� = lim supn!1 jbnj1=n andsuppose that 0 < R; r <1. Then, by Theorems 3.64 and 4.117, the seriesf1(z) =Xn�0 anzn = a0 +Xn�1 anznonverges absolutely for jzj < R and diverges if jzj > R, whilef2(z) =Xn�0 bnz�n = b0 + Xn��1 b�nznonverges absolutely for jzj > r and diverges if jzj < r. So there is anon-empty region of onvergene for the series of the formf(z) = 1Xn=�1Anzn; An =8<: an if n � 1a0 + b0 if n = 0b�n if n � �1 ;(4.118)i� r < R. That is, the ombined series (4.118) onverges for all z in theommon region 
 = fz : r < jzj < Rg. At eah point lying outside region
 the ombined series is divergent, sine the series de�ned by the sum f1(z)or f2(z) is divergent. Also, by Theorems 3.71 and 4.117, we note that f1and f2 are both analyti in the respetive domain of onvergene. So theombined series de�ned above represents an analyti funtion in the annularregion 
 . Conversely if f is analyti in 
 for some 0 � r < R � 1, thenf has suh a series expansion of the form (4.118) valid in 
 (see Theorems3.71 and 4.123).
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Figure 4.24: Desription for Laurent's series.4.119. Remark. By Theorem 3.64, f1 onverges uniformly for jzj �� < R and by Theorem 4.117, f2 onverges uniformly for jzj � �0 > r.Sine both series onverge uniformly for all z satisfying �0 � jzj � �, theseries de�ned by (4.118) onverges uniformly to f for �0 � jzj � �. �A Laurent series about a is a series of the form1Xn=�1An(z � a)n :=Xn�0An(z � a)n +Xn�1A�n(z � a)�nwhih represents an analyti funtion in the annulus r < jz � aj < R. Thenumbers An are the orresponding oeÆients about a. The series of theform (4.118) is then a Laurent series about z = 0.As a motivation for a Laurent series we onsider the funtionf(z) = 1(z � a)(z � b) ; a 6= b:(4.120)Then, f is analyti everywhere exept at z = a; b and therefore, we areunable to express it in the neighborhood of a as a onvergent series ofpositive powers of z � a. To obtain a Laurent series for f about z = 0, werewrite (4.120) as (see Figure 4.24)f(z) = 1a� b � 1z � a � 1z � b� :If 0 < jaj < jzj < jbj (so that jz=bj < 1; ja=zj < 1),f(z) = 1a� b 241z Xn�0�az�n � 1bXn�0�zb�n35



210 Complex Integration= 1a� b 24Xn�1 an�1zn �Xn�0 znbn+135= 1a� b 24 Xn��1 a�n�1zn �Xn�0 znbn+135 :This may be written asf(z) = 1Xn=�1Anzn; An = 8>><>>:� 1(a� b)bn+1 if n � 01(a� b)an+1 if n � �1:(4.121)Note that the expression in (4.121) involves both positive and negativepowers of z and (4.121) is the Laurent series of (4.120) valid for 0 < jaj <jzj < jbj.If jzj > jbj > jaj (so that jb=zj < 1, ja=zj < 1), then we havef(z) = 1a� b 24Xn�0 anzn+1 �Xn�0 bnzn+135 = 1a� b 24Xn�0 an � bnzn+1 35 :For example, we also note that1z ; 1(z � 1)2 ; 1(z � 2)3 + 1(z � 2)2 + (z � 1)2;are themselves the Laurent expansion around 0, 1 or 2 as the ase may be.4.122. Example. Consider the series1Xn=�2004 znn2 = �1Xn=�2004 znn2 + 1Xn=1 znn2 :We note that the �rst series on the right (whih ontains only a �nitenumber of terms) onverges for all z 6= 0 whereas the seond series onvergesfor jzj < 1, diverges for jzj > 1 and onverges for all z with jzj = 1. Thus,the given double series onverges for all 0 < jzj � 1 and diverges for jzj > 1.On the other hand if we onsider1Xn=�1; n6=0 znn2 = 1Xn=1 z�nn2 + 1Xn=1 znn2 ;then it follows that the �rst series on the right onverges for jzj � 1 whereasthe seond series onverges for jzj � 1 so that (the ombined series) thedouble series onverges only for jzj = 1. �



4.12 Laurent Series 211We next diret our attention to obtain an analogue of the Cauhy-Taylorrepresentation theorem whih shows that a funtion analyti in an annulus,say D = fz : R1 < jz � aj < R2g, an be expanded into a Laurent serieswhih onverges to the funtion for every z in the annulus D.4.123. Theorem. (Laurent's Theorem) If f is analyti in the an-nulus: R1 < jzj < R2 (where 0 � R1 < R2 � 1), then f has a uniquerepresentation f(z) =Pn2Zanzn for any z in the annulus, wherean = 12�i ZC f(�)�n+1 d�; n 2 Z;(4.124)with C = f� : j�j = rg and R1 < r < R2.4.125. Corollary. If f is analyti in the annulus: R1 < jz�aj < R2(where R1 � 0); then, for any z in the annulus, f has a unique representa-tionf(z) = 1Xn=�1 an(z � a)n; an = 12�i Zj��aj=r f(�)(� � a)n+1 d� (n 2 Z);with R1 < r < R2.Before proving Theorem 4.123, we note that the above orollary is aonsequene of applying this result to g(z) = f(z+ a), whih is analyti inthe annulus R1 < jzj < R2.Laurent's theorem ontinues to hold if R1 = 0 or R2 = 1 or both. Inase R1 = 0, the Laurent series represents an analyti funtion in a deletedneighborhood: �(a;R2) nfag = fz : 0 < jz � aj < R2g. When R2 = 1and R1 > 0, the series represents the funtion in a deleted neighborhood ofin�nity: [�(a;R1)℄= fz : jz � aj > R1g. When R1 = 0 and R2 = 1, wesay that the series represents the funtion in the puntured plane namely,fz : jz � aj > 0g.Proof of Theorem 4.123. For a given z in the annulus R1 < jzj < R2,hoose r1 and r2 suh that R1 < r1 < jzj < r2 < R2 andCm = f� : j�j = rmg for m = 1; 2;the positively oriented irles. Note that z lies between C1 and C2. Bymaking two ross-uts from C1 to C2 avoiding the point z, we have (seeFigure 4.25) ZC2 f(�)� � z d� = Z f(�)� � z d� + ZC1 f(�)� � z d�(4.126)
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Figure 4.25: Annulus region.where  is a small irle ontaining the point z inside . Here the ontribu-tions to the integral of the urve along the ross-uts anel in pairs. But,by the Cauhy integral formula,Z f(�)� � z d� = 2�if(z):Hene, (4.126) beomesf(z) = 12�i ZC2 f(�)� � z d� � 12�i ZC1 f(�)� � z d�:(4.127)Proeeding exatly as was done in proving Taylor's theorem, on C2, wehave (see Weierstrass' Theorem, namely Theorem 4.85)12�i ZC2 f(�)� � z d� =Xn�0� 12�i ZC2 f(�)�n+1 d�� zn =Xn�0 anzn(4.128)with an = 12�i ZC2 f(�)�n+1 d� for n = 0; 1; 2; : : : :(4.129)Now, � 1� � z = 1z � 11� �=z =Xn�0 �nzn+1 = Xn��1 zn�n+1 ;(4.130)sine j�j < jzj on C1, and the onvergene is uniform in � on C1 for a �xedz. Using (4.130), we easily have� 12�i ZC1 f(�)� � z d� = Xn��1 anzn;(4.131)where an is the same as de�ned in (4.129) for n = �1;�2;�3; : : : but overthe ontour C1. Sine g(�) = f(�)=�n+1 is analyti on the annulus domain



4.12 Laurent Series 213R1 < j�j < R2, by Cauhy's deformation theorem (see Theorem 4.37), wemay replae C1 and C2 in the expression for an by C (as spei�ed in thestatement of the theorem) in the alulation of the oeÆients an. Thisobservation together with (4.128) and (4.131) shows that (4.127) beomesf(z) =P1n=�1 anzn; where an is de�ned by (4.124).The integral formula for the oeÆients, namely (4.124) allows us toshow that the Laurent series representation for a given funtion f is unique.That is to say that if we have another Laurent series expansionf(z) = 1Xn=�1 nzn for R1 < jzj < R2;(4.132)then an = n for all n, where an is given by (4.124).Now for eah n, by (4.132), (4.124) may be rewritten asan = 12�i ZC 1�n+1 ( 1Xk=�1 k�k) d� = 12�i ZC 1Xk=�1 k�k�n�1 d�:We again make use of the fat that the interhange of summation andintegral signs is permissible (see Theorem 4.85). This is beause the on-vergene of f(z) =P1n=�1 nzn in the annulus R1 < jzj < R2 implies thatit onverges uniformly along C. We also know thatZC �m d� = � 0 for any integer m 6= �12�i for m = �1:Thus, for eah integer n, we havean = 12�i 1Xn=�1 k ZC �k�n�1 � = 12�i �n ZC ��1 d�� = n:4.133. Remark. Equation (4.127) expresses atually the following:\Every analyti funtion f in the annulus R1 < jzj < R2 an be uniquelydeomposed into a sum f(z) = f�(z) + f+(z), where f+(z) is analyti forjzj < r2 (< R2), and f�(z) is analyti for jzj > r1 (> R1)". The uniquenessassertion in the proof implies that the deomposition is independent of r1and r2, so that both f+(z) and f�(z) are de�ned and analyti in the annulusR1 < jzj < R2. �4.134. Remark. The formula, for R1 < 1 < R2, gives the interestingrelation between Laurent and Fourier series expansions. Let f be analytiin some neighborhood, say D = fz : 1� � < jzj = 1 < 1 + �g, � > 0, of theunit irle jzj = 1. Then, for z in this neighborhood, we getf(z) = 1Xn=�1 anzn; an = 12�i Zj�j=1 f(�)�n+1 d� = 12� Z 2�0 f(ei�)e�in� d�:



214 Complex IntegrationIn partiular if we let f(eit) = F (t) and z = eit, we haveF (t) = 1Xn=�1 aneint with an = 12� Z 2�0 F (t)e�int dt:(4.135)The series in (4.135) is the Fourier series of F in the omplex form. �4.136. Remark. Again, we note that the part f+(z) =Pn�0 anznde�nes an analyti funtion for jzj < R2, while f�(z) =Pn��1 anzn de�nesan analyti funtion for jzj > R1. The Laurent series representation for fin two di�erent domains will, in general, be di�erent. If f is analyti atz = 0 then the orresponding f�(z) = 0 and the Laurent series beomesthe Taylor series about 0. In this ase, we have an = f (n)(0)=n!. On theother hand, we annot set an = f (n)(0)=n! in Theorem 4.117 as we did withTaylor's series representation where we had assumed that f is analyti forjzj < R for some R. In fat, f (n)(0) is not even de�ned in Theorem 4.123sine 0 is not in the annulus. Similar omments apply for the Laurent seriesabout z = a.The oeÆients an are not often obtained by using the integral formulade�ned by (4.124). Beause of the uniqueness property of the Laurent seriesexpansion, it is enough to �nd a valid expansion for the analyti funtionin the same annulus by some other easy tehniques by omputation orotherwise. Therefore, whenever possible, we an make use of a simpleknown expansion to obtain the Laurent expansion of quite ompliatedfuntions. �4.137. Example. The funtion f de�ned by f(z) = 1=z is itself aLaurent series at z = 0 in the annulus 0 < jzj < 1. To determine theLaurent expansion of f at z = a (6= 0) we proeed as follows:1z = 1z � a � � 11 + a=(z � a)�= 1z � a �Xn�0(�1)n an(z � a)n ; jz � aj > jaj;valid for jz � aj > jaj. Similarly, for jz � aj < jaj, we have1z = 1a � 11 + (z � a)=a� =Xn�0(�1)n (z � a)nan+1whih is the Taylor series expansion of f at a valid in jz � aj < jaj. �4.138. Example. Let  2 C be �xed suh that jj > 1. Let usdisuss the onvergene of1Xn=�1 fn(z); fn(z) = znjnj :



4.12 Laurent Series 215Note thatXn�0 fn(z) =Xn�0�z�n = 11� z= = � z for jzj < jj:Similarly, Xn��1 fn(z) = Xm�1 1(z)m = 1z � 1 for jzj > jj�1:Therefore, the ombined seriesP1n=�1 fn(z) onverges for jj�1 < jzj < jjand diverges at various other values of z. �4.139. Theorem. If f is analyti in a neighborhood of in�nity and fis bounded there, then the Laurent oeÆients an = 0 for n = 1; 2; 3; : : : ,where eah an is given by (4:129):Proof. By hypothesis there exists R > 0 suh that f is analyti forjzj > R, and jf(z)j �M for some M > 0. Then, for r > R,f(z) = 1Xn=�1 anzn; with an = 12�i Zj�j=r f(�)�n+1 d�and therefore, we have janj � Mr�n: But r an be hosen as large as weplease; so r�n ! 0 as r !1 for n > 0, whih means an = 0 for n > 0.4.140. Example. Let � 2 R and f(z) = exp( 12�(z � z�1)). Then,f 2 H(C nf0g). Moreover,exp��z2 � =Xn�0 1n! ��z2 �n for all zand exp�� �2z� =Xn�0 (�1)nn! ��z�12 �n for all z 6= 0:Therefore, the Laurent series expansion of f in C nf0g is given byf(z) = 1Xn=�1 anzn; an = 12�i ZC f(�)�n+1 d�:(4.141)Choosing C = f� : j�j = 1g, i.e. � = ei�, 0 � � � 2�, we �nd thatan = 12�i Z 2�0 e 12 (ei��e�i�)�ei(n+1)� � iei� d� = 12� Z 2�0 ei(� sin ��n�) d�:



216 Complex IntegrationBy the hange of variable � = 2� � �, we note thatZ 2�0 sin(� sin � � n�) d� = Z 2�0 sin(� sin(2� � �) � n(2� � �)) d�= � Z 2�0 sin(2n� + (� sin�� n�)) d�= � Z 2�0 sin(� sin�� n�) d�;so that R 2�0 sin(� sin � � n�) d� = 0: This observation implies thatexp�12(z � z�1)�� = 1Xn=�1 anzn with an = 12� Z 2�0 os(� sin � � n�) d�:Now, for eah z 2 C nf0g, we an writef(z) = exp(12�z) exp(�12�z�1):(4.142)Sine the Laurent expansion is unique we may ompare the oeÆients of znin (4.141) and (4.142) to obtain (use the Cauhy produt of two onvergentseries) an = 1Xm=0 (�1)m(m+ n)!m! ��2�2m+n :Similarly, it is easy to show the following:(i) If � 2 R, then exp �12 (z + z�1)�� =P1n=�1 anzn for z 6= 0 withan = 12� Z 2�0 e� os � os(n�) d� = 1Xm=0 1(m+ n)!m! ��2 �2m+n = a�n:(ii) If � 2 R, then sinh[�(z + z�1)℄ =P1n=�1Anzn for z 6= 0, withAn = 12� Z 2�0 os(n�) sinh(2� os �) d�:Note that the Laurent oeÆients in (i) and (ii) remain unhangedwhen�n replaes n. Therefore, we an rewrite (i) and (ii) respetivelyas follows: exp�12(z + z�1)�� = a0 + 1Xn�1 an(zn + z�n)and sinh ��(z + z�1)� = A0 +Xn�1An(zn + z�n): �



4.13 Exerises 2174.143. Example. Consider f(z) = Log (zn=(zn � 1)) for jzj > 1,where n is a �xed positive integer. Write f asf(z) = Log � 11� (1=z)n�= Log1� Log (1� z�n); sine j1=zj < 1,= �1Xm=�1 1mznm; jzj > 1;whih is the Laurent expansion for f . �4.13 Exerises4.144. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) (t) = t2e2�i=t; t 2 (0; 1℄, with (0) = 0, is a Jordan ar of lass C1.(b) (t) = t2e�i=4; t 2 (0; 1℄, is a non-simple smooth ontour.() If 1 : [a; b℄! C and 2 : [a; b℄! C are two ontours, then so is thesum 1 + 2 only if 1(b) = 2().(d) The inequality jez � 1j < jzj holds for all z 2 D = fw : Rew < 0g.(e) The inequality jea�ebj � ja� bj holds for a; b 2 D = fw : Rew � 0g.(f) I = Zjzj=r jz � rj jdzj = 8r2:(g) If f is a omplex-valued ontinuous funtion on C , thenI = Zjzj=1 f(z)� f(1=z)z dz = 0:(h) If p(z) is a polynomial of degree n in z with omplex oeÆients, thenI = Zjzj=1 p(z) dz = 2�ip0(0):(i) There is an entire funtion f(z) suh that ef(z) = 25(e2z+1)= os(iz):(j) There is an entire funtion f(z) suh that ef(z) = �5(e2z�1)= sin(iz).(k) If f is analyti and nowhere zero in 
 = fz : Re z < 2003g, thenln jf j is harmoni in 
.(l) If g 2 H(�) and suh that jg(z) � zj � jzj on jzj = 1, then one hasthe estimate jg0(a)j � 1 + (1� jaj)�2 for eah a 2 �.



218 Complex Integration(m) Let � be the losed square given by fz : �5 � Re z; Im z � 5g. Then,there annot exist a funtion f whih is analyti on a domain thatontains � suh that maxz2� jf(z)j = 5 and f 00(1) = 1.(n) If f is an entire funtion suh that R 2�0 jf(rei�)j d� � r� for some �xed� > 0, and for all r > 0, then f(z) � 0 in C .(o) Let f be analyti on C nf1g suh that f(�� nf1g) � R, then f is aonstant funtion.(p) The Taylor series P1n=1 n�1(z � 3)n onverges to �Log (4 � z) forjz � 3j < 1.(q) If f(z) =P1n=0 an(z � a)n has the property that P1n=0 f (n)(a) on-verges, then f is neessarily an entire funtion.(r) If a power series P1n=0 anzn onverges for jzj < 1 and if bn 2 C issuh that jbnj < n2janj for all n � 0, then P1n=0 bnzn onverges forjzj < 1.(s) If fangn�0 is a sequene of real numbers suh that1(1� z)2 = 1Xn=0 an(z + 2)n;then the radius of onvergene of the seriesP1n=0 anzn is 3.(t) The power seriesP1n=0 an(z� a)n (a 6= 0) an onverge at z = 0 anddiverge at z = b, whenever jb� aj < jaj.(u) An entire funtion that takes real values on the real axis and purelyimaginary values on the imaginary axis must be an odd funtion:f(z) = �f(�z) for all z 2 C .(v) If f is entire and f(z) = f(�z) for all z, then there exists an entirefuntion g suh that f(z) = g(z2) for all z 2 C .(w) If f is analyti in a neighborhood �Æ of 0 and f(z) = �f(�z) forall z 2 �Æ, then there exists an analyti funtion g in �Æ suh thatf(z) = zg(z2) for all z 2 �Æ .(x) The Laurent series P1n=0 �znn! + n3zn� onverges only at z = 0 andnowhere else.(y) If f is an analyti funtion on the losed disk jzj � R for some�xed positive number R > 0, then f an never satisfy the inequality��f (n)(0)�� � n!nn for all n 2 N:(z) If f 2 H(D) and a 2 D, then the inequality jf (n)(a)j � n!nn annothold for all n � 1.4.145. Determine whether eah of the following statements istrue or false. Justify your answer with a proof or a ounterexam-ple.



4.13 Exerises 219(a) sin z = 0() z = k�, k 2 Z.(b) For z = x + iy, oshx is never zero and osh z has in�nitely manyzeros when y 6= 0.() The zeros of sin(1=z) are z = 1=n� (n 2 Z) and eah zero is isolated.(d) The Uniqueness theorem does not neessarily hold for harmoni fun-tions.(e) If the zeros of an analyti funtion are not isolated then f(z) � 0throughout the domain of analytiity.(f) If D is a domain and f 2 H(D) vanishes throughout any neighbor-hood of a point in D, then f(z) � 0 in D.(g) If D is a domain and f 2 H(D) suh that f(z) = 0 at all points onan ar inside D, then f(z) � 0 throughout D.(h) If f(z) =Pn�0 anzn onverges in �R, R > 0, suh that f2(z) = f(z)for every z in the open interval (0; R), then f(z) is either 1 or 0 forall z 2 �R.(i) If f 2 H(�) suh that f(x) = �f(�x) for every real number x in �,then f(z) = �f(�z) for all z in �.(j) There exists no funtion f that is analyti in the unit disk � suhthat f (1=n) = f (�1=n) = n�2k+1 for n = 2; 3; : : : ; where k 2 N is�xed.(k) There exists a funtion f that is analyti in a neighborhood of z = 0suh that f (1=n) = f (�1=n) = n�2k for all suÆiently large n, wherek 2 N is �xed.(l) There exists an analyti funtion in the unit disk � suh thatf � 12n� = f � 12n+ 1� = 1n for n � 2:(m) There exists an analyti funtion f in � suh that f (1=n)) = (n +1)=(n� 1) for n � 2:(n) There exists an analyti funtion f in � suh that f (in=n) = �n�2for n � 2:(o) There exists no analyti funtion f in � suh that f(z) 6� 0 andf (nin=(n+ 1)) = 0 for n � 1:(p) There exists an analyti funtion f in � suh that f(�1=2) = 3,f �n�2� = 5 for n � 2:(q) Suppose that f; g 2 H(�), and neither f nor g has a zero in �. If(f 0=f)(1=n) = (g0=g)(1=n) for all n = 2; 3; : : : ; then f(z) = g(z) in� for some onstant .(r) If f 2 H(�), fzngn�1 is a sequene of non-zero omplex numberssuh that zn ! 0 as n! 1 and f(zn) = f(�zn) for all n 2 N, thenf is even.



220 Complex Integration(s) If fzngn�1 is a sequene of distint omplex numbers in � suh thatzn ! 0 as n!1, there exists an entire funtion f suh that f(zn) =zn for all n 2 N and f(5) = 0.(t) If f and g are entire funtions whih agree on some interval [a; b℄ � R,then f(z) = g(z) in C .4.146. Compute Ij = Rj jzj2 dz; j = 1; 2; 3; 4; where(a) 1(t) = a os t+ ib sin t; a; b 2 R; 0 � t � 2�(b) 2(t) = t2 + it; 0 � t � 1() 3(t) = ( t if 0 � t � 1�iei�t=2 if 1 � t � 2(d) 4(t) = it; 0 � t � 1(e) 5(t) = t+ it3; 0 � t � 1.4.147. Compute Rj jzj2 dz, j = 1 to 7, over the same paths used inExample 4.6.4.148. For  = fz : jzj = 1g, evaluate the following integralsZ dzjzjn ; Z jdzjzn ; Z(z)n dz; Z(z)n jdzj; Z Re zz � � jdzj; Z Im zz � � jdzjwhere n 2 N is �xed, and j�j 6= 1.4.149. Let f 2 H(�) and have no zeros in �. Suppose that(i) jf(ei�)j �M1 for ��=2 � � � �=2 and,(ii) jf(ei�)j �M2 for �=2 � � � 3�=2.Find an upper bound for jf(0)j.4.150. Let f be analyti inside and on the square Q entered at theorigin. Suppose that jf(z)j � Mj for eah z 2 Sj (1 � j � 4), where Sjdenotes the enumeration of its sides. Show that jf(0)j � 4pM1M2M3M4.4.151. Let f 2 H(�). Using the Cauhy integral formula for deriva-tives, evaluate the following integrals:I = Z 2�0 f(ei�) os2(�=2) d� and Is = Z 2�0 f(ei�) sin2(�=2) d�:4.152. If f(a) = Zjzj=4 z2 + 3z � 7(z � a)2 dz for jaj 6= 4; determine f(a) andalso f 0(1 + i) and f 0(1� i).



4.13 Exerises 2214.153. Use Cauhy's theorem and/or Cauhy integral formula to eval-uate the following integrals:(a) Zjz�2j=2 Log (z + 1)z � 3 dz (e) Zjzj=1 z + 3z4 + az3 (jaj > 1)(b) Zjzj=4 z4(z � i)3 dz (f) Zjzj=2 znz � 3 dz() Zjzj=5 z + 5z2 � 3z � 4 dz (g) Zjz�1�ij=5=4 z1=2z � 1 dz4.154. If f 2 H(�) and jf(z)j � (1�jzj)�� for all z 2 � and for some� > 0, then show that there exists a positive real number M (independentof f) suh that jf 0(z)j � M(1 � jzj)���1 for all z 2 �: Does it also workfor � < 0?4.155. If f 2 H(�) and jf 0(z)j � (1 � jzj)���1 for all z 2 � andfor some � > 0, then show that jf(z)j � M(1 � jzj)�� for some M > 0,independent of f . Does it also work if � < 0?4.156. Find the radius of onvergene of the series on the right handside of (1�z)�1 Log z =P1n=0 an(z�3)n; where Log z denotes the prinipalbranh of the logarithm. Will your answer hange, if we replae Log z byanother branh of log z whose branh ut is the ray rei�=4 (r � 0), ratherthan the negative real axis.4.157. Using the Cauhy inequality, disuss the following statements:(a) There does not exist a funtion f suh that f is analyti on the loseddisk jz + 1j � 5, f 00(�1) = i and maxjz+1j�5 jf(z)j = 5.(b) Answer the same question when f 00(�1) = i with maxjz+1j�5 jf(z)j = 25as well as when f 00(�1) = 1=3 with maxjz+1j�5 jf(z)j = 5:4.158. Let f(z) = 1 + z2 + z4 + z6 + � � �, z 2 �, and fang be asequene of real numbers suh that f(z) = P1n=0 an(z � 5)n. Find theradius of onvergene of the series f(z) =P1n=0 anzn.4.159. Find the radius of onvergene R of the Taylor series, aboutz = 1, of the funtion f(z) = (1 + z3 + z6 + z9 + z12)�1:4.160. Find the Taylor expansions about 0 forf(z) = z � 1z2 � z � 1 ; h(z) = sin z1 + z2 ; and g(z) = 11� z + z2



222 Complex Integrationand determine the radius of onvergene of the orresponding series.4.161. (L'Hôspital rule) Suppose that f and g are analyti at a,g(k)(a) = 0 = f (k)(a) for k = 0; 1; 2; : : : ; n� 1 but both are not identiallyequal zero. If g(n)(a) 6= 0, show thatlimz!a f(z)g(z) = f (n)(a)g(n)(a)provided the limit on the right exists.4.162. What are the zeros of pz (if it has any)?4.163. Determine all f 2 H(�) suh that f 00(1=n) + e1=n = 0 for alln = 2; 3; : : : . Justify your answer.4.164. Suppose that f is an entire funtion suh that f 0(0) = 0 andf 00(1 + 1=n) = 7� 3(1=n) for eah n = 1; 2; 3; : : : . Find all f that satisfythese properties.4.165. Does Theorem 4.123 provide a Laurent series expansion of anybranh of log z in an annulus r < jzj < R?4.166. Find the Laurent series expansion of eah of the following:(a) f(z) = 1z(z2 + z � 2) (d) f(z) = 11 + z2 + 12 + z(b) f(z) = 1z + 1z � 2 + 1(z + 1)2 (e) f(z) = 1(z2 � 1)(z2 � 9)() f(z) = 3z � 5z2 + 5z � 6 (f) f(z) = zz2 + 7z � 8 :In eah ase, how many suh expansions are there? In whih region is eahof them valid? Find the Laurent oeÆients expliitly for eah of theseexpansions.4.167. Does tan(1=z) have a Laurent series onvergent in a region 0 <jzj < R?4.168. Let ot(�z) =P1n=�1 anzn and s(�z) =P1n=�1 bnzn. De-�ne the Laurent series expansion of ot(�z) and s(�z), on the annulus1 < jzj < 2. Evaluate the oeÆients a�n and b�n for n 2 N.



Chapter 5Conformal Mappings and M�obiusTransformations
There are ertain transformations that an be readily desribed in termsof geometri terms sine we often think of a omplex-valued funtion asa mapping from 
 � C onto another subset 
0 � C . In this hapter, weare mainly onerned with ertain geometri questions although our initialapproah will be analyti but an be easily onverted into a geometri one.Many important questions among these geometri questions are assoiatedwith M�obius transformations (also alled bilinear transformations or linearfrational transformations). The starting point for the disussion followsfrom a general theory of onformal mappings.In Setion 5.1, we introdue the basi notion of onformal mappingswhih is a diret appliation of the omplex derivative. In Setion 5.2, wedisuss a simple but important lass of onformal mappings provided by thelass of all M�obius transformations. In Setion 5.3, we study the �xed pointproperties of M�obius transformations. In Setion 5.4, we show how two dif-ferent sets of three distint omplex numbers determine M�obius transfor-mations. In Setion 5.5, we de�ne ross-ratio and prove that M�obius trans-formations preserves irles in C1 . We lose Setion 5.6 with a disussionon ertain speial mappings. More preisely, we disuss the group of (ana-lyti) automorphisms of two domains, namely, disks and half-planes, whihindiate the relationship between omplex analysis and algebra. These au-tomorphisms are the most frequently used mappings. Setion 5.7 is devotedto a disussion on symmetry with respet to irles in C1 . In partiular,we show that if T is a M�obius transformation, and a and a� are two pointssymmetri with respet to a irle K in C1 , then their images T (a) andT (a�) are symmetri with respet to the image irle K 0 = T (K) in C1 .Later in Setion 6.3, we also disuss the same problem but by a di�erentmethod.



224 Conformal Mappings and M�obius Transformations5.1 Priniple of Conformal MappingIf z1 and z2 are two nonzero omplex numbers, then we refer to the quantity�(z1; z2) = arg z2 � arg z1 = Arg �z1z2�as the oriented angle from z1 to z2 (i.e. the angle from the vetor z1 to thevetor z2), provided a suitable determination is used for their arguments.For instane,(a) if z1 = 1 + i and z2 = 1, then z2=z1 = (1� i)=2 so that�(z1; z2) = Arg �1� i2 � = ��4 = arg 1�arg (1 + i) = �Arg (1 + i) ;(b) if z1 = 1 + i and z2 = �1, then z2=z1 = (�1 + i)=2 so that�(z1; z2) = Arg ��1 + i2 � = 3�4 = arg (�1)� arg (1 + i) = � � �4 ;() if z1 = �1� i and z2 = �1, then z2=z1 = (1� i)=2 so that�(z1; z2) = ��4 = arg (�1)� arg (�1� i) = � ���3�4 �� 2�:Consider f(z) = Log z and let 
 = C nfz = x : x � 0g. We know thatf 2 H(
) and f 0(z) = 1=z 6= 0 in 
. Consider the two urves 1 and 2 in
 given by1 = fz : jzj = 1; �=4 � Arg z � �=2g = feit : �=4 � t � �=2gand 2 = fz : 1 � jzj � 3; Arg z = �=4g = ftei�=4 : 1 � t � 3g;see Figure 5.1. Clearly, these two urves interset at z0 = ei�=4. Theorresponding image urves under f(z) = Log z are�1 = fLog (eit) : �=4 � t � �=2g = fit : �=4 � t � �=2gand �2 = fLog (tei�=4) : 1 � t � 3g = fln t+ i�=4 : 1 � t � 3g;respetively. Sine 01(t) 6= 0 for �=4 � t � �=2 and 02(t) 6= 0 on 1 � t � 3,eah has a tangent at z0. The angle between them from 2 to 1 (i.e.the angle between the orresponding direted tangent lines) is 90Æ. The
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Figure 5.1: Conformality at z0 = ei�=4 for Log z.
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Figure 5.2: Tangent to the ar  at z0.image urves �1 and �2 interset at w0 = f(z0) = Log (ei�=4) = i�=4 andthe angle between them from �2 to �1 is 90Æ. Thus, the angle between1 and 2 is preserved both in sense as well as in size under the mappingf(z) = Log z. Examples of this type help us to formulate the de�nition ofonformal mappings. We start with the5.1. De�nition. Let  : (t) = x(t) + iy(t), 0 � t � 1, be a smoothparameterized urve with z0 = (t0) for t0 2 [0; 1℄. If 0(t0) 6= 0, then werefer to 0(t0) = limt!t0 (t)� (t0)t� t0 = x0(t0) + iy0(t0)as the tangent to the urve  at z0. Moreover, arg 0(t0) represents thediretion of the tangent to the urve  at z0.Thus, 0(t) is indeed the omplex representation of the usual tangentvetor. We de�ne the angle between two urves whih interset at z0 to bethe angle between their tangents.To be more preise, we need to disuss a tangent line at z0 to a di�er-entiable urve  : [0; 1℄! C where 0(t0) 6= 0 at t0 2 (0; 1), and z0 = (t0),a point on . For onveniene, we let z1 = (t0 � h) and z2 = (t0 + k).



226 Conformal Mappings and M�obius Transformations
t0 − h t0 t0 + k z0 = γ (t0)

z2 = γ (t0 + k)

z1 = γ (t0 − h)

Figure 5.3: Tangent to the ar  at z0 as h; k! 0.Consider the raysR1[z0; z1℄ = fz : z = z0 + �(z1 � z0); � � 0g= �z : z = z0 + ��z1 � z0h � ; � � 0�and R2[z2; z0℄ = �z : z = z0 + ��z2 � z0k � ; � � 0� :Now, sine 0(t0) 6= 0,limh!0� z0 � z1h = limh!0� (t0)� (t0 � h)h= 0(t0)= limk!0+ z2 � z0k= limk!0+ (t0 + k)� (t0)k ;and the rays R1 (as h! 0�) and R2 (as k ! 0+) approah the rayR(z0) = fz : z = z0 + �0(t0); � � 0gwhih is the tangent ray to  at z0. Thus if 0(t0) 6= 0, we see that, sinez0 is arbitrary, the diretion of the tangent (see Figure 5.3) is determinedby 0(t). Note that if 0(t0) = 0, the tangent at z0 is not de�ned. On theother hand, if the diretion of the tangent at t0 exists, then it is given bythe limit ei� = limt!t0 0(t)j0(t)j :The assertion now follows.5.2. Example. De�ne  : [�2; 1℄ ! C by (t) = (1 + i)(1 + t)2:Then, 0(t) = 2(1 + i)(1 + t) so that 0(0) 6= 0. Therefore, the diretion of
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Figure 5.4: Illustration for onformal map.the tangent at 0 is determined fromei� = 0(0)j0(0)j = 1 + ip2 :Thus, the angle between the diretion of the tangent and the positive realaxis is � = �=4. On the other handlimt!�1 0(t)j0(t)j = 1 + ip2 limt!�1 1 + tj1 + tj ;but limt!�1t>�1 0(t)j0(t)j = 1 + ip2 and limt!�1t<�1 0(t)j0(t)j = �1 + ip2so that  does not have a diretion at t = �1, sine 0(�1) = 0. �5.3. Proposition. Let f 2 H(
), where 
 is a domain ontaininga smooth urve  : (t); t 2 [0; 1℄;passing through a point z0 2 
 and f 0(z0) 6= 0. Then the tangent to theurve � : �(t) = f(z)jz=(t) = (f Æ )(t); t 2 [0; 1℄;at w0 = f(z0) is (f Æ )0(t0) = f 0(z0)0(t0)(5.4)(Note that urves are regarded as mappings so that the transformed urve� is simply the omposite map � = f Æ ).Proof. First we note that  is a smooth urve that passes through z0(when t = t0). If 0(t0) 6= 0, then 0(t0) determines a well de�ned tangent



228 Conformal Mappings and M�obius Transformationsvetor at z0 and, beause 0(t0) 6= 0, (t) 6= (t0) for t near t0, t 6= t0. Sowe may writef((t))� f((t0))t� t0 = f((t))� f((t0))(t)� (t0) (t)� (t0)t� t0and, if we allow t! t0, we have(f Æ )0(t0) = f 0(z0)0(t0):If 0(t0) = 0, we obtain (f Æ )0(t0) = 0 and the above formula ontinues tohold.If, in Proposition 5.3, f 0(z0) 6= 0, then the formula (5.4) gives(f Æ )0(t0) 6= 0whih determines a new tangent vetor �0(t0) at the point w0 = f(z0) =�(t0) on the transformed urve, as indiated in Figure 5.4. The relation(5.4) shows that the tangent to the image urve � depends on the tangentto the original urve  passing through z0 and the �xed omplex numberf 0(z0).An analyti mapping w = f(z) in a domain 
 that preserves the angle(both in size and in sense) at z0 is alled onformal at z0. More preisely,f(z) is said to be onformal at z0 2 
 if, whenever 1 and 2 are twoparameterized urves interseting at z0 = 1(t0) = 2(t0) with non-zerotangents, then the following holds:(i) the two transformed urves �1 = f Æ1 and �2 = f Æ2 have non-zerotangents at t0(ii) the angle from �01(t0) = (f Æ 1)0(t0) to �02(t0) = (f Æ 2)0(t0) is thesame as the angle from 01(t0) to 02(t0).If it is onformal at eah point of 
, then we say that f is onformal in 
. Afuntion that preserves the size of the angle but not sense (i.e. orientation)is said to be isogonal. An example of the latter lass of funtions is givenby f(z) = z. Indeed, if1 = ft : t � 0g and 2 = ftei�=4 : t � 0gare two urves in C , then the image urves under f(z) = z are�1 = ft : t � 0g and �2 = fte�i�=4 : t � 0g;see Figure 5.5. Although the two urves interset at an angle �=4 in eahplane, the funtion f(z) = z reverses the angle of orientation. So themapping in this ase is not onformal, but is isogonal.
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−π/4 uFigure 5.5: Demonstration for isogonal mapping.Let f 2 H(
), where 
 is a domain ontaining a smooth urve  passingthrough a point z0 2 
 where f 0(z0) 6= 0. We wish to show that thisondition is suÆient to show that f is onformal at z0. To do this, weonsider two smooth urves1 : 1(t) and 2 : 2(t); t 2 [0; 1℄;that pass through z0 = 1(t0) = 2(t0) with non-zero tangents at t0. Thenthe transformed urves�1 = f Æ 1 and �2 = f Æ 2pass through w0 = f(z0) in the w-plane when t = t0, and, by Proposition5.3, the tangents to these urves are given by�01(t0) = (f Æ 1)0(t0) = f 0(z0)01(t0)and �02(t0) = (f Æ 2)0(t0) = f 0(z0)02(t0);respetively. Note that the tangents to the transformed urves �1 and �2are obtained by multiplying the respetive tangents to 1 and 2 by thenon-zero fator f 0(z0). Thus, the arguments of both tangents are inreasedby the same angle, namely the argument of f 0(z0). Consequently,Arg ��02(t0)�01(t0)� = Arg �f 0(z0)02(t0)f 0(z0)01(t0)� = Arg �02(t0)01(t0)�so that the angle between 1 and 2 at z0 measured from 1 to 2 is equalto the angle between �1 and �2 at f(z0) measured from �1 to �2. We havein fat proved the following result.5.5. Theorem. Let f 2 H(
) and z0 2 
 suh that f 0(z0) 6= 0. Thenf is onformal at z0.



230 Conformal Mappings and M�obius TransformationsConformality is onsidered a loal property of analyti funtions. Fur-ther, sine f 0(z0) = limz!z0 f(z)� f(z0)z � z0 ;and w = f(z) maps a urve  : z(t) through z0 to another urve � : w(t) =f(z(t)) through w0 = f(z0), we havelimz!z0 ����f(z)� f(z0)z � z0 ���� = limz!z0 ����w � w0z � z0 ���� = jf 0(z0)j:This equation shows that jf 0(z0)j is a loal saling fator of the funtion atz0, and is independent of the urve . Moreover, if jz � z0j is small, thenjf(z)� f(z0)j � jf 0(z0)j jz � z0jfrom whih we see that \small" neighborhoods of z0 are mapped ontoroughly the same on�guration, magni�ed by the fator jf 0(z0)j. For exam-ple, "small triangle" ontaining z0 is mapped geometrially onto a similar"urvilinear triangle" magni�ed by the fator jf 0(z0)j. Thus, arg f 0(z0)measures the rotation while jf 0(z0)j measures (for points nearby) the mag-ni�ation or distortion of the image.5.6. Example. To see how onformality may fail at a point z0 wheref 0(z0) = 0, we onsider the funtion f(z) = z2. Then f 0(0) = 0. Now, if1 is the positive real axis from 0 to 1 and 2 is the (positive) imaginaryaxis in the upper half-plane, then f(1) = �1 is the positive real axis from0 to 1, and f(2) = �2 is the negative real axis from 0 to �1. Note thatthe angle between 1 and 2 is �=2, whereas the angle between their imageurves �1 and �2 is �. Thus, f(z) = z2 is not onformal at 0 although it isonformal at every other point of the omplex plane. To demonstrate thisfat, let a+ ib 6= 0 and onsider two smooth urves 1 and 2 given by1 = ft+ ib : t � ag; and 2 = fa+ it : t � bg:They interset at z0 = a+ib and the angle between them is �=2. Further, asf 0(z0) = 2z0 6= 0, f is onformal at z0. Then, under the mapping f(z) = z2,we havef(1(t)) = (t+ib)2 = t2�b2+2itb and f(2(t)) = (a+it)2 = a2�t2+2iat:Letting f((t)) = u+ iv, it follows that the images �1 and �2 of 1 and 2are the parabolas desribed by�1 = fu+ iv : v2 = 4b2(u+ b2)g and �2 = fu+ iv : v2 = 4a2(a2 � u)g;respetively. An inspetion of Figure 5.6 indiates that the angle between�1 and �2 at f(z0) is �=2. Note that as a and b vary, we obtain two familiesof parabolas interseting orthogonally at eah point where a+ ib 6= 0. �
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Figure 5.6: Conformality of f(z) = z2 at 1 + i.If f(z) = zn, then f magni�es the angle at z = 0 by a fator of n andmaps the disk jzj < r onto the disk jzj < rn in an n-to-one manner. Let usnow onsider a general situation.If f is analyti at z0 suh that f 0(z0) = 0, then the onformal haraterfails. Suh a point z0 is alled a ritial point of f . Let us now examinethe behavior of an analyti funtion in a neighborhood of a ritial point.More generally, let w = f(z) be analyti at z0 suh that f (k)(z0) = 0 fork = 1; 2; : : : ; n� 1 and f (n)(z0) 6= 0. We wish to show that angles are notpreserved at z0 but are multiplied by n. By hypotheses, we havef(z)� f(z0) = (z � z0)n[an + an+1(z � z0) + � � �℄ = (z � z0)ng(z)where g is analyti at z0 with g(z0) = an 6= 0. Thus,arg(w � w0) = arg(f(z)� f(z0)) = n arg(z � z0) + arg g(z):Suppose � is the angle that the tangent vetor to a smooth urve  atz0 makes with the positive x-axis, and � is the angle that the tangent tothe image urve � under w = f(z) at w0 = f(z0) makes with the positiveu-axis. If z ! z0 along , then w = f(z)! w0 = f(z0) along � so that thelast equation gives � = n�+ arg g(z0) = n�+ argan:This relation shows that the tangent to the image urve depends on thetangent to original urve as well as the order of the derivatives of f and theargument of the �rst non-zero oeÆient in the series expansion of f 0(z) atthe point in question.Let 1 and 2 be two smooth urves passing through z0 and let �1 and�2 be their respetive images under w = f(z). Suppose that the tangentto the urves k and �k make an angle �k and �k with the real axis of thez-plane and of the w-plane, respetively. Then, we have�1 = n�1 + arg an and �2 = n�2 + argan; i.e. � = n�



232 Conformal Mappings and M�obius Transformationswhere � = �1��2 and � = �1��2 are respetively the angles between theurves 1, 2 and the respetive image urves �1, �2. Now we have proved5.7. Theorem. Suppose that f is analyti at z0 and f 0(z) has a zeroof order n � 1 at z0. If two smooth urves interset at an angle � in thez-plane, then their images interset at an angle n� in the w-plane.From Theorem 5.7, we obtain that no analyti funtion an be onformalat its ritial points.5.8. Example. Consider f(z) = sin z. Then f is entire and f 0(z) =os z so that f 0(zn) = 0 for zn = (2n+1)�=2, n 2 Z. Thus, f is onformal on
 = C n f(2n+ 1)�=2 : n 2 Zg. Note that f 00(z) = � sin z and f 00(zn) 6= 0for eah n 2 Z. Aording to Theorem 5.7, the angle between any twosmooth urves interseting at zn (n 2 Z) is inreased by a fator of 2 byw = f(z). �5.9. The transformation w = sin z. First we note that sin z is pe-riodi with period 2�, sin z = � sin(�z) and sin(z + �) = � sin z. Inview of these observations, it suÆes to understand the mapping behaviorof sin z on a vertial strip of width �. Further, sin z is learly onfor-mal on D = fz : jRe zj < �=2g and maps D one-to-one onto the domainC n f(�1;�1℄ [ [1;1)g.With z = x+ iy and w = u+ iv, w = sin z givesu = sinx osh y and v = osx sinh y:(5.10)Let us disuss the behavior of w = sin z on the horizontal and vertial linesegments in 
 = fz 2 C : jRe zj � �=2g. First, we onsider the horizontalline segment Jb = fx+ iy : y = b; jxj � �=2g:By (5.10), the image of Jb is given byu = sinx osh b and v = osx sinh b (jxj � �=2):(5.11)If b = 0, then the image of the line segment J0 = [��=2; �=2℄ desribed by(5.11) redues to u = sinx and v = 0;sine osh 0 = 1 and sinh 0 = 0. As we move x from ��=2 to �=2 along theline segment J0, the image in the w-plane advanes from �1 to 1 along theline v = 0 and thus, sin(J0) = [�1; 1℄:Next we �x b 6= 0 and onsider Jb. In this ase, the image set desribedby (5.11) gives, by eliminating x,u2osh2 b + v2sinh2 b = 1(5.12)



5.1 Priniple of Conformal Mapping 233whih is the equation of an ellipse entered at the origin of the w-plane.Its major and minor axes have lengths 2 osh b and 2 sinh b, respetively.Further, the major and the minor axes lie on the u- and the v-axes, respe-tively. If b > 0, (5.11) indiates that v > 0 showing that the image of Ib forb > 0 is the upper-half of the ellipse de�ned by (5.12). Similarly, the imageof Jb for b < 0 is the bottom half of the ellipse. The images of the segmentsorresponding to �b; b 6= 0, �t together to form a omplete ellipse.Let us now disuss the image of the vertial lines. Fix a with jaj � �=2,and let Ia = fx+ iy : x = a; y 2 Rgto represent a vertial line. By (5.10), the image of Ia under w = sin z isdesribed by the onditionsu = sin a oshy; v = osa sinh y (y 2 R):(5.13)Elimination of the variable y yieldsu2sin2 a � v2os2 a = 1(5.14)whenever sin a 6= 0 and osa 6= 0. The last onditions are satis�ed when a =2f0; �=2;��=2g. We disuss separately the ase when a 2 f0; �=2;��=2g.Clearly, the loation of the image of I0 desribed byu = 0 and v = sinh y (y 2 R);is atually a parametri equation of the imaginary axis of the w-plane (assinh(R) = R). For a = �=2, the image of the line I�=2 is the set of pointsgiven by u = osh y; v = 0 (y 2 R):As we move y from 0 to1 along the line x = �=2, these equations indiatethat u moves from 1 to 1 along the line v = 0. As osh y = osh(�y), itfollows that the image of the line I��=2 is the set of points u � �1 on thenegative real axis.Next, we disuss the ase when a =2 f0; �=2;��=2g. In this ase, theimage of Ia is the hyperbola desribed by (5.14) with verties at (� sina; 0)and slant asymptotes v = �(ota)u. If 0 < a < �=2, then the �rst equationreveals that u > 0, and if ��=2 < a < 0 then u < 0. This observation showsthat for eah �xed a; 0 < a < �=2, the image of Ia is the right branhof the hyperbola ontaining the point (sin a; 0) while the image of Ia, for��=2 < a < 0, is the left branh of the hyperbola ontaining the point(� sina; 0). Then the image of the pair of vertial lines x = a and x = �awith jaj < �=2 onstitute the full hyperbola given by (5.14). Finally, themapping w = os z an be analyzed using the equationos z = sin(z + �=2):



234 Conformal Mappings and M�obius Transformations5.2 Basi Properties of M�obius MapsWhat is a M�obius transformation? They are simply a omposition of one,some or all of the following speial types of transformations.� Translation: It is a map of the form z 7! z + �, � 2 C nf0g: If � = 0,then it is an identity map.� Magni�ation: It is a map of the form z 7! rz, r 2 R n f0g: Notiethat for r = 1, this is the identity map whereas for r = 0 it is aonstant map. If r > 0, then w = rz multiplies the modulus of zby r and leaves its argument unhanged. Thus if r > 1, then this isa \magni�ation" and if 0 < r < 1, it is a \shrinking/ontration"rather than saying it a \magni�ation". If r < 0, then w = rz givesthe reetion through the origin followed by suh a \magni�ation"or \shrinking" depending on r < �1 or �1 < r < 0.� Rotation: It is a map of the form z 7! ei�z; � 2 R: This map produesa rotation through an angle about the origin with positive sense if� > 0. The rotation oupled with magni�ation is referred to asdilation: z 7! az (a 6= 0).� Inversion: It is a map of the form z 7! 1=z whih produes a geometriinversion (or reiproal map or the inversion map).M�obius transformations, named in honor of the geometer A.F. M�obius(1790-1868), are rational funtions of the formT (z) = az + bz + d (a; b; ; d 2 C ; ad� b 6= 0)(5.15)where a; b; ; d are omplex numbers suh that ad�b 6= 0: Note that (5.15)does not determine the oeÆients a; b; ; d uniquely. If we let T (z) :=Tabd(z) and if � 2 C n f0g, then �a, �b, �, �d orrespond to the sameM�obius transformation asTabd(z) = T(a�)(b�)(�)(d�)(z)so that if �2 = 1=(ad�b) then (a�)(d�)�(b�)(�) = 1: In other words, thebehavior of T does not hange when a; b; ; d are multiplied by a non-zeroonstant and thus, we may assume that ad � b = 1 whenever there is aneed for this normalization to simplify our studies. Certainly, T is analytion C n f�d=g. Note that if  = 0, then (5.15) redues toT (z) = �ad� z +� bd� := �z + � (ad 6= 0; i.e. � 6= 0):A funtion of this form is alled a linear map. Clearly, the identity trans-formation orresponds to a = d 6= 0 and b =  = 0. If  6= 0, then we an



5.2 Basi Properties of M�obius Maps 235deompose (5.15) asT (z) = �a�z + d�+ b� ad � 1(z + d=)= a ��ad� b2 � 1z + d=;  6= 0:(5.16)Thus, as mentioned in the beginning, a M�obius transformation is a om-position of magni�ation, rotation and translation, and T (z) redues toa onstant whenever ad � b = 0. So, throughout the disussion in thishapter, the ases for whih ad � b = 0 should be ruled out in order toexlude the trivial ase for whih T (z) redues to a onstant. It an bealso observed that the ondition ad � b 6= 0 is required sine otherwiseT (�d=) = 0=0, whih is unde�ned.Note also that T 0(z) exists for all z where z + d 6= 0, andT 0(z) = ad� b(z + d)2 (z 6= �d=);so that the ondition ad � b 6= 0 simply guarantees that T (z) is not aonstant. Therefore, T de�nes an analyti funtion on C nf�d=g. Clearly,T (z) is obtained by suessive appliations of the following four mappingswi = Ti(z) for i = 1; 2; 3; 4, wherew1 = z + d ; w2 = 1w1 ; w3 = ��ad� b2 �w2; w4 = T4(z) = a + w3unless  = 0 where we write T (z) = (a=d)z + (b=d): It follows that T (z) isatually given by the omposition of these simpler transformations. Morepreisely, we have T = T4 Æ T3 Æ T2 Æ T1and thus, these four types (translation, rotation, magni�ation and an in-version) generate the group of M�obius transformations. Moreover, the fun-tion w = T (z) de�ned by (5.15) an be written aswz � az + dw � b = 0and the expression on the left is linear in both variables z and w, and so,M�obius transformations are also alled Bilinear transformations. When = 0, the transformation is learly linear.5.17. Matrix interpretation and the group struture. There is astrong relationship between M�obius transformations and matries. Indeed,eah M�obius transformation of the form (5.15) an be assoiated with a2� 2 matrix via the mapz 7! A = � a b d� ! T (z):



236 Conformal Mappings and M�obius TransformationsThe M�obius transformation T0 given by T0(z) = z is the identity transfor-mation whih orresponds to the 2� 2 identity matrix. If T and S are twoM�obius transformations given byT (z) = az + bz + d and S(z) = a0z + b00z + d0 ;then the omposition T Æ S is de�ned by(T Æ S)(z) = T (S(z)) = a�a0z + b00z + d0�+ b�a0z + b00z + d0�+ d = (aa0 + b0)z + ab0 + bd0(a0 + d0)z + b0 + dd0 :Note that if A and B are the orresponding matries assoiated with thetransformations T and S, thenAB = � aa0 + b0 ab0 + bd0a0 + d0 b0 + dd0�whih implies that T ÆS orresponds to the matrix produt AB. Moreover,if detA = ad� b 6= 0 and detB = a0d0 � b00 6= 0 thendet(AB) = detA � detB = (ad� b)(a0d0 � b00) 6= 0:In partiular, we have the following simple result.5.18. Proposition. Composition of two M�obius transformations isa M�obius transformation.The fat that matrix multipliation orresponds to omposition an bereformulated in the language of group theory. Now, let GL(2; C ) denote thegeneral linear group onsisting of 2� 2 invertible matries A with omplexentries: GL(2; C ) = �A = � a b d� : a; b; ; d 2 C ; detA 6= 0� :Then, GL(2; C ) forms a subgroup of the group of all M�obius transfor-mations under the operation of matrix multipliation. If we assign eahA 2 GL(2; C ) the M�obius transformation de�ned by (5.15), then the mapA 7! TA is an isomorphism; i.e. for all A;B 2 GL(2; C ), TAÆB = TA Æ TB :Clearly, the inverse of A is 1ad� b � d �b� a �and TAÆTA�1 = TAA�1 = TI . Thus, all the (non-onstant) M�obius transfor-mations are invertible. In partiular, they are one-to-one. Indeed if  = 0,



5.2 Basi Properties of M�obius Maps 237then T (z) = (a=d)z+(b=d) whih is trivially one-to-one in C . If  6= 0 then,by (5.16), for z1; z2 2 C n f�d=g, we obtainT (z1) = T (z2) ) 1z1 + d= = 1z2 + d= ) z1 = z2:Therefore, T is 1-1 on C n f�d=g. Is a (non-onstant) M�obius transfor-mation a surjetion onto C ? Is there a point in C missing from the imageunder a M�obius transformation? As T is one-to-one, its inverse alwaysexists. The inverse of T is obtained by solving the equationw = T (z) = az + bz + d (z 6= �d=)for z. This gives z = T�1(w) = dw � b�w + a (w 6= a=)where da� (�b)(�) = ad� b 6= 0: We have5.19. Proposition. The inverse of a M�obius transformation is alsoa M�obius transformation.Moreover, T : C n f�d=g ! C n fa=g is a bianalyti (i.e. T and T�1analyti) mapping withz = T�1(w) = dw � b�w + a and T 0(z) = ad� b(z + d)2 :(5.20)This is an important property of M�obius transformations whih is quitespeial for omplex-valued funtions. The later ondition shows that theM�obius transformation T is not only a bianalyti map of C n f�d=g ontoC n fa=g but is also onformal on C n f�d=g. Is it possible to enlarge thedomain of de�nition of T in order to onsider it as a map de�ned on theextended omplex plane? Observe that if  = 0, then T maps C onto C and,T (z)!1 if and only if z !1. Thus, it makes sense to de�ne T (1) =1when  = 0. If  6= 0, then T (z) ! 1 as z ! �d= and T (z) ! a= ifz =1. In view of these observations, it is natural to introdue the limitingvalues (in the usual sense)T (1) = limjzj!1T (z) = a and �T (�d=) =1 for  6= 0T (1) =1 for  = 0:Similarly, by the �rst transformation in (5.20), we de�neT�1(1) = limjwj!1T�1(w) = �d and �T�1(a=) =1 for  6= 0T�1(1) =1 for  = 0;
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Figure 5.7: Images of disks under inversion.
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Figure 5.8: Images ertain sets under inversion.so that we onveniently regard a M�obius map T as a one-to-one mappingof the extended omplex plane C1 onto itself. Equivalently, we say that Tmaps the Riemann sphere onto itself; i.e. T de�nes a onformal self-mapof C1 . In partiular, we onlude that T (C1 ) = C1 , and for all z and win C1 , we have T�1(T (z)) = z and T (T�1(w)) = w:5.21. Images of irles and lines under M�obius maps. There aremany properties of M�obius transformations that have onsiderable impor-tane in physial appliations. Let us �rst study some basi properties ofthe inversion funtion w de�ned by w = z�1 (z 6= 0). Clearly, this funtionestablishes a one-to-one orrespondene between the non-zero points of thez, and the w-planes. To start with, we let z = rei� (r > 0, � = Arg z).Then w = 1z = 1r e�i� = zjzj2 :Under this transformation, we easily have the following (see Figures 5.7and 5.8):(i) points in the upper half-plane (Im z > 0) are mapped onto points inthe lower half-plane (Imw < 0) and vie-versa



5.2 Basi Properties of M�obius Maps 239(ii) the right half-plane (Re z > 0) is mapped onto itself(iii) the left half-plane (Re z < 0) is mapped onto itself(iv) points on the irle jzj = R are mapped onto points on the irlejwj = 1=R, the disk jzj < R is mapped onto the disk jwj > 1=R, andthe points z suh that jzj > R are mapped onto points in the diskjwj < 1=R.So, it is natural to ask the following simple question: what happens togeneral irles and straight lines under inversions, and more generally underM�obius transformations?Consider the equation in (x; y)-oordinates of the form�(x2 + y2)� 2ax� 2by = R2 � (a2 + b2) (�; a; b 2 R; R > 0)whih is a irle or a (open) straight line depending on whether � 6= 0 or� = 0. In fat � = 1 atually orresponds to the irle jz � (a+ ib)j = R,whereas � = 0 gives a line. As2x = z � z and 2y = �i(z � z);in terms of the omplex variable, we an onsider all possible irles andstraight lines in the form�jzj2 � (a� ib)z � (a+ ib)z + a2 + b2 �R2 = 0;or equivalently in the form �jzj2 + 2Re (�z) +  = 0, �;  2 R; � 2 C :5.22. Lemma. (Cirle-preserving Property) Every M�obius trans-formation maps irles and straight lines in the z-plane into irles or lines.Proof. It is quite obvious that among the four elementary transforma-tions, the three of them, namely, translation, magni�ation (saling) androtation do preserve irles and straight lines as it is lear that eah of thesethree transformations sends irles to irles and lines to lines. Therefore,from the equivalent expression for M�obius transformation given by (5.16),it only remains to verify the statement for the inversion given by w = 1=z:Every irle or line in C an be desribed in the form�jzj2 + 2Re (�z) +  = 0; �;  2 R; � 2 C :(5.23)Obviously, this is an equation of a irle if � 6= 0. To obtain the enter andthe radius, omplete the square. If � = 0, it is a straight line in C , whih isa irle through1. Now, if z 2 C nf0g and w = 1=z (w 6= 0) then z = 1=wso that (5.23) transforms to�jwj2 + 2Re � �w�+  = 0:



240 Conformal Mappings and M�obius TransformationsMultiplying both sides by ww = jwj2, this equation assumes the formjwj2 + 2Re (�w) + � = 0:(5.24)Clearly, the desired onlusion follows from (5.23) and (5.24).We observe that Lemma 5.22 neither laims that every irle in C ismapped to a irle in C nor does it laim that every line in C is mapped toa line in C . Further, from Lemma 5.22, it follows that every M�obius trans-formation, being one of four speial transformations, arries the familiesof irles in C1 onto itself. Here we regarded straight line (as a limitingase of irle) in the extended omplex plane as a irle on the Riemannsphere{using the stereographi projetion. That is to say that line on theextended omplex plane is a irle of in�nite radius (meaning that it is airle through the point at in�nity). So, we an think of irles and linesas belonging to the same lass, and reformulate Lemma 5.22 as5.25. Theorem. Every M�obius transformation maps irles in C1onto irles in C1 .It is worth it to have a bit more detail on the two equations (5.23) and(5.24).Case (i): Assume that � = 0 and  = 0. In this ase, from (5.23) and(5.24), we see that the straight line that passes through the origin givenby Re (�z) = 0 is transformed into a straight line that passes through theorigin given by Re (�w) = 0:Case (ii): Let � = 0 and  6= 0. In this ase, (5.23) is equivalent to2Re (�z) +  = 0whih is an equation of a straight line that does not pass through the origin.By (5.24), this straight line is transformed intojwj2 + 2Re (�w) = 0; i.e. ����w + � ���� = j�j ;whih is a irle passing through the origin. Note that � = 0 is not possiblein both the ases.Case (iii): Let � 6= 0 and  6= 0. In this ase, (5.23) is equivalent to����z + �� ���� =r j�j2 � ��2where j�j > �. This irle does not pass through the origin and by (5.24),the image of this irle is given by����w + � ���� =s j�j2 � �2 ; j�j2 > �:



5.3 Fixed Points and M�obius Maps 241Note that this irle does not pass through the origin. More preisely, theabove disussion leads to5.26. Proposition. Under the funtion w = 1=z, we have� the image of a line through the origin is a line through the origin� the image of a line not through the origin is a irle through the origin� the image of a irle through the origin is a line not through the origin� the image of a irle not through the origin is a irle not through theorigin.In partiular, under the inversion w = 1=z, the vertial line Re z = �(� 6= 0) maps onto the irle jw � 1=(2�)j = 1=(2j�j) while the horizontalline Im z = � (� 6= 0) maps onto the irle jw + i=(2�)j = 1=(2j�j):5.3 Fixed Points and M�obius MapsLet D be a subset of C1 and f : D ! C1 . A point z0 2 D is said to be a�xed point of f if f(z0) = z0. The set of all �xed points of f is denoted byFix (f). For example, we have(i) the funtion f(z) = z2 has exatly three �xed points, namely, 0; 1and 1 whereas the funtion f(z) = z�1 has two �xed points namely1 and �1.(ii) the funtion f(z) = z� 1 has no �xed points in C whereas it has one�xed point in C1 , namely the point at 1.(iii) the reetion z 7! z is not a M�obius transformation but f(z) = z hasall the points on R as its �xed points. What are the �xed points off(z) = iz?(iv) the funtion f(z) = iz=jzj, z 6= 0, has no �xed points in C nf0g.(v) every non-onstant real-valued ontinuous funtion f : (�1; 1) !(�1; 1) has a �xed point in (�1; 1). However, a similar result doesnot hold for funtions f : �! �. For example �� : �! �, j�j = 1,de�ned by ��(z) = z � �1� �zhas no �xed points in �.5.27. Proposition. Every M�obius transformation T : C1 ! C1has at most two �xed points in C1 unless T (z) � z. Equivalently, if aM�obius transformation leaves three points in C1 �xed, then it is noneother than the identity funtion.



242 Conformal Mappings and M�obius TransformationsProof. Suppose that T (z) = az + bz + dis suh that T (z) 6� z. ThenT (z) = z () z2 + (d� a)z � b = 0:If  6= 0, then T (�d=) = 1 and T (1) = a=, so neither �d= nor 1 is a�xed point of T . So T has at most two �xed points in this ase and theyare obtainable from the quadrati equation. If  = 0, thenT (z) = adz + bd :In this ase, T has 1 and b=(d� a) are the only �xed points.5.28. Corollary. If S and T are two M�obius transformations whihagree at three distint points of C1 , then S = T .Proof. Suppose that S(zj) = T (zj) for z1; z2; z3 in C1 . Then,(S�1 Æ T )(zj) = zj = (T�1 Æ S)(zj) for j = 1; 2; 3and, by Proposition 5.27, S�1 Æ T = I . Therefore,T = (S Æ S�1) Æ T = S Æ (S�1 Æ T ) = S Æ I = S:The following result is atually a reformulation of Proposition 5.27, butwe will provide an alternate proof beause of its independent interest.5.29. Proposition. EveryM�obius transformation whih �xes 0; 1;1is neessarily the identity map.Proof. Suppose that T is given in the form (5.15), and T �xes 0; 1;1.It follows that(i) T (1) =1 gives  = 0 whereas T (0) = 0 gives b = 0(ii) T (1) = 1 gives (a+ b)=(+ d) = 1 so that a = d, by (i).We onlude that T is the identity map.A M�obius transformation whih has a unique �xed point in C is alledparaboli. If it has exatly two �xed points, then it is alled loxodromi.5.30. Charaterizations of M�obius maps in terms of their �xedpoints. Let us haraterize a given M�obius transformation aording to its



5.3 Fixed Points and M�obius Maps 243�xed points (or point). Let S(z) 6� z be a M�obius map. It might beonvenient to use the following equivalent form:S(z) = 8>><>>: adz + bd = �z + � if  = 0a ��ad� b2 � 1z + d= =  � Æ� 1z + d=� if  6= 0;(5.31)where (for onveniene) we have used the notation� = ad ; � = bd ;  = a ( 6= 0); Æ = ad� b2 ( 6= 0):Case (i): If 1 2 Fix (S), then a= =1 (i.e.  = 0), and soS(z) = �z + �; 0 6= � 2 C ; � 2 C :(5.32)If � = 1 (i.e. a = d), then S(z) = z + � and 1 is the only �xed point. If� 6= 1 (i.e. a 6= d), then 1 and z0 = �=(1 � �) = b=(d � a) are the only�xed points. Observe thatS(z)� z0 = �(z � z0) + (�� 1)z0 + � = �(z � z0):Thus, S an be written in the form S(z) � z0 = �(z � z0), where � is aomplex number whih is neither 0 nor 1, and z0 is a �xed point of S.Case (ii): If 1 =2 Fix (S) (i.e.  6= 0), then S has at most two �xedpoints in C and are in fat obtained from solving the �xed point equationS(z) = z, i.e. z2 + (d� a)z � b = 0: This givesz0 = (a� d)�pD2 ; D = (a� d)2 + 4b = (a+ d)2 � 4(ad� b):Therefore, we need to deal with two ases, namely, D = 0 and D 6= 0. IfD = 0, then S has only one �xed point, say z0, and it is given byz0 = a� d2 ; i.e. z0 + d = a+ d2 :So, we have (z0 + d)2 = (a+ d)2=4 = ad� b: Using this we an writeS(z)� S(z0) = Æ � 1z0 + d= � 1z + d=�= (ad� b)(z � z0)(z0 + d)(z + d) (sine Æ = (ad� b)=2)= (z0 + d)(z � z0)z + d (sine (z0 + d)2 = ad� b):



244 Conformal Mappings and M�obius TransformationsTherefore, if 1 62 Fix (S) and z0 2 Fix (S) with (a+ d)2 = 4(ad� b) then,by the last equation, the M�obius transformation S redues to the expression(note that S(z0) = z0)1S(z)� z0 = z0 + d+ (z � z0)(z0 + d)(z � z0) = 1z � z0 + z0 + d = 1z � z0 + k;where k 6= 0: The disussion in Case (ii) gives5.33. Theorem. If z0 is the oinident �xed point in C of w = S(z),then 1S(z)� z0 = 1z � z0 + k; k 6= 0:This result givesS(z) = z0 + z � z01 + k(z � z0) (k 6= 0)whih is the general form of a paraboli transformation that �xes the �nitepoint z0. Also, we note that, S(z) takes 1 to z0 +1=k and z0 � 1=k to 1,whih means that z0, f(1) and f�1(1) are ollinear points in C .Finally, suppose that D 6= 0, i.e. (a + d)2 6= 4(ad � b). Then S hastwo distint �xed points in C , say z1 and z2. In this ase, we may selet aM�obius transformation T (z) suh that z1 7! 0 and z2 7! 1. This givesw = T (z) = z � z1z � z2 :Then, z = T�1(w) and f = T ÆS ÆT�1 has 0 and1 as its only �xed points.Hene, by Case (i) with z0 = 0, f(w) = �w; or equivalently,T (S(T�1(w))) = �w; i.e. T (S(z)) = ��z � z1z � z2� ;where � is neither 0 nor 1. As S(z1) = z1 and S(z2) = z2, the last expressionwould then omplete the proof of the following5.34. Theorem. Every M�obius transformation S(z) whih has ex-atly two distint �xed points z1 and z2 in C1 an be written as8><>: S(z)� z1S(z)� z2 = ��z � z1z � z2� if z1; z2 2 CS(z)� z1 = �(z � z1) if z2 =1;where � 2 C nf0; 1g.This result may be obtained from another result onerning the invari-ane property of the ross-ratio that will be disussed later, see Theorem5.39.



5.4 Triples to Triples under M�obius Maps 2455.4 Triples to Triples under M�obius MapsThe M�obius transformation given by (5.15) has four oeÆients a; b; ; d.One of them an be adjusted without hanging the transformation. Indeed,as ad� b 6= 0, both a and  annot be zero simultaneously and so, we anrewrite the homogeneous expression of the oeÆients of T (z) asT (z) = 8>><>>: z + (b=a)(=a)z + (d=a) if a 6= 0(a=)z + (b=)z + (d=) if  6= 0:In either ase, T is atually determined by only three onstants. Therefore,it is natural to expet that we require only `three degrees of freedom' todetermine T uniquely. As T maps a irle onto another irle and from ele-mentary geometry we know that just three points determine a irle. Theseobservations will be made preise in the following two results whih implythat three independent omplex parameters in C1 are suÆient to desribeM�obius maps uniquely, namely, the image of three presribed points.5.35. Theorem. Given three distint points z1; z2; z3 in C1 , thereexists a unique M�obius transformation T (z) suh thatT (z1) = 0; T (z2) = 1; and T (z3) =1:Proof. To establish the existene of suh a funtion is easy. Regardlessof the hoie of the onstant k, T : C1 ! C1 de�ned byT (z) = k�z � z1z � z3�sends z1 7! 0 and z3 7! 1. Adjust the onstant k suh that T (z2) = 1.This gives the desired mapT (z) = (z � z1)(z2 � z3)(z � z3)(z2 � z1) =: Az +BCz +D;(5.36)whenever z1; z2; z3 2 C . Note thatAD �BC = (z2 � z1)(z2 � z3)(z1 � z3) 6= 0:How do we de�ne T if any one of the zj 's is not �nite? If one of the zj 'sis 1, then the orresponding T (z) is de�ned by the natural limiting value.For example if z1 =1, then we need to write T (z) asT (z) = limz1!1 (z � z1)(z2 � z3)(z � z3)(z2 � z1) = limz1!1 [(z=z1)� 1℄(z2 � z3)(z � z3)[(z2=z1)� 1℄ = z2 � z3z � z3 :



246 Conformal Mappings and M�obius TransformationsSimilarly, we de�ne T (z) = 8>>>><>>>>: z2 � z3z � z3 if z1 =1z � z1z � z3 if z2 =1z � z1z2 � z1 if z3 =1.(5.37)Thus T (z) de�ned by (5.36) or (5.37) is the desired M�obius transformationwhih takes z1 to 0, z2 to 1 and z3 to 1.To omplete the proof, it remains to show that T is unique. Supposethat S(z) is a M�obius transformation satisfying the onditionS(z1) = 0; S(z2) = 1; and S(z3) =1:It follows that f = S Æ T�1 is again a M�obius transformation and that f�xes 0; 1;1. By Proposition 5.29, f(z) = z whih means that S = T .Note that T�1 ÆS �xes three distint points z1; z2; z3 and so, by Propo-sition 5.27, it is the identity transformation.Theorem 5.35 immediately implies an important mapping property whihasserts that three distint points uniquely determine a M�obius transforma-tion.5.38. Theorem. If fz1; z2; z3g and fw1; w2; w3g are two sets of tripletsof distint points in C1 , then there exists a unique M�obius transformationtaking zj to wj (j = 1; 2; 3) and that it is given by(w � w1)(w2 � w3)(w � w3)(w2 � w1) = (z � z1)(z2 � z3)(z � z3)(z2 � z1) :Proof. Aording to Theorem 5.35, there exists two M�obius transfor-mations S and R suh thatS(z1) = R(w1) = 0; S(z2) = R(w2) = 1; and S(z3) = R(w3) =1:They are given byS(z) = (z � z1)(z2 � z3)(z � z3)(z2 � z1) and R(w) = (w � w1)(w2 � w3)(w � w3)(w2 � w1) ;respetively. If any one of the zj 's and wj 's is 1, then the above areformally treated as a limiting ase. Now the existene of an f sending zjto wj (j = 1; 2; 3) is lear, as the M�obius transformation f = R�1 Æ S doesthe job.As for the uniqueness, suppose that there are two M�obius transforma-tions, say f and g, whih enjoy the stated property; that is (see Figure 5.9),f(zj) = g(zj) = wj for j = 1; 2; 3: Then it follows that R Æ g Æ S�1 �xes0; 1;1 and so it is the identity map. Thus, g = R�1 ÆS, whih proves thatf is unique.
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Figure 5.9: Uniqueness of f = R�1 Æ S.5.5 The Cross-Ratio and its Invariane PropertyFor the set of three distint points z1; z2; z3 of C1 , the expression(z � z1)(z2 � z3)(z � z3)(z2 � z1) = (z � z1)=(z � z3)(z2 � z1)=(z2 � z3)is alled the ross-ratio of the four points z; z1; z2; z3 and is denoted by(z; z1; z2; z3), where if one of the four points is 1, the fators ontainingit should be omitted (see the limiting form in (5.37)). Considering z as avariable point and treating the three distint points z1; z2; z3 as �xed om-plex numbers in C1 , we obtain that the ross-ratio (z; z1; z2; z3) is preiselythe M�obius transformation whih sends z1; z2; z3 into 0; 1;1, respetively.In view of the uniqueness of the map as desribed in Theorem 5.35, theross-ratio is well de�ned. Also, we observe that(z; z1; z2; z3) = (z1; z; z3; z2) = (z2; z3; z; z1) = (z3; z2; z1; z):Note that there are 4! = 24 ross-ratios orresponding to the permutationsperformed on the four points z; z1; z2; z3. But it an be easily seen thatonly six of these are di�erent. In addition, we stress that a ross-ratio(z4; z1; z2; z3) assoiated with four distint points z4; z1; z2; z3 in C1 is a�nite quantity di�erent from 0 and 1.The invariane of ross-ratios under M�obius transformations is the sub-jet of our next result whih provides a way to represent a M�obius trans-formation that arries three distint points to presribed image points w1,w2 and w3.5.39. Theorem. The ross-ratio is invariant under M�obius transfor-mations.Proof. Let w = S(z) be a M�obius transformation de�ned by (5.31).Let fz1; z2; z3g be a set of three distint points in C1 , and let fw1; w2; w3g



248 Conformal Mappings and M�obius Transformationsbe their images under this map, i.e. wj = S(zj) for j = 1; 2; 3. Now, foreah j = 1; 2; 3, we havew � wj = 8><>: �(z � zj) if  = 0Æ(z � zj)(z + d=)(zj + d=) if  6= 0;where � = a=d and Æ = (ad� b)=2. Therefore, it follows easily that(w;w1; w2; w3) = (w � w1)(w2 � w3)(w � w3)(w2 � w1)= (z � z1)(z2 � z3)(z � z3)(z2 � z1)= (z; z1; z2; z3)as asserted.5.40. Example. Let us �nd the M�obius transformation whih sends0 to 1, i to 0 and 1 to �1. To do this, for z =2 f0; i;1g, we may appeal to(z; 0; i;1) = (w; 1; 0;�1); i.e. z � 0i� 0 = (w � 1)(0 + 1)(w + 1)(0� 1)and so, we arrive at the formula w = (1 + iz)=(1 � iz): There is a diretapproah to problems of this type. Sine i 7! 0, we an normalize a to be1 and write the M�obius transformation in the formw = z � iz + d :The onditions 0 7! 1 and 1 7! �1 yield1 = � id and � 1 = 1 ; i.e. d = �i and  = �1:The desired formula follows. �5.41. Example. To demonstrate Theorem 5.34, we onsider w =T (z) = 1=z. Then the �xed points of T (z) are z1 = 1 and z2 = �1. Notethat w1 = T (z1) = 1, w2 = T (z2) = �1. Selet the third point z3 distintfrom z1 and z2 suh that T (z3) 6= 1. Beause 1 7! 1, �1 7! �1 andz3 7! w3, by the invariane property of the ross-ratio,[w; 1; w3;�1℄ = [z; 1; z3;�1℄so that(w � 1)(w3 + 1)(w + 1)(w3 � 1) = (z � 1)(z3 + 1)(z + 1)(z3 � 1) ; i.e. w � 1w + 1 = ��z � 1z + 1�



5.5 The Cross-Ratio and its Invariane Property 249for some � 2 C . To �nd �, substitute z = i (so that w = �i) into thisequation. This gives � = �1. Note that the hoie z = 0, and w = 1quikly gives � = �1. �5.42. Remark. Suppose that z; z1; z2; z3 are four distint points inC1 and one of them is 1, say z1. Then,(z;1; z2; z3) is real () z2 � z3z � z3 = 1t for some real t() (1� t)z3 + tz2 = zshowing that, (z;1; z2; z3) is real i� z;1; z2 and z3 are on a line through1. Next, we reall that the equation arg(z � b) = � (a onstant) de�nesa half straight line issued from the point b 2 C . If a 2 C also lies on thisline, then arg(a� b) = � and therefore,z � ba� b = t; or z = ta+ (1� t)b, for some real t:This observation implies that if z1; z2; z3 are distint and lie on a line Lin C , then we see that the quantity (z2 � z3)=(z2 � z1) is a real number.Consequently,(z; z1; z2; z3) is real () 1� z1=z1� z3=z is real() either z =1 or z � z1z � z3 = 1� 1s for some s 2 R() either z =1 or z = sz1 + (1� s)z3:The last impliation learly shows that if we assume that z1; z2; z3 aredistint and lie on a line L in C , then the ross-ratio (z; z1; z2; z3) is a realnumber i� either z =1 or z is on the line L. �5.43. Theorem. The four distint points z; z1; z2; z3 in C1 all lie ona irle or on a line i� their ross-ratio (z; z1; z2; z3) is a real number.Proof. Suppose that z; z1; z2, and z3 are four distint points in C1 andw = T (z) = (z; z1; z2; z3):As (w; 0; 1;1) = w, the last equation is equivalent to writing(w; 0; 1;1) = (z; z1; z2; z3):But we know that T maps generalized irles into generalized irles andthe points 0; 1;1 are ollinear points so that the real axis in the w-planeis the image of the line or irle through the points z1; z2; z3, respetively.Therefore, the point z is on this line or irle i� w = T (z) is real. In otherwords, (z1; z2; z3; z4) 2 R i� z1; z2; z3, and z4 lie on a generalized irle.



250 Conformal Mappings and M�obius Transformations5.6 Conformal Self-maps of Disks and Half-planesOur results in this setion mainly will be of the following type: Giventwo simply onneted domains 
 and 
0, onstrut an analyti onformalmapping from 
 onto 
0. An analyti map f : 
 ! 
0 is said to behomeomorphi if it has an analyti inverse map g : 
0 ! 
, i.e. f Æ g =I
 and g Æ f = I
0 . In addition, if 
 = 
0 then we say that f is anautomorphism of 
. More preisely, a onformal self-map of a domain 
is an analyti funtion from 
 into 
 that is one-to-one and onto. Everyonformal self-map of a domain is alled an automorphism of that domain.We denote by Aut (
), the set of all automorphisms of 
. The set Aut (
)forms what is alled a \group", with omposition as the group operation.The identity element is the identity map given by I(z) = z.5.44. Mappings of half-planes onto disks. There are a number ofways to haraterize all onformal mappings of the upper half-plane H+onto the (open) unit disk � and the extended real line R1 onto the unitirle ��.Suppose that � 2 R and � 2 C are �xed numbers suh that Im� > 0.Then, it is a simple exerise to see that f , de�ned byw = f(z) = ei� �z � �z � �� ;maps H+ onto � and R1 onto ��. Indeed,jwj < 1 () jz � �j2 � jz � �j2 > 0() �2Re (z(� � �)) = 4(Im�)(Im z) > 0:For example, for � = i, we see that g(z) = ei� ((z � i)=(z + i)) is a mappingof H+ onto �. Consequently, as �(z) = ei�=2z maps the right half-planefz : Re z > 0g onto H+ , the omposition g Æ � given by(g Æ �)(z) = g(ei�=2z) = ei� �z � 1z + 1�maps the right half-plane fz : Re z > 0g onto the unit disk � and theimaginary axis onto the unit irle jwj = 1. We are atually interested inthe following:5.45. Problem. Do all one-to-one, onto analyti maps of H+ to �preisely have the form of f for some � 2 H+ with some � 2 R?The answer is yes. First, let us give a diret proof. Considerf(z) = az + bz + d ; ad� b 6= 0:



5.6 Conformal Self-maps of Disks and Half-planes 251First, we reall that f(1) = 1 i�  = 0. Sine we require a map whihtakes R1 into ��, we must have  6= 0 (and hene a 6= 0). Consequently,we write f(z) = a �z + b=az + d=� :To obtain the expliit map, we translate our requirements into the equationsjf(1)j = 1 = jf(0)j; i.e. ���a ��� = 1 = ���� bd ���� :(5.46)Note that both b and d annot be zero, sine jb=dj = 1. Now, sine ja=j = 1,we an write a= = ei� for some � 2 R so thatf(z) = ei� �z � �z � ��with � = �d= and � = �b=a: Moreover, jf(1)j = 1 givesj1� �j = j1� �j ; i.e. 1 + j�j2 � 2Re� = 1 + j�j2 � 2Re�:Sine j�j = j�j, by (5.46), the last equation yields Re� = Re�. Therefore,either � = � or � = �: Consequently, � = � as the alternate is not possiblebeause otherwise ad� b = 0. Thus, the desired map f turns out to be ofthe form f(z) = ei� �z � �z � ��for some � 2 R. Finally, we note that f(�) = 0 2 �. Therefore, if Im� > 0,i.e. � 2 H+ , then we have proved the following result.5.47. Theorem. All onformal mappings whih map H+ onto theunit disk � suh that � 2 H+ maps onto 0 are given byf(z) = ei� �z � �z � ��(5.48)for some � 2 R. The inverse mapping f�1 : �! H+ of f is given byf�1(w) = �ei� � �wei� � w :Using this result, we an �nd the most general M�obius transformationsending the unit disk � onto itself (see also Theorem 5.59). We reall thatevery M�obius transformation is one-to-one on C1 and the inverse funtionexists and is also one-to-one on C1 . Observe that f de�ned by (5.48)belongs to H(C n f�g). One again, as ��z � ���2 � jz � �j2 = 4(Im�)(Im z);it follows that\ jf(z)j < 1() (Im �) (Im z) > 0" and \ jf(z)j = 1() (Im�) (Im z) = 0":
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φ(z) = (f ◦ g)(z)

−1 1

w = g(z) = zeiπ ζ = f (w) = eiθ
(

w−β

w−β̄

)

Figure 5.10: Mapping of lower half-plane onto unit disk.Thus, it is often interesting to study the mapping properties between linesor irles.5.49. Corollary. All onformal mappings whih map the lower half-plane H� = fz 2 C : Im z < 0g onto the unit disk � suh that b 2 H�maps onto 0 are given by (see Figure 5.10)f(z) = ei� �z � bz � b� ; � 2 R:5.50. Theorem. All onformal mappings whih map the right half-plane fz 2 C : Re z > 0g onto the unit disk � suh that  (Re  > 0) mapsonto 0 are given by f(z) = ei� �z � z + � ; � 2 R:Proof of this theorem is easy if one proeeds exatly as in Theorem5.47. Alternatively, if �(z) = iz and f is as in Theorem 5.47, then theomposition (f Æ �)(z) gives the desired map.5.51. Example. Choosing � = 0 and � = i in (5.48) we havew = f(z) = z � iz + i ;(5.52)whih is alled a Cayley mapping of H+ onto � and the inverse is given byf�1(w) = i�1 + w1� w� = ei�=2�1 + w1� w� :(i) By rotation, we see that the funtion g given byg(w) = e�i�=2f�1(w) = 1 + w1� w
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Figure 5.11: Image of D under Cayley map.de�nes an analyti map of the unit disk � onto the right half-planef� : Re � > 0g. Further, the image of jwj = r (r 2 (0; 1)) under� = g(w) may be omputed as the irle����� � 1 + r21� r2 ���� = 2r1� r2 :Thus, jwj < r for r 2 (0; 1) is mapped onto the interior of this irle.On the other hand, if r 2 (1;1) then the image of jwj < r is seen tobe the domain given by����� � 1 + r21� r2 ���� > 2rj1� r2j :What is the image of 1 < jwj < r under � = g(w)?(ii) Consider the two irles de�ned byC+ = fz : jz � aj = Rg and C� = fz : jz + aj = Rg;where a > 0 is �xed and R = p1 + a2. Clearly, these two irlesinterset at z = i and at z = �i. SetD+ = intC+ = �(a;R); D� = intC� = �(�a;R)and let D = D+\D� denote their ommon region of intersetion, seeFigure 5.11. Let us �nd the image of D under the Cayley map givenby (5.52). Observe the following:� f(�i) = 1 and so, eah irle that passes through the pointz = �i is mapped onto a straight line. In partiular, the imageof eah of the irles C+ and C� is a straight line� these two straight lines neessarily pass through the origin, sineboth the irles pass through z = i, where f(i) = 0



254 Conformal Mappings and M�obius Transformations� f(i�) = (1��)=(1+�) > 0 whenever �1 < � < 1. In partiular,the open vertial line segment onneting �i and i is mappedonto the positive real axis (0;1).Finally, by (5.52), it follows thatjz � aj T R () ����i�1 + w1� w�� a���� T R() jw(a+ i)� (a� i)j2 T R2j1� wj2() Re [w(R2 � (a+ i)2)℄ T 0 (sine R2 = 1 + a2)() Re [w(1� ia)℄ T 0() Re [we�i�℄ T 0 (with Arg (1 + ia) = �):Similarly, jz + aj T R () Re [w(1 + ia)℄ T 0 () Re [wei�℄ T 0: Now,it is lear that the domain D is mapped onto the in�nite wedge boundedwithin the two lines Argw = � and Argw = ��. For instane, if a = 1then Arg (1 + ia) = �=4 = �Arg (1� ia). �5.53. Example. Consider w = f(z) = (i� z)=(i+ z): Then we have(i) f maps the unit disk � onto the right half-plane fw : Rew > 0g(ii) f maps the upper half-plane fz : Im z > 0g onto the unit disk �(iii) f maps the open �rst quadrant fz : Im z > 0;Re z > 0g onto theupper semi-disk fw : jwj < 1; Imw > 0g:Indeed, we see thatw = 1 + iz1� iz () �iz = 1� w1 + w = 1� jwj2 � 2iImwj1 + wj2so that� jzj < 1() jw � 1j < jw + 1j () Rew > 0� Im z > 0() Re (�iz) > 0() jwj < 1� Im z > 0 and Re z > 0() jwj < 1 and Imw > 0: �5.54. Example. Let us try to �nd a map whih takes the irlefz : jz � 1j = 1g onto the line fw = u + iv : v = ug, see Figure 5.12.Our problem does not insist whih points on the irle should map whihpoints on the line. Sine a irle is to map to a line, we must have  6= 0and so, we an normalize  to be 1. This suggests to onsider the M�obiustransformation in the form f(z) = az + bz + d :
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Figure 5.12: Mapping from fz : jz � 1j = 1g into the line fw = u+ iv : v = ug.It follows that our requirements translate into the equations (for example)by onsidering 0 7! 0, 2 7! 1, and 1 + i 7! 1 + i:0 = f(0) = bd ; 1 = f(2) = 2a+ b2 + d ; f(1 + i) = 1 + i:The �rst two equations show that b = 0 and 2 + d = 0. Sof(z) = azz � 2 :Finally, the last requirement f(1+i) = 1+i yields that a = �1+i = e3�i=4:Hene, the desired map is given byf(z) = e3�i=4� zz � 2� :(5.55)Note that f(1) = 1� i and therefore, beause of the priniple of onformalmap (preservation of sense and magnitude), the map f given by (5.55) takesthe disk fz : jz � 1j < 1g onto the half-plane fw : Imw < Rewg: �5.56. Automorphisms of the unit disk. Let � 2 R; z0 2 � be �xedand � be given by �(z) = ei� � z � z01� z0z� :(5.57)Note that � is one-to-one in C n f1=z0g. If jzj = 1, then z�1 = z so thatj�(z)j = 1:In addition, sine every M�obius transformation maps a irle onto airle or a straight line, � must map the unit irle jzj = 1 onto itself. Also,�(z0) = 0 and �(�) = �, beausej�(z)j < 1 () jz � z0j2 < j1� zz0j2() (1� jz0j2)(1� jzj2) > 0() jzj < 1 (sine jz0j < 1)



256 Conformal Mappings and M�obius Transformationsso that � must be mapped onto itself by �(z). Now � has the inverse givenby ��1(w) = e�i� � w + ei�z01 + e�i�z0w� :whih has a similar form as � and so, ��1 shares similar properties as thatof �. Organizing these observations together, we an assert that for eahz0 with jz0j < 1 and � 2 R, � is a bijetive self mapping of the unit disk �.This result raises the following5.58. Problem. Do all one-to-one, onto analyti maps of � to itselfpreisely have the form of � for some jz0j < 1 with some � 2 R?The answer to this problem is yes (see also Example 5.81 and Theorem6.45). The question of mapping the upper half-plane H+ onto itself analso be treated easily (see Theorem 5.69).5.59. Theorem. All onformal mappings whih map the unit disk �onto itself and the point z0, jz0j < 1, onto 0 must be of the form (5:57) forsome � 2 R. Equivalently,Aut (�) = �ei� z � z01� z0z : z0 2 �; 0 � � � 2�� :Proof. We start with the M�obius transformationT (z) = az + bz + d (a; b; ; d 2 C ; ad� b 6= 0):For eah � 2 (��; �℄, the ondition jT (ei�)j = 1 implies that jaei� + bj2 =jei� + dj2: That isjaj2 + jbj2 + 2Re (abei�) = jj2 + jdj2 + 2Re (dei�)(5.60)whih must be true for eah � in (��; �℄. Choosing � = 0; �, it follows thatjaj2 + jbj2 + 2Re (ab) = jj2 + jdj2 + 2Re (d)and jaj2 + jbj2 � 2Re (ab) = jj2 + jdj2 � 2Re (d):Adding the last two equations, we �nd that jaj2 + jbj2 = jj2 + jdj2 so thatjaj2 � jj2 = jdj2 � jbj2(5.61)and therefore, by (5.60), we get thatRe (abei�) = Re (dei�) for eah � 2 (��; �℄:



5.6 Conformal Self-maps of Disks and Half-planes 257Again, hoosing � = 0 or �, and � = �=2, we see thatab = d:(5.62)Now using the two equalities (5.61) and (5.62), we �nd thatjwj2 � 1 = jaz + bj2 � jz + dj2jz + dj2= (jaj2 � jj2)jzj2 � (jdj2 � jbj2) + 2Re (z(ab� d))jz + dj2= (jzj2 � 1)(jaj2 � jj2)jz + dj2and therefore the requirement that \jzj < 1 ) jwj < 1" gives rise to theinequality 0 < jaj2 � jj2; i.e. jj < jaj(Note that a annot be zero, but  ould be zero). Therefore, from (5.61),we also have d 6= 0 (but b ould be zero). Thus, by (5.62), we writea = � bd� = k; say,(5.63)with jkj < 1 and so1� ��� a ���2 = 1� ���� bd ����2 ; i.e. jaj2 � jj2jaj2 = jdj2 � jbj2jdj2so that by (5.61), we have jaj = jdj whih, by (5.61), again gives jbj = jj.Thus, we an write a=d = ei� for some � so thatT (z) = ad � z + b=a1 + (=d)z = ei� � z � z01� z0z�where, by (5.61) and the fat that jaj = jdj,z0 = � ba = � bajaj2 = � djdj2 = �� d�:By (5.61), we also observe that if  = 0, then b must be zero sine a 6= 0.In that ase, we have S(z) = ei�z: On the other hand, if  6= 0 then b 6= 0and therefore,z0 = � ba = � a � b = �k b; i.e. jz0j = jkj < 1:There are several alternate proofs of Theorem 5.59, whih gives a har-aterization of all onformal self mappings of the unit disk �. For a better



258 Conformal Mappings and M�obius Transformationsunderstanding on these tehniques, we mention two more suh proofs. Theseond one follows from the priniple of symmetry (see Example 5.81). Thethird proof is a onsequene of Shwarz' lemma (see Theorem 6.45).5.64. Example. Let us disuss the question of �nding the imageof the open upper semi-unit disk 
 = fz : jzj < 1; Im z > 0g under theM�obius map de�ned by w = �a(z) = a� z1� az :(5.65)In our disussion, we restrit our attention to a speial situation a = i�,�1 < � 6= 0 < 1; and proeed to disuss the desired mapping properties.Note thatw = a� z1� az () z = a� w1� aw = (a� w)(1� aw)j1� awj2 = a� w + ajwj2 � a2wj1� awj2and jzj < 1() jwj < 1. With a = i�,Im z > 0 () Im [a� w + ajwj2 � a2w℄ > 0() �jwj2 � (1 + �2)Imw + � > 0() � "����w � i�1 + �22� �����2 � �1 + �22� �2 � 1!# > 0() � "����w � i�1 + �22� �����2 � �1� �22� �2# > 0() 8>>><>>>:����w � i�1 + �22� ����� > 1� �22� if 0 < � < 1����w � i�1 + �22� ����� < 1� �22j�j if � 1 < � < 0:For example, if a = i=2 then (see Figure 5.13) 5 � = 1=2 so that theregion Im z > 0 under �i=2(z) orresponds to the set of points given byfw : jw � (5=4)ij > 3=4g :Thus, the image of the open upper semi-disk fz : jzj < 1; Im z > 0g under�i=2(z) is the shaded region in Figure 5.13 and the image of the lower semi-disk fz : jzj < 1; Im z < 0g under the same map is also indiated in Figure5.13. Clearly, the image of the open segment (�1; 1) under �i=2(z) is theopen ar of the irle jw � (5=4)ij = 3=4 indiated in the same �gure. Whathappens when � = �1? �5.66. Example. Let us start onstruting a bijetive analyti map� taking the upper semi-unit disk D = fz : jzj < 1; Im z > 0g onto the
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Figure 5.13: Mapping from � under �i=2(z) = (i� 2z)=(2 + iz).unit disk �, leaving the points 1;�1; i �xed, for example. Can there be aM�obius transformation arrying D onto �? Asf(z) = 1 + z1� z = (1 + z)(1� z)j1� zj2 = 1� jzj2j1� zj2 + i� 2Im zj1� zj2� ;f maps jzj < 1 onto Rew > 0, and Im z > 0 onto Imw > 0. This observa-tion implies that (beause f : C1 ! C1 is a bijetive onformal map) theupper semi-unit disk maps onto the open �rst quadrant 
,
 = fw : Imw > 0; Rew > 0g:This also follows from the fat thatz = x() f(x) = 1 + x1� x; and jzj = 1() f(z) = iyj1� zj2 :If we let g(z) = z2, then g(
) = H+ = fw : Imw > 0g. We know thath(z) = z � iz + iis an analyti bijetion of Im z > 0 onto the unit disk �. Thus, the om-position �(z) = (h Æ g Æ f)(z) = (1 + z)2 � i(1� z)2(1 + z)2 + i(1� z)2transforms the (open) upper semi-unit disk � \ H+ onformally onto theunit disk �, leaving the points 1;�1; i �xed, see Figure 5.14. This idea anbe used to show that the transformation�(z) = (1 + zn)2 � i(1� zn)2(1 + zn)2 + i(1� zn)2 ; n 2 N;(5.67)maps the domain fz : jzj < 1; 0 < Arg z < �=ng onformally onto the unitdisk �. What are its �xed points? Are all points z suh that zn = 1 orzn = �1 �xed points, in partiular? �
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OFigure 5.14: Conformal map of upper semi-unit disk onto the unit disk.5.68. Automorphisms of the upper half-plane H+ . There are sev-eral di�erent proofs of the following result and all these proofs follow if weproeed with the idea of the proof of the results onerning automorphismsof disks.5.69. Theorem. Every M�obius transformation of the formT (z) = az + bz + dis a onformal self-map of the upper half-plane H+ i� a; b; ; d are realnumbers satisfying the ondition ad� b > 0. Equivalently,Aut (H+ ) = �az + bz + d : a; b; ; d 2 R; ad� b > 0� :Proof. The required map should take the real axis in the z-plane ontothe real axis in the w-plane. As every M�obius map is one-to-one, thedesired map should arry three distint real numbers on the x-axis ontothree distint real numbers on the u-axis. Then there always exist threedistint real numbers x1; x2; x3 suh that 0; 1;1 are their images. By thede�nition of the ross-ratio and its invariane property (see Theorem 5.39),we get (T (z); 0; 1;1) = (z; x1; x2; x3); i.e. T (z) = (z � x1)(x2 � x3)(z � x3)(x2 � x1)(5.70)(If one of the xj 's is1, then use the limit proess). Sine the required map
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Figure 5.15: Symmetri with respet to a line/irle.must send H+ onto itself, ImT (i) > 0. This givesImT (i) = Im � i� x1i� x3 x2 � x3x2 � x1� = x1 � x31 + x23 �x2 � x3x2 � x1� > 0whih shows that (x1 � x3)(x2 � x3)(x2 � x1) > 0. Now, rewriting (5.70)in the form T (z) = az + bz + dwe see thatad� b = (x2 � x3)[(x2 � x1)(�x3)℄� [(x2 � x3)(�x1)℄(x2 � x1)= (x2 � x3)(x2 � x1)(x1 � x3) > 0and this ompletes the proof.5.7 Priniple of Symmetry and M�obius MapsLet L be a line in C . Two points a and a� in C are said to be symmetri withrespet to L if L is the perpendiular bisetor of [a; a�℄{the line segmentonneting a and a�. Clearly, every irle or line passing through both aand a� interset the line L at a right angle, see Figure 5.15. For example,two points z and z� are symmetri with respet to the real axis preiselywhen z� = z. Similarly, two points z and z� are symmetri with respetto the imaginary axis preisely i� z� = �z. When we do say two pointsz and z� are symmetri with respet to the line ft(1 � i) : t 2 Rg? AM�obius transformation w = T (z) with real oeÆients maps the real axisin the z-plane onto the real axis in the w-plane and, z and z onto thepoints w and w, respetively, whih are again symmetri with respet tothe real axis. This observation motivates us to formulate the de�nition ofsymmetri points with respet to a irle in C1 .Suppose that K is a irle jz � z0j = r in C . Two points a and a� aresaid to be symmetri with respet to the irle K (or inverse points with
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Figure 5.16: The reetion/inversion map JK .respet to the irle K) i�ja� z0j ja� � z0j = r2 and Arg (a� z0) = Arg (a� � z0):(5.71)That is, a and a� lie on the same ray emanating from the enter z0 ofK, and the produt of their distanes from the enter of the irle K isequal to the square of the radius of the irle. If we let ja� z0j = R, thena = z0 +Rei� for some � 2 R so that (5.71) is equivalent toa = z0 +Rei� and a� � z0 = r2ei�R :That is,(a� z0)(a� � z0) = r2 or a� = z0 + r2a� z0 = z0 + r2(a� z0)ja� z0j2 :(5.72)It follows from (5.71) that if a approahes the irle, then a� also approahesthe irle. In other words, a� = a i� a 2 K. If a approahes the enter z0,then the point a� moves away to in�nity. This fat is expressed by sayingthat z0 and 1 are symmetri with respet to the irle. This allows us tode�ne the symmetri point a� of a with respet to the irle K in C by themap JK : C1 ! C1 :a� = JK(a) = 8>><>>: z0 + r2a� z0 if a 6= z0;11 if a = z0z0 if a =1:(5.73)The map desribed by (5.73) is often alled the reetion/inversion in theirle K = fz : jz � z0j = rg or reetion with respet to the irle, andthe pair of points a and a� = JK(a) are said to be symmetri with respetto K, see Figure 5.16. For example, if we let z0 = 0 then K = fz : jzj = rg



5.7 Priniple of Symmetry and M�obius Maps 263and so, we haveJK(0) =1; JK(1) = 0; and JK(a) = r2a for a 6= 0;1Then, we all the map a 7! r2=a, a reetion/inversion in the irle jzj = r.For r = 1, this gives a� = 1=a and so a and 1=a are symmetri points withrespet to the unit irle jzj = 1. In partiular, 0 and 1 are symmetripoints with respet to the unit irle jzj = 1.Moreover, it is easy to see that if K = L [ f1g for a line L with theequation �z + �z +  = 0 (0 6= � 2 C ;  2 R);then the reetion map JK in a line K in C1 is obtained by replaing zand z respetively by a and a�:JK(a) = (�����a� � if a 6=11 if a =1:(5.74)By (5.73) and (5.74), JK �xes every point of K and JK ÆJK is the identitytransformation of C1 so that J�1K = JK . If we let M to be the set of alltransformations of the formAz +BCz +D (A;B;C;D 2 C ; AD �BC 6= 0);then we note that every reetion JK de�ned by (5.73) and (5.74) belongsto M. Note thatM = f(T Æ J)(z) : T 2M and J(z) = zg;whereM denotes the set of all M�obius transformations. The set M sharesmany properties of M in ommon.For example, if C is a irle in C1 , then, for f 2 M, f(C) is again airle in C1 and the omposition of a pair of two transformations in Mprodues a M�obius transformation.5.75. Theorem. (Symmetry Priniple for M�obius Maps) Let T bea M�obius transformation and K be a irle in C1 with K 0 = T (K): ThenT Æ JK = JK0 Æ T; i.e. T (JK(a)) = JK0(T (a)) for eah a 2 C1 :(5.76)In partiular, T maps any pair of symmetri points with respet to K ontoa pair of symmetri points with respet to the image irle K 0 under T .Proof. Consider the auxiliary funtion g de�ned by g = JK0 Æ T Æ JK :Then g, being a omposition of M�obius maps, is a M�obius map and so, gis one-to-one on C1 . Also, we know thatJK(a) = a and JK0(b) = b for eah a 2 K and b 2 K 0



264 Conformal Mappings and M�obius Transformationswhih gives that T (z) = g(z) for eah z 2 K. The uniqueness prinipleshows that g = T so thatT = JK0 Æ T Æ JK ; i.e. T Æ J�1K = JK0 Æ T:Sine JK is its own inverse, (5.76) follows.Now, we let a and a� be two points that are symmetri with respet tothe irle K. Then, by (5.76), the image points b = T (a) and b� = T (a�)satisfy JK0(b) = JK0(T (a)) = T (JK(a)) = T (a�) = b�so that b and b� are symmetri with respet to the image irle T (K).5.77. Remark. Theorem 5.75 may also be proved by using the fol-lowing two fats:(i) Two points are symmetri with respet to a irle in C1 if every irleontaining the points interset the given irle orthogonally.(ii) M�obius transformations are onformal and preserve irles, and sopreserve the orthogonality; hene they preserve the symmetry ondi-tion. �5.78. Theorem. Let K be a irle passing through three points inC1 . Then the reetion JK satis�es the relation(JK(a); z1; z2; z3) = (a; z1; z2; z3)(5.79)for a 6= z1; z2; z3. Conversely, if(a�; z1; z2; z3) = (a; z1; z2; z3)(5.80)then a and a� in C1 are symmetri with respet to the irle K.Proof. De�ne T (z) = (z; z1; z2; z3). Then T maps z1 to 0, z2 to 1,and z3 to 1, and so T (K) = R [ f1g. By the invariane property of theross-ratio, one has T (JK(a)) = (JK(a); z1; z2; z3):If a 2 K then, as JK �xes eah point of K and T (K) is real, we haveT (JK(a)) = (a; z1; z2; z3) = (a; z1; z2; z3):If a 62 K then, by the priniple of symmetry, T (a) and T (JK(a)) are sym-metri with respet to the irle T (K) = R [ f1g. That is, by (5.76), wehave T (JK(a)) = T (a) = T (a)whih is indeed (5.79).



5.7 Priniple of Symmetry and M�obius Maps 265Conversely, suppose that a and a� are a pair of points in C1 suh that(5.80) holds.Case (i): Let K = L[f1g for a straight line L in C . Then, we hoosez3 =1 and the ondition (5.80) givesa� � z1z2 � z1 = a� �z1z2 � z1and so, ja� � z1j = ja� z1j. But, sine z1 is arbitrary, it follows that a anda� are equidistant from the line L. Moreover,Im�a� � z1z2 � z1� = �Im� a� z1z2 � z1�showing that a and a� lie in di�erent half-planes determined by L. This isobviously a reetion with respet to L.Case (ii): Let K = fz : jz � z0j = rg in C and let K pass throughz1; z2; z3 2 C , i.e. jzj � z0j = r for j = 1; 2; 3. A symmetri use of theinvariane property of the ross-ratio under M�obius transformation gives(a; z1; z2; z3) = (a� z0; z1 � z0; z2 � z0; z3 � z0) (f(z) = z � z0)= �a� z0; r2z1 � z0 ; r2z2 � z0 ; r2z3 � z0�((zj � z0)(zj � z0) = r2)= � r2a� z0 ; z1 � z0; z2 � z0; z3 � z0� �f(z) = r2z �= �z0 + r2a� z0 ; z1; z2; z3� :Hene, in view of (5.80) (as the ross-ratio (z; z1; z2; z3) = f(z) is univalentin C1 ), we �nd thata� = z0 + r2a� z0 or (a� � z0)(a� z0) = r2:This means that a and a� are symmetri with respet to K.A pratial appliation of the symmetry priniple is to �nd a M�obiustransformation w = T (z) whih maps a given irle onto another irle.Next we present an example; many similar problems may be solved usingthe same idea.5.81. Example. Suppose we wish to present an alternate proof ofTheorem 5.59 (see also Theorem 6.45). To do this we onsider �(z), ageneral M�obius transformation, whih maps the unit disk � onto itself.Then there must exist a point a 2 � suh that �(a) = 0. If a and a�



266 Conformal Mappings and M�obius Transformationsare symmetri with respet to the unit irle ��, then �(a) and �(a�) aresymmetri with respet to �(��) = ��. As �(a) = 0, we have �(a�) =1(beause 0 and 1 are symmetri with respet to jwj = 1). As aa� = 1, wehave a� = 1=a so that �(z) has the formw = �(z) = �� z � a1� az�for some � 2 C . Also, as �(1) is a point on the unit irle jwj = 1, wehave j�(1)j = 1 whih gives that j�j = 1, i.e. � = ei� for some � 2 R.Consequently, �(z) has the desired form.Finally, if jaj > 1 then �(z) maps jzj � 1 onto jwj � 1 so that �(z) mapsjzj � 1 onto jwj � 1. �We end this setion with some remarks. We know that every M�obiustransformation T is onformal and it maps a irle C1 in C1 onto a irleC2 in C1 . Moreover, T an be found by requiring three points z1; z2; z3 inC1 to map onto three presribed points w1; w2; w3 in C2. Is it possible to�nd a M�obius Transformation suh that a1 2 C1 maps onto b1 2 C2, anda2 =2 C1 onto b2 =2 C2? Yes, it is. Suh a transformation is given by(w; b1; b2; b�2) = (z; a1; a2; a�2)where a�2 is symmetri to a2 with respet to C1 while b�2 is symmetri to b2with respet to C2.5.8 Exerises5.82. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) The funtion f(z) = sin z is not onformal on the in�nite strip 
 =fz 2 C : jRe zj < �=2g.(b) The omposition of two M�obius transformations is again a M�obiustransformation.() The set M of all M�obius transformations Tabd(z) = (az+ b)=(z+ d)with ad� b 6= 0, forms a group with respet to the omposition as abinary operation.(d) The subset M1 of all M�obius transformations Tabd(z) with ad� b >0, forms a subgroup in the group M of all M�obius transformations.(e) The subset M2 of all M�obius transformations given byM2 = �z; 1z ; 1� z; 11� z ; z � 1z ; zz � 1�forms a group with respet to the omposition as a binary operation.



5.8 Exerises 267(f) The set M of all M�obius transformations does not have the ommu-tative property.(g) Any two M�obius transformations that have the same �xed points areommutative.Note: If S and T are two M�obius transformations whih ommute(i.e. S Æ T = T Æ S), will they have the same �xed points?(h) If a M�obius transformation T arries z1 and z2 into a same numberw1, then either z1 = z2 or else T is a onstant map.(i) Every M�obius transformation Tabd(z) = (az + b)=(z + d) suh thatjj = jdj arries the unit irle �� onto a straight line.(j) A M�obius transformation f : C1 ! C1 taking 0; 1; 6 into 2; 3; 4,respetively, is f(z) = [z + (2=3)℄=[z + (3=2)℄:(k) Given three distint points z; z1; z2 and a number � 2 C suh that� 62 f0; 1; (z � z2)=(z2 � z1)g, there always exists a unique z3 with(z; z1; z2; z3) = �.(l) If z1; z2; z3 are three distint points in C1 suh that z; z0 satisfy(z; z1; z2; z3) = (z0; z1; z2; z3), then z = z0.(m) The ross-ratios (z4; z1; z2; z3) and (w4; w1; w2; w3) are equal i� thereexists a M�obius transformation f suh that f(zj) = wj for j =1; 2; 3; 4.(n) Given a pair of (generalized) irles, there always exists a M�obiustransformation arrying one irle onto another.(o) If a irle C is mapped under the inversion w = 1=z onto anotherirle C 0, then the enter of the irle C need not be mapped ontothe enter of the irle C 0 unless the enter of the irle C is zero.(p) A M�obius transformation, whih maps the upper half-plane fz :Im z > 0g onto itself and �xing 0;1 and no other points, must be ofthe form T (z) = �z for some � > 0 and � 6= 1.(q) AM�obius transformation whih maps the upper half-plane fz : Im z >0g onto itself whih �xes 1 and no other points must be of the formT (z) = z + � for some � 6= 0 with Im� > 0.(r) Let T be a M�obius transformation suh that 1 2 Fix (T ). Then Tarries R onto itself i� T (z) = �z + � for some � 2 R nf0g, � 2 R.(s) There exist transendental entire funtions having no �xed points.(t) A M�obius transformation whih arries the upper half-plane H+ ontothe unit disk � suh that z = 2i is mapped onto w = 0 while z =1is mapped onto w = �1 is preisely (2i� z)=(z + 2i).(u) A M�obius transformation takes R into R i� it an be represented withreal oeÆients.(v) A transformation whih arries an in�nite setor of angle �=n (n 2 N)onto the unit disk � is (zn � i)=(zn + i).



268 Conformal Mappings and M�obius Transformations(w) The Jaobian of a M�obius transformation T is identially equal to 1i� T (z) = ei�z + b.(x) If a; b 2 C and r; R > 0 are �xed, then a M�obius transformationthat maps the disk �(a; r) onto C1 n�(b;R) is given by T (z) = b+Rr=(z � a):(y) The transformation w = (1 � iz)=(z � i) maps jzj = r, where r < 1,into a irle in the w-plane, whose enter is on the imaginary axis.(z) A mapping whih transforms 
 = fz : 0 < Arg z < �=6g onto theunit disk � is given by f(z) = ei'(z6 � �)=(z6 � �), Im� > 0:5.83. What is the angle between images of the urves x2+ y2 = 1 andy = x at their point of intersetions, under the map f(z) = z2? Answerthe same if the irle is replaed by the ellipse x2 + 4y2 = 4.5.84. Determine points where eah of the following mappings is on-formal:(i) z + e�z � 5 (ii) zez3+1 (iii) os z (iv) z + az2 (v) z + az3:5.85. Determine points where eah of the following mappings fails tobe onformal:(i) z5 + 1 (ii) z2 � exp(�z2) (iii) osh z (iv) sinh z:5.86. Determine a; b; ; d suh that the M�obius transformation T (z)de�ned by (5.15) oinides with its inverse given by (5.20).5.87. Find all M�obius transformations that map the unit disk � ontothe left half-plane H� = fw 2 C : Rew < 0g.5.88. Set S1(z) = z2z � 1 ; S2(z) = 2z3z � 1 ; and S3(z) = (2 + i)z � 2z + i :Show that 0 and 1 are the �xed points for S1 as well as for S2, whereas1 + i and 1� i are the �xed points of S3, and S3 is loxodomi.5.89. Find the image of the irle jzj = r (r 6= 1) under the Cayleymapping w = f(z) = (z � i)=(z + i); see Example 5.51. What happenswhen r = 1?5.90. Using the invariane property of the ross-ratio, �nd a M�obiustransformation f in eah of the following ases:(a) f1; i; 0g onto f1; i;�1g () f1; i;�1g onto f2i;�2;�2ig(b) f0; 1;�1g onto f0; 1;1g (d) f0; 2� 2i; 4g onto f�3=4; 11i=4;1g



Chapter 6Maximum Priniple, Shwarz'Lemma, and Liouville's Theorem
In Setion 6.1, we derive the Maximum and the Minimum modulus prini-ples/theorems as an important appliation of the Cauhy integral formula.The Maximum modulus priniple is a powerful tool in obtaining an ex-pliit estimate for the size of the absolute value of an analyti funtion.In Setion 6.2, we use the Maximum priniple to derive Hadamard's threelines/irles theorem. Setion 6.3 is devoted to Shwarz' lemma whih isone of the most important onsequenes of the Maximum priniple and thepower series expansion. Later in this setion, we use the lassial form ofShwarz' lemma to haraterize the onformal self-maps of the unit disk inthe form of the Shwarz-Pik lemma whih is a basi tool in the introdu-tion of the hyperboli metri and hyperboli geometry in the unit disk. InSetion 6.4, we disuss Liouville's theorem and its various generalizationswhih give rise to fasinating and surprisingly pratial results suh as theelebrated disovery of Gauss, the so alled fundamental theorem of algebra(see Setion 6.6).6.1 Maximum Modulus PrinipleWhen we deal with a funtion of one variable we frequently speak aboutthe onept of maxima and minima. On the other hand, we annot speak ofmaxima and minima of a omplex funtion f sine C is not an ordered �eld.However, it is meaningful to onsider maximum and minimum values of themodulus of the omplex funtion f , the real part of f and the imaginarypart of f .6.1. De�nition. Let D be a subset of C . A omplex funtion de�nedon D is said to have a (loal) maximum modulus at a 2 D if there exists



270 Maximum Priniple, Shwarz' Lemma, and Liouville's Theorema Æ > 0 suh that �(a; Æ) � D and jf(z)j � jf(a)j for all z 2 �(a; Æ); a(loal) minimum of jf j is similarly de�ned.For example, on the losed disk jzj � r, we have jezj = eRe z � er and atthe boundary point z = r, ez = er. Thus, ez attains its maximum modulusat z = r. Consequently, M(r; ez) = maxjzj�r jezj = er: Analogously, forjzj � r, we easily see thatj os zj = ����eiz + e�iz2 ���� � jeiz j+ je�iz j2 = e�y + ey2 � er + e�r2 = os(ir)whih shows that M(r; os z) = maxjzj�r j os zj = osh r: Although, in realvariable theory, many funtions suh as sinx, osx are bounded on R, wewill see that neither sin z nor os z are bounded in C .6.2. Theorem. (Maximum Modulus Priniple) Suppose that f isanalyti in a domain D and a is a point in D suh that jf(z)j � jf(a)j holdsfor all z 2 D. Then, f is a onstant.For the proof of Theorem 6.2, we need the following basi fat from RealAnalysis:6.3. Theorem. Let h(�) be a ontinuous real-valued funtion on[a; b℄ with h(�) � 0 for all � 2 [a; b℄. If R ba h(�) d� = 0; then h(�) = 0 for all� 2 [a; b℄.Proof. Geometrially, the proof of this theorem is obvious. Alternately,we �x t 2 [a; b℄. Then we have0 � H(t) := Z ta h(�) d� � Z ba h(�) d� = 0whih gives H(t) = 0 on [a; b℄ so that 0 = H 0(�) = h(�) on [a; b℄:Proof of Theorem 6.2. Sine a 2 D and D is open, there existsan r suh that �(a; r) � D. Then, f is analyti inside and on the irle = ��(a; r). So, by the Cauhy integral formula (see Theorem 4.66),f(a) = 12�i Z f(�)� � a d� = 12� Z 2�0 f(a+ rei�) d�:(6.4)By hypothesis, jf(a+ rei�)j � jf(a)j and, by (6.4), we note thatjf(a)j � 12� Z 2�0 jf(a+ rei�)j d� � 12� Z 2�0 jf(a)j d� = jf(a)j



6.1 Maximum Modulus Priniple 271so that 12� Z 2�0 �jf(a)j � jf(a+ rei�)j� d� = 0:(6.5)Sine the integrand in (6.5) is ontinuous and non-negative, Theorem 6.3applies and (6.5) implies thatjf(a+ rei�)j = jf(a)j for 0 � � � 2�:This equation holds on all irles j� � aj = s; 0 < s � r and therefore,jf(z)j is onstant on �(a; r). By the Uniqueness theorem, f is onstant onthe whole of D.6.6. Remark. It is important to note that Theorem 6.2 does notneessarily hold for open sets. Further, one ould also prove Theorem 6.2without using Theorem 6.3. For example, as f 2 H(�(a; r)), we havef(z) =Xn�0 an(z � a)n for jz � aj < r0 with r0 > r:In partiular, for eah irle jz � aj = s with 0 < s � r, we havef(a+ sei�) =Xn�0 ansnein�:Now, as jf(a + sei�)j � jf(a)j = ja0j, we see that jf(a + sei�)j2 � ja0j2whih givesXn�0 janj2s2n = 12� Z 2�0 f(a+ sei�)f(a+ sei�) d� � 12� Z 2�0 ja0j2d� = ja0j2;that is, an = 0 for eah n 2 N. Thus, f(z) = a0 on every irle j� � aj = sin �(a; r). Consequently, f(z) = a0 = f(a) on �(a; r). By the Uniquenesstheorem, f is onstant on the whole of D. �6.7. Example. Consider f(z) = ez for z 2 �(a; r). Then,maxjz�aj�r jezj = max0���2� ���ea+rei� ��� = eRe a+rand the maximummodulus of ez is attained at the boundary point z = a+r.Similarly, to determine M = maxjzj�1 jz3 + 3z � 1j, we may let z = ei� sothatjz2 + 3z � 1j = je2i� + 3ei� � 1j = jei� + 3� e�i�j =p9 + 4 sin2 �:Thus, we haveM = p13 and the maximum is attained at z = �i, i.e. when� = ��=2. �



272 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremIt is interesting to observe that the minimum value of jf j may be at-tained at an interior point of D without f being onstant. For instane,onsider f(z) = z for z 2 �r. Then, jf(z)j = jzj � 0 = jf(0)j and so theminimum value of jf(z)j is attained at the origin. The maximum value ofjf(x + iy)j = px2 + y2 is attained at the boundary points jzj = r. Notethat f has a zero at the origin.The Maximum modulus priniple is often used in the following formknown as the Maximum modulus theorem:6.8. Theorem. (Maximum Modulus Theorem) Suppose that f isanalyti in a bounded domain D and ontinuous on D. Then, jf(z)j attainsits maximum at some point on the boundary �D of D.Proof. Reall that a ontinuous funtion on a ompat set attains amaximum. So, by hypothesis, f is bounded on D and the maximum valueof jf(z)j is attained at some point of D. By Theorem 6.2, it annot be inD, so it must be on the boundary �D.6.9. Example. Consider the funtion f(z) = z2 de�ned on the loseddisk D = fz : jz � 1 � ij � 1g: Let us show that the maximum value ofjf(z)j is attained at z = (1 + 1=p2)(1 + i). To do this, setz = 1 + i+ ei� = (1 + os �) + i(1 + sin �); � 2 [0; 2�):Then, jf(z)j = 3 + 2(os � + sin �): It follows that the maximum value ofjf(z)j is attained at � = �=4 and the maximum value is 3 + 2p2. Themaximum is attained at z = 1 + i+ ei�=4. �6.10. Corollary. Suppose that f is analyti in a bounded domainD and ontinuous on D. Then, eah of Re f(z), �Re f(z), Im f(z) and�Im f(z) attains its maximum at some point on the boundary �D of D.Proof. Let u(x; y) = Re f(z) and g(z) = ef(z). By the Maximummodulus theorem, jg(z)j = eu(x;y) annot assume the maximum value in D.Sine eu is maximized when u is maximized, we obtain that u(x; y) annotassume its maximum value in D. The remaining ases follow similarly.6.11. Remark. The onept of a loal maximum at a point a 2 S �D is meaningful only if a is a limit point. If a is isolated, we do not havejf(z)j � jf(a)j in neighborhood of a. Thus, we observe that an interestingappliation ours when D is a losed region. Therefore, another way ofstating Theorem 6.8 is that \if f is analyti inside and on a losed urveC, then jf(z)j attains its maximum value only on the boundary C." �Another diret appliation of Theorem 6.8 is the following orollarywhih is helpful in pratie for identifying the maximum modulus of fun-tions by their boundary values.



6.1 Maximum Modulus Priniple 273
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Figure 6.1: [0; 2�℄ [ [2�; 2� + 2�i℄ [ [2� + 2�i; 2�i℄ [ [i2�; 0℄:6.12. Corollary. Let f be analyti on �R and ontinuous on itslosure �R. If jf(z)j � M for some M > 0 on ��R, then jf(z)j � M on�R.6.13. Example. Let D = fz = x+ iy : 0 < x; y < 2�g. We wish to�nd maxz2D j os zj. To do this, we �rst note thatj os zj =qsinh2 y + os2 x:By the Maximummodulus theorem, the maximum is attained on the bound-ary (see Figure 6.1)�D = [0; 2�℄ [ [2�; 2� + 2�i℄ [ [2� + 2�i; 2�i℄ [ [i2�; 0℄:For z = x + i0 with 0 � x � 2�, j os zj has the maximum value 1 atz = 0; 2�. For z = 2� + iy with 0 � y � 2�, j os zj has the maximumq1 + sinh2(2�) at z = 2�+2�i, sine sinh y is an inreasing funtion of y.For z = x+2�i with 0 � x � 2�, j os zj has the maximumq1 + sinh2(2�)at the points z = 0 + 2�i; � + 2�i. Finally, for z = 0 + iy with y 2 [0; 2�℄,the orresponding maximum is seen to be q1 + sinh2(2�). Hene,maxz2D j os zj =q1 + sinh2(2�) = osh 2�: �6.14. Theorem. (Minimum Modulus Theorem) If f is a non-onstant analyti funtion in a bounded domain D and f(z) 6= 0 on Dthen, jf(z)j annot attain its minimum in D.Proof. Suppose that f 2 H(D) and f(z) 6= 0 in D. Then, 1=f(z) isanalyti throughout D. The assertion now follows on applying Theorem6.8 to 1=f(z) .



274 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremTheorem 6.14 is often stated in the following form: \Suppose that f isanalyti in a domain D, f(z) 6= 0 on D and a is a point in D suh thatjf(z)j � jf(a)j holds for all z 2 D. Then, f is a onstant."6.15. Example. Suppose that f is an analyti funtion in a neigh-borhood of the losed unit disk � suh that there exists an M > 0 withjf(z)j > M for jzj = 1 and f(0) = a + ib with ja + ibj < M . Under theseassumptions, we wish to show that f has a zero in �.Suppose on the ontrary that f has no zeros in �. Then, by assumption,1=f would be a non-vanishing analyti funtion in the neighborhood of �and therefore, would attain its maximum value on the irle jzj = 1. TheMaximum modulus theorem gives that j1=f(z)j < 1=M on jzj � 1: Inpartiular, 1=ja+ ibj = j1=f(0)j < 1=M; i.e. M < ja+ ibj;whih is a ontradition. Thus, f must have a zero in �. �Theorem 3.31 and the Uniqueness theorem (see Theorems 3.75 and4.103) show that a non-onstant analyti funtion in a domain annot mapan open set into a point or an ar. From these two observations, we notethat the Open mapping theorem (see Theorem 12.1) about mapping prop-erties of analyti funtions is a onsiderable strengthening of these fatsarising out of the Maximum modulus theorem.6.16. Corollary. (Maximum/Minimum Modulus Theorem forHarmoni Funtions) Suppose that u(x; y) is a real-valued non-onstantharmoni funtion on a bounded domain D. Then, u(x; y) annot attain itsmaximum or minimum value in D. That is, if there exists a point (x0; y0) 2D suh that u(x0; y0) = supz2D u(x; y) or u(x0; y0) = infz2D u(x; y); thenu(x; y) is onstant on D.Proof. We shall prove only the maximum ase as the proof for theminimum ase follows by simply applying the maximum ase for �u. First,we assume that D is simply onneted. Then (see Theorem 3.39) thereexists an f 2 H(D) with u = Re f . The desired onlusion follows if weapply the Maximum modulus theorem to g(z) = ef(z) (see Corollary 6.10).Now we assume that D is a multiply onneted domain. Suppose onthe ontrary that u(x; y) attains its maximum value at some point z0 =(x0; y0) 2 D. Sine D is open, there exists a losed disk �(z0; Æ) � D.Then, in �(z0; Æ), u(x; y) attains its loal maximum at the interior point(x0; y0) whih is a ontradition to the previous ase. Consequently, u(x; y)annot attain its maximum value on D.6.17. Example. Consider u(x; y) = 2(x2 � y2) + 3 for jzj � 2.Clearly, u is harmoni on the disk jzj � 2. To �nd maxu and minu on



6.2 Hadamard's Three Cirles/Lines Theorems 275jzj � 2, it suÆes to �nd these on the boundary jzj = 2. Setting x = 2 os �and y = 2 sin �, we haveu = 8 os 2� + 3 (0 � � � 2�)and so, maxjzj=2 = 13 and minjzj=2 = �5. Note that the maximum ourswhen � = 0 and � while the minimum ours when � = �=2 and 3�=2. �6.18. Example. Suppose that f and g are analyti on the losedunit disk jzj � 1 suh that(i) jf(z)j �M for all jzj � 1(ii) f(z) = zng(z) for all jzj � 1=3 and for some n 2 N.We wish to use the Maximum modulus priniple to �nd the maximum valueof jf(z)j on jzj � 1=3. To do this, we proeed as follows. On jzj = 1, wehave M � jf(z)j = jzng(z)j = jg(z)jand so, jg(z)j �M for jzj � 1. Now, for jzj = 1=3, we havejf(z)j = jzng(z)j = jznj jg(z)j = 3�njg(z)j � 3�nM:It follows that jf(z)j � 3�nM for all jzj � 1=3. �6.2 Hadamard's Three Cirles/Lines TheoremsWe notie that the hypothesis that D is bounded in the Maximum modulustheorem (see Theorem 6.8) annot be dropped. Therefore, the Maximummodulus theorem is not always true on unbounded domains. To illustratethis, we present three di�erent examples.(i) De�ne f(z) = e�iz on D = fz : Im z > 0g. Then jf(�)j = 1 on theboundary �D = f� : Im � = 0g; the real axis. But for z = x+ iy 2 D,jf(x+ iy)j = ey !1 as y ! +1;that is, f itself is not bounded. Note also f is a periodi funtion ofperiod 2�. In partiular, for z = 2� + iy 2 D,Re f(2� + iy) = ey !1 as y ! +1;Similarly, if g(z) = �iz on D = fz : Im z > 0g then Re g(z) = 0 on�D, yet g is not onstant on �D. Note that for z = x+ iy 2 D,Re g(z) = y !1 as y ! +1:(ii) De�ne f(z) = e�iz2 on D = fz : Re z > 0; Im z > 0g or D = fz :Re z < 0; Im z < 0g. Then, jf(�)j = 1 on the boundary �D: But forx+ iy 2 D, jf(x+ iy)j = e2xy so that f itself is not bounded on D.



276 Maximum Priniple, Shwarz' Lemma, and Liouville's Theorem(iii) Finally, we onsider f(z) = eez for z 2 D = fz : jIm zj < �=2g: Then,for a+ ib 2 �D = f� : jIm �j = �=2g,jf(a+ ib)j = ����eea�i�=2 ���� = ���e�iea��� = 1:Again the onlusion of Theorem 6.8 fails sine for z = x 2 R � D,f(x) = eex !1 as x 2 R; x! +1:The failure of the Maximum priniple on ertain unbounded domainsraises the following6.19. Problem. If f(z) is bounded in an unbounded domain 
, anwe then onlude that supz2
 jf(z)j = supz2�
 jf(z)j?Here we speak of sup jf(z)j rather than max jf(z)j beause, althoughboth 
 and �
 are losed, they are not ompat. The following resultprovides an aÆrmative answer in the ase of parallel strips.6.20. Theorem. (Phragmen-Lindel�of Theorem) Let 
 = fz : 0 <Re z < 1g. Suppose that f is analyti and bounded on 
, and ontinuouson its losure 
. Then, supz2�
 jf(z)j = supz2
 jf(z)j: In partiular, ifjf(z)j �M for z 2 �
 then jf(z)j �M for all z 2 
.Proof. Set M1 = supz2�
 jf(z)j and M2 = supz2
 jf(z)j < 1. Then,M1 � M2. We laim that M1 � M2. We shall show that jf(z)j � M1 forall z 2 
. To do this we �x a 2 R \ 
. Then, 0 < a < 1. Let � > 0 begiven. De�ne an auxiliary funtion g de�ned byg(z) = f(z)1 + �zand onsider the retangular domain R = fz 2 
 : jIm zj < Ag, whereA > 0 will be hosen later. Then, as j1 + �zj � Re (1 + �z) = 1 + �Re z � 1for z 2 
, we have� g is ontinuous on 
, analyti on 
 and jg(z)j � jf(z)j for z 2 
. Inpartiular, jg(z)j � jf(z)j �M1 on the vertial sides of �R.� for z on the horizontal sides of the losed retangle �R, we havez = r � iA with 0 � r � 1 and soj1 + �zj � j1 + �(r � iA)j =p(1 + �r)2 + �2A2 �p1 + �2A2:Therefore, as jf(z)j �M2 on 
,jg(z)j � jf(z)jp1 + �2A2 � M2p1 + �2A2whih holds for all z on the horizontal sides of the retangle �R.



6.2 Hadamard's Three Cirles/Lines Theorems 277Now hoose A large enough that M2=p1 + �2A2 < M1 whih is possible asM2 is �nite. Thus, jg(z)j �M1 on �R . We apply the Maximum prinipleto g on R to get jg(z)j � M1 on R. Therefore, jf(z)j � M1j1 + �zj forz 2 R. Allowing � ! 0, the last inequality leads to jf(a)j � M1. Sine awas an arbitrary point of 
, jf(z)j �M1 holds for all z 2 
.6.21. Theorem. (Hadamard's Three Lines Theorem) Let 
 =fz : 0 < Re z < 1g. Suppose that f is analyti and bounded on 
, andontinuous on its losure 
. Suppose that there exist two onstants M0and M1 suh thatjf(z)j �M0 for z = 0 + iy 2 �
, and jf(z)j �M1 for z = 1 + iy 2 �
:Then, jf(z)j �M1�Re z0 MRe z1 for all z 2 
.Proof. Without loss of generality we may assume that M0 > 0 andM1 > 0. De�ne an auxiliary funtion F : 
! C by F (z) = e�zf(z), where� is a real number to be �xed later. This funtion satis�es the hypothesesof Theorem 6.20, andsupz2�
 jF (z)j = max( supz=0+iy2�
 jF (z)j; supz=1+iy2�
 jF (z)j)= max( supz=0+iy2�
 jf(z)j; e� supz=1+iy2�
 jf(z)j)� max�M0; e�M1	 :Choose � suh that M0 = e�M1, i.e. � = ln(M0=M1). By Theorem 6.20,jF (z)j � e�M1 for z 2 
whih means that e�Re zjf(z)j � e�M1 on 
. Substituting � = ln(M0=M1),this gives jf(z)j �M1�Re z0 MRe z1 for all z 2 
.6.22. Corollary. Let 
 = fz : a < Re z < bg. Suppose that f isanalyti and bounded on 
, and ontinuous on its losure 
. Suppose thatthere exist two onstants M0 and M1 suh thatjf(z)j �M0(a) for z = a+ iy 2 �
and jf(z)j �M1(b) for z = b+ iy 2 �
: Then, for all z 2 
,jf(z)j � [M0(a)℄1��[M1(b)℄�; � = Re z � ab� a :Proof. De�ne w = �(z) = a+(b�a)z. Then, � takes the vertial stripfz : 0 < Re z < 1g into fz : a < Re z < bg. Now, apply Theorem 6.21 toF = f Æ �.



278 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremA striking onsequene of the Maximum modulus priniple is the fol-lowing result whih an be easily proved using the last orollary and thefat that ew maps the strip fw : ln a < Rew < ln bg onto the open annulusfz : a < jzj < bg and the boundary maps into the orresponding bound-ary. However, beause of its independent interest, we inlude a diret proofwithout referring to the orollary.6.23. Theorem. (Hadamard's Three Cirles Theorem) Let 
 =fz : a � jzj � bg, f 2 H(
) and M(r) = maxjzj=r jf(z)j: If a < r < b, thenM(r) � [M(a)℄1��[M(b)℄�; � = ln(r=a)ln(b=a) :Here � depends on a; b and r, but is independent of f(z), and is between 0and 1.Proof. We examine the behavior of g(z) = z�f(z), where � is a realnumber to be �xed later. Unless � is an integer, g(z) is learly a multiple-valued funtion in the annulus 
 (as z� is multiple-valued). So we annotlaim that g 2 H(
) and, as a onsequene, we annot apply the Maximummodulus priniple diretly. But if D = 
 n[�b;�a℄, then g(z) beomes an-alyti on D as the prinipal power funtion given by z� = e�Log z beomesanalyti onD. Consequently, max jg(z)j ours on this new boundary. Notethat, as � 2 R, there is no maximum for jzj� at any interior point on theinterval (�b;�a) on the real axis. It follows thatjzj� jf(z)j � maxfa�M(a); b�M(b)gand so, r�M(r) � maxfa�M(a); b�M(b)g:Ignoring the trivial ase f(z) � 0, we see that M(a), M(r) and M(b) areall positive, and we may hoose � uniquely (whih is at our disposal) suhthat a�M(a) = b�M(b); i.e. � = �� ln(M(b)=M(a))ln(b=a) � :We then haveM(r) � M(a)�ar��= M(a) expf�� ln(r=a)g= M(a) exp� ln(r=a)ln(b=a) ln(M(b)=M(a))�= M(a)�M(b)M(a)� ln(r=a)ln(b=a)= [M(a)℄1��[M(b)℄�:
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ln a ln r ln b ln rFigure 6.2: Geometry of Hadamard's three irles theorem.This may be rewritten as[M(r)℄ln(b=a) � [M(a)℄ln(b=r)[M(b)℄ln(r=a);or equivalently aslnM(r) � � ln b� ln rln b� ln a� lnM(a) +� ln r � ln aln b� ln a� lnM(b):The last inequality shows that we may simply express Hadamard's threeirles theorem as lnM(r) is a onvex funtion of ln r (Figure 6.2). .6.3 Shwarz' Lemma and its ConsequenesIn this setion we start with a simple but one of the lassial theorems inomplex analysis, namely, Shwarz' lemma, whih states that if f is analytiand satis�es jf(z)j < 1 in � and f(0) = 0, then jf(z)j � jzj for eah z 2 �with the sign of equality i� f has the formf(z) = ei�z(6.24)for some � 2 R. Furthermore, jf 0(0)j � 1 with the equality i� f hasthe form (6.24). This is referred to as an in�nitesimal version (or simply alassial version) of Shwarz' lemma and is interesting on its own sake. Thisresult has an important role in the proof of the Riemann mapping theoremwhih is an important theorem onerning the onformal equivalene of twosimply onneted domains (see Setion 12.4).Let us now begin by proving the sharp version of the lassial Shwarzlemma whih plays a signi�ant role in geometri funtion theory. In fat,there are now many extensions of this result. The following form is animportant appliation of the Maximum priniple.6.25. Theorem. (Shwarz' Lemma) Let f : � ! � be analytihaving a zero of order n at the origin. Then



280 Maximum Priniple, Shwarz' Lemma, and Liouville's Theorem(i) jf(z)j � jzjn for all z 2 �,(ii) jf (n)(0)j � n!and the equality holds either in (i) for some point 0 6= z0 2 � or in (ii)ours i� f(z) = �zn with j�j = 1.Proof. Let f : �! � be analyti on � and has n-th order zero at theorigin. Then, we have f(0) = 0 = f 0(0) = � � � = f (n�1)(0) and f (n)(0) 6= 0.So, we an write f(z) = 1Xk=n akzk = zng(z) for z 2 �;where ak = f (k)(0)=k! and g(z) = P1k=n akzk�n. The funtion g(z) =f(z)=zn has a removable singularity at the origin so that ifg(z) = � z�nf(z) for z 2 � n f0gan for z = 0;then g is analyti in � nf0g and ontinuous on �. Referring to the Riemannremovability theorem (see Theorem 4.88), we onlude that g is analyti in�. (i) We laim that jg(z)j � 1 for all z 2 �. Now, for 0 < r < 1,(a) g is analyti on the bounded domain �r = fz : jzj < rg(b) g is ontinuous on its losure �r = fz : jzj � rg.Therefore, the Maximum modulus priniple is appliable. As jf(z)j � 1 forevery z 2 �, it follows that for j�j = rjg(�)j = jf(�)jj�jn � 1rn :By the Maximum modulus priniple, jg(z)j � r�n for all z with jzj � r.Sine r is arbitrary, by letting r ! 1, we �nd that jg(z)j � 1; that isjg(z)j � 1 for all z 2 �(6.26)and this is same as (i). Equality in (i) holds for some point z0 2 � n f0gimplies that jg(z0)j = 1. It follows that g ahieves its maximum modulusat an interior point z0. Consequently, by the Maximum modulus theorem,g must redue to a onstant, say �. Then f(z) = �zn, where j�j = 1.(ii) Note that jg(z)j � 1 throughout the disk �. Sine janj = jg(0)j;(6.26) implies that jg(0)j � 1 and so (ii) follows.Again, if jf (n)(0)j = n! then jg(0)j = 1 showing that g ahieves itsmaximum modulus 1 at the interior point `0'. Consequently, g is a onstant



6.3 Shwarz' Lemma and its Consequenes 281funtion of absolute value 1 and as before, this means that f(z) = �zn,where j�j = 1.6.27. Remark. Note that the ase n = 1 of Theorem 6.25 is theoriginal form of Shwarz' lemma stated at the outset of Setion 6.3. �For instane, if f 2 H(�) with jf(z)j � 1 and f(0) = 0 then whatkind of funtion is f when f(1=3) = 1=3? It must be none other than theidentity funtion beause the equality in Theorem 6.25(i) holds with n = 1and z = 1=3 2 �.If f is known to satisfy the onditions of Theorem 6.25 in �R insteadof the unit disk �, the original form of the theorem an be applied tothe funtion f(Rz) (see also Exerise 6.82). More generally, Theorem 6.25immediately yields the following result.6.28. Corollary. If f is analyti and satis�es jf(z)j �M in �(a;R)and f(a) = 0, then(i) jf(z)j �M jz � aj=R for every z 2 �(a;R),(ii) jf 0(a)j �M=Rwith the sign of equality i� f has the form f(z) = M�(z � a)=R for someonstant � with j�j = 1.Proof. Use Shwarz' lemma with g(z) = f(Rz + a)=M; jzj < 1:Does Shwarz' lemma hold for the ase of real-valued funtions of a realvariable? Consider u(x) = 2xx2 + 1 :Then u is in�nitely di�erentiable on R. In partiular, u0(x) is ontinuouson [�1; 1℄, u(0) = 0 and ju(x)j � 1. But ju(x)j > jxj for 0 < jxj < 1.6.29. Example. Let ! = e2�i=n be an n-th root of unity, wheren 2 N is �xed. Suppose that f : � ! � is analyti suh that f(0) = 0.We wish to apply Shwarz' lemma to show thatjf(z) + f(!z) + f(!2z) + � � �+ f(!n�1z)j � njzjn(6.30)and equality for some point 0 6= z0 2 � ours i� f(z) = �zn with j�j = 1.To do this, we de�ne F : �! � byF (z) = 1n n�1Xk=0 f(!kz):



282 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremClearly, F is analyti on �, F (0) = 0 and, for 1 � m � n� 1,F (m)(z) = 1n n�1Xk=0(!k)mf (m)(!kz)so that (as !n = 1)F (m)(0) = 1n n�1Xk=0(!m)kf (m)(0) = f (m)(0)n �1� (!m)n1� !m � = 0:By Shwarz' lemma (see Theorem 6.25), it follows that jF (z)j � jzjn for allz 2 � whih is the same as (6.30). The equality in this inequality for somepoint z0 6= 0 ours i� F (z) = �zn with j�j = 1, or equivalentlyn�1Xk=0[f(!kz)� �zn℄ = 0:(6.31)We laim that the above equation implies that f(z) = �zn. If we let f(z) =P1m=1 amzm, then (6.31) beomes1Xm=1 am n�1Xk=0 !km! zm = n�zn:In view of the identityn�1Xk=0 !km = �n if m is a multiple of n0 otherwise ;the last equation implies that an = � and a2n = a3n = � � � = 0. On theother hand, as jf(z)j < 1 on � and janj = 1, we havelimr!1� 12� Z 2�0 jf(rei�)j2d � = 1Xm=1 jamj2 � 1whih shows that all the Taylor's oeÆients of f (exept an) must vanishand so, f(z) = ei�zn. �Our �rst appliation of Shwarz' lemma is the following theorem whihgives an interesting relationship that exists between the maximum modulusof an analyti funtion and the maximum of its real part. This result willbe used to generalize Theorem 6.60 (see Exerise 6.89).6.32. Theorem. (Borel Caratheodary) Let f be analyti in jzj � R.For eah 0 < r < R, letM(r) = maxjzj = rfjf(z)jg and A(r) = maxjzj = rfRe f(z)g:



6.3 Shwarz' Lemma and its Consequenes 283Then M(r) � R+ rR� r jf(0)j+ 2rR� rA(R):(6.33)Proof. The result learly holds if f is onstant. Indeed, if f(z) =� (a omplex onstant), then M(r) = j�j; A(r) = Re�; jf(0)j = j�j:Substituting these values in the inequality (6.33), then it beomes �j�j �Re� whih is trivially true. For a non-onstant f , we �rst assume f(0) = 0.Then, A(R) > A(0) = Re f(0) = 0: De�neF (z) = f(z)2A(R)� f(z) :Then, F is analyti in jzj � R and F (0) = 0. Also, Re [2A(R)� f(z)℄ 6= 0;otherwise f would be a real-valued funtion of omplex variable ontradit-ing the analytiity of f . Further, we also note that�2A(R) + Re f(z) � Re f(z) � 2A(R)�Re f(z):This means thatjF (z)j2 = jf(z)j2[2A(R)�Re f(z)℄2 + [Im f(z)℄2 � 1;and so we have jF (z)j < 1 in jzj < R. Thus, by Shwarz' lemma (takea = 0 in Corollary 6.28), we have jF (z)j � jzj=R for jzj = r < R: From thede�nition of F (z), we havef(z) = 2A(R)F (z)1 + F (z) and jf(z)j � 2A(R)jF (z)j1� jF (z)j � 2rR� rA(R)whih gives (6.33) for the ase f(0) = 0. If f(0) 6= 0, then applying theresult to f(z)� f(0), we �nd thatjf(z)j � jf(0)j � jf(z)� f(0)j� 2rR� r maxjzj = RfRe (f(z)� f(0))g� 2rR� r [A(R) + jf(0)j℄;that is, jf(z)j � 2rR� rA(R) + jf(0)j�R+ rR� r� :Now we state and prove the invariant form of Shwarz' lemma.6.34. Lemma. (Shwarz-Pik Lemma) Suppose that f is analytion the unit disk � and satis�es the following two onditions
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Figure 6.3: Illustration for Shwarz-Pik Lemma.(i) jf(z)j � 1 for all z 2 �(ii) f(a) = b for some a; b 2 �.Then jf 0(a)j � 1� jf(a)j21� jaj2 :(6.35)Moreover, for a pair of elements a; a0 in �, the following inequality holds:�(f(a); f(a0)) � �(a; a0)(6.36)where �(z; a) = j(z � a)=(1� az)j for z; a 2 �. Equality is obtained in(6:35) at a point a 2 �, or equality is obtained in (6:36) for a pair of pointsa; a0 with a 6= a0 in �, i� f 2 Aut (�); otherwise, there is strit inequalityin jzj < 1Proof. First, we observe that if jf(z)j = 1 for some point z 2 �, then fis a onstant and (6.35) as well as (6.36) are trivial. Thus, we may assumethat jf(z)j < 1 for all z 2 �. For a �xed � 2 �, we reall ertain fats thatare already familiar to us (see Figure 6.3):� �� de�ned by ��(z) = (� � z)=(1 � �z) is analyti on C n f1=�g if� 6= 0, and �0(z) = �z. In partiular, for eah � 2 �, �� is analytiin a neighborhood of � with ��(�) = 0.� one heks that1� j��(z)j2 = j1� �zj2 � j�� zj2j1� �zj2 = (1� j�j2)(1� jzj2)j1� �zj2so that(i) j��(z)j = 1 if jzj = 1.(ii) j��(z)j < 1 if jzj < 1. Indeed, the fat that ��(��) = ��immediately implies that j��(z)j < 1 on �, by the Maximummodulus theorem.(iii) �� is one-to-one and onto, sine��(��(z)) = �� ��(z)1� ���(z) = �� � ��z1��z�1� �� ��z1��z� = z



6.3 Shwarz' Lemma and its Consequenes 285so that �� is invertible and �� itself is the inverse for ��. Notethat, sine ��1� = �� 2 H(�), �� 2 Aut (�).Now, we de�ne g = �b Æ f Æ �a and apply Shwarz' lemma for g. First,we observe that g satis�es the hypothesis of Shwarz' lemma. Thus, byShwarz' lemma, we onlude that jg0(0)j � 1 and jg(z)j � jzj on �: Now,we ompute g0(0) = �0b(b)f 0(a)�0a(0):(6.37)Sine �0�(z) = �� 1� j�j2(1� �z)2� ;it follows that �0�(0) = �(1�j�j2) and �0�(�) = �1=(1�j�j2): Using thesein (6.37), we �nd that g0(0) = �1� jaj21� jbj2� f 0(a)and therefore, sine jg0(0)j � 1 and b = f(a), the onlusion (6.35) follows.For the proof of (6.36), we use the seond ondition jg(z)j � jzj whih isequivalent to the inequalityj(�b Æ f Æ �a)(z)j � jzj; z 2 �:Sine ��(��(z)) = z for eah z 2 �, setting z for �a(z), it follows thatj(�b Æ f)(z)j � j�a(z)j; z 2 �:In partiular, if we take z = a0 then the last inequality is equivalent to theinequality j�b(b0)j � j�a(a0)j whih, by the de�nition of ��, is the same asthe inequality (6.36).By Shwarz' lemma, equality in (6.35) or in (6.36) holds if and only ifg(z) = �z =: I�(z), j�j = 1; that is, f(z) = ��1b Æ I� Æ ��1a 2 Aut (�).6.38. Remark. Clearly, (6.35) may be obtained diretly from (6.36).Indeed, rewriting the inequality (6.36) in the form����f(a)� f(a0)a� a0 ���� � �����1� f(a)f(a0)1� aa0 �����and letting a0 ! a, we obtain (6.35). Thus, every analyti funtion w =f(z) from � into � satis�es the onditionjf 0(z)j � 1� jf(z)j21� jzj2 ; z 2 �;



286 Maximum Priniple, Shwarz' Lemma, and Liouville's Theoremor equivalently, jdwj1� jwj2 � jdzj1� jzj2 (w = f(z); z 2 �)and the equality holds i� f 2 Aut (�).Also, we observe that the inequality (6.36) for analyti funtions f :� ! � reveals the ontration property of f with respet to the metri �(in fat, it is a non-expansive map with respet to the metri �). Further,f is an isometry, i.e. �(f(a); f(a0)) = �(a; a0), i� f 2 Aut (�). �6.39. Example. Suppose that f : � ! � is analyti suh thatf(a) = 0 and f(a� 1) = b for some a 2 (0; 1) and b 2 �. Then, by (6.36),jbj � 11� a(a� 1) = 11 + a� a2 :In partiular, this observation implies the following assertions:(i) There exists no funtion f that is analyti in � suh that jf(z)j � 1,f(1=3) = 0 and f(�2=3) = 5=6:(ii) There exists no analyti funtion f : � ! � suh that f(1=4) = 0and f(�3=4) = 17=20: �6.40. Example. Suppose we are given that f : � ! � is analytiand f(a) = 0 for some point a 2 �. Suppose that we are asked to �nd anestimate for jf(b)j for some b 2 �. To do this, by (6.36), we see �rst that(sine f(a) = 0),jf(z)j � j�a(z)j ; �a(z) = a� z1� az for z 2 �.In partiular, jf(b)j � j�a(b)j and note that the maximum is ahieved whenf(z) = �a(z): For instane, if f(1=2) = 0 then the estimate for f(1=4) isgiven by jf(1=4)j � ���� (1=2)� (1=4)1� (1=2) (1=4)���� = 27and the maximum is attained for �1=2(z): �6.41. Example. Suppose that f : � ! � is an analyti funtionsuh that f(0) = a for some a 2 �. We wish to verify whether there existssuh an f with the property that f 0(0) =  for a omplex onstant . If so,under what ondition on , suh a funtion exists? To do this, aordingto (6.35), we �rst observe that jf 0(0)j � 1� jaj2 whih means that  mustsatisfy the inequality jj � 1�jaj2: For instane, onsider the �a(z) de�nedabove. Then, �a(0) = a, �0a(0) = �(1�jaj2) and so, the funtion f de�nedby f(z) = k�a(z) with jkj � 1 does the job. �



6.3 Shwarz' Lemma and its Consequenes 2876.42. Example. Suppose that f : � ! � is an analyti funtion,jf(z)j � 1 on jzj = 1, f(a) = 0 and f(�a) = b for some a 2 (0; 1) andb 2 (0; 1℄. Then, by (6.36), it follows that jbj � 2a=(1+a2): This observationis useful to onlude the following:(i) There exists no analyti funtion f : �! � suh thatjf(z)j � 1 on jzj = 1; f(1=2) = 0 and f(�1=2) = 19=20:Note that the existene of suh a funtion is guaranteed, for example,if we replae the ondition f(�1=2) = 19=20 by f(�1=2) = 4=5.(ii) There exists an analyti funtion f : � ! � suh that f(1=3) = 0and f(�1=3) = 3=5: Suh an f is given by �1=3(z). �6.43. Example. Let f 2 H(�) with f(a) = 0 and jf(z)j � jeizj forall jzj = 1. How large an jf(�a)j be? To do this, we rewrite the givenondition on f as jF (z)j � 1 for jzj = 1, where F (z) = e�izf(z). De�neg by g = F Æ �a; where �a(z) is de�ned as above. Then, g(a) = 0 andjg(z)j � 1 for jzj � 1 (by the Maximum modulus priniple) so that, byShwarz' lemma,jg(z)j � jzj; i.e. je�i�a(z)f(�a(z))j � jzj;or equivalently,je�iwf(w)j � ���� a� w1� aw ���� ; i.e. jf(w)j � ����eiw � a� w1� aw����� for all jwj � 1and the equality holds if f(w) = ei�eiw�a(w) for some �. �6.44. Example. A �nite Blashke produt is de�ned to be a rationalfuntion of the form B(z) = ei�Qnk=1 ak�z1�akz ; where a1; a2; : : : ; an are in �and � 2 [0; 2�℄. If f is analyti in the unit disk �, ontinuous on � andjf(z)j = 1 for jzj = 1, then it an be easily shown that f is a �nite Blashkeprodut. If, in addition, f is entire then f(z) = ei�zn for some � 2 R andn 2 N.In fat, to exlude the trivial ase, we assume that f is non-onstant.Sine f is analyti in the unit disk jzj < 1 and f is ontinuous in jzj � 1and jf(z)j = 1, it an have only �nitely many zeros; otherwise, the limitpoint of the zeros must lie on jzj = 1 (sine the zeros are isolated), whih isa ontradition. Denote these zeros by a1; a2; : : : ; an (multiple zeros beingrepeated). De�neF (z) = f(z) /  nYk=1 �ak (z)! ; �ak (z) = ak � z1� akz :



288 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremThen, F is analyti for jzj < 1, ontinuous on jzj � 1, jF (z)j = 1 forjzj = 1 and F (z) 6= 0 in �. The same onlusion holds for 1=F (z) also.Applying the Maximum modulus priniple, both to F (z) and 1=F (z), weget jF (z)j � 1 and j1=F (z)j � 1 for jzj � 1. Thus, jF (z)j = 1 on jzj � 1and so, f(z) = ei� nYk=1 �ak (z):If f is entire, then ak = 0 for eah k, and the seond part follows. �We have seen a number of variants of Shwarz' lemma whih are use-ful. Inidentally, this result an be used to haraterize all onformal selfmappings (i.e. one-to-one, onto and analyti) of the unit disk � and whihmap the unit irle �� onto �� (see also Theorem 5.59).6.45. Theorem. Every univalent analyti funtion f from � ontoitself that has an analyti inverse must be of the formf(z) = ei� z � z01� z0z ;where z0 is a omplex number, jz0j < 1, and 0 � � � 2�.Proof. Let w = f(z) be suh an analyti univalent funtion, and letf(a) = b. Then, aording to (6.36), we have�(w; b) � �(z; a); �(z; a) = ���� z � a1� az ���� :(6.46)Applying the same argument to the inverse f�1, for whih f�1(b) = a, weobtain �(f�1(w); f�1(b)) � �(w; b); i.e. �(z; a) � �(w; b)(6.47)for all z 2 �. Equations (6.46) and (6.47) imply that for eah z 2 ������ f(z)� f(a)1� f(a)f(z) ����� = ���� z � a1� az ���� ;that is f(z) = ei� [(z � a)=(1� az)℄ + f(a)e�i�1 + f(a)e�i�[(z � a)=1� az)℄ for some real �whih has the desired form.An equivalent formulation of Theorem 6.45 is the following:Aut� = ��z + ��z + � : �; � 2 C ; j�j2 � j�j2 = 1�= �ei� z � z01� z0z : z0 2 �; 0 � � � 2�� :



6.3 Shwarz' Lemma and its Consequenes 289From Theorem 6.45, it is lear thatAut (�R) = �R2ei� z � z0z0z �R2 : z0 2 �R; 0 � � � 2�� :For a �xed �, f(z) = ei�z is a onformal self-map of � that �xes the origin.We now show that these are the only onformal self-maps that �x the origin.6.48. Corollary. Every automorphism f : �! � with f(0) = 0 isgiven by f(z) = ei�z.Proof. The orollary follows if we hoose a = 0 and b = 0 in Theorem6.45. Alternatively, Shwarz' lemma applied to f and f�1, beause eah off and f�1 maps � onto itself suh that f(0) = 0 and f�1(0) = 0, yieldsjf(z)j � jzj and jzj = jf�1(f(z))j � jf(z)j:Hene, jf(z)j = jzj; that is, f(z) = ei�z.6.49. Theorem. Let p be analyti in�with p(0) = 1 andRe p(z) > 0in �. Then, jp0(0)j � 2 and1� jzj1 + jzj � jp(z)j � 1 + jzj1� jzj ; z 2 �:Equality holds in eah of these inequalities for p(z) = (1 + z)=(1� z).Proof. De�ne �(w) = (w � 1)=(w + 1): Then, � maps fw : Rew > 0gonformally onto � and so f = � Æ p maps � onformally onto itself withf(0) = 0: From Shwarz' lemma it follows then that(i) j�(p(z))j = jf(z)j � jzj for z 2 �(ii) j�0(p(0))p0(0)j = jf 0(0)j � 1.The assertion (i) implies thatjp(z)j � 1jp(z)j+ 1 ; 1� jp(z)j1 + jp(z)j � � ����p(z)� 1p(z) + 1 ���� � jzj; i.e. 1� jzj1 + jzj � jp(z)j � 1 + jzj1� jzj :As j�0(p(0))j = j�0(1)j = 1=2, (ii) gives that jp0(0)j � 2.6.50. Remark. If, in Theorem 6.49, p(0) = � + i�, � > 0, we mayapply the above result to the funtion (p(z)� i�)=�. �In R, for a di�erentiable funtion f of one variable to have maximumor minimum at x0 it is neessary that f 0(x0) = 0. However, the analog ofthis does not hold when we deal with funtions of a omplex variable. This



290 Maximum Priniple, Shwarz' Lemma, and Liouville's Theoremsurprising fat in the behavior of an analyti funtion at a point where itassumes its maximum modulus will be reeted in the next theorem.6.51. Theorem. Suppose that f is analyti in a neighborhood of �and z0 2 �� satis�es jf(z0)j = maxz2� jf(z)j. Then, f 0(z0) 6= 0 unless f isonstant.Proof. Suppose that f is a non-onstant analyti funtion. Withoutloss of generality, we suppose 1 = z0 = jf(z0)j, multiplying f by a onstant,if neessary. Then, by the Maximum modulus priniple, we have f(�) � �.Assume �rst that f(0) = 0. Then, for all t 2 (0; 1), applying the triangleinequality and Shwarz' lemma, we �nd that j1� f(t)j � 1� jf(t)j � 1� tand so ����f(1)� f(t)1� t ���� � 1 for 0 � t < 1:Thus, we obtain jf 0(1)j � 1 by making t! 1�. Suppose f(0) = a 6= 0 andonsider the funtion g de�ned by g(z) = (�a Æ f)(z), where�a(z) = a� z1� az ; jaj < 1:Then, g : �! � and g(0) = 0. Applying the preeding argument to g, weget jg0(1)j � 1. A diret alulation shows thatg0(z) = � (1� jaj2)f 0(z)[1� af(z)℄2so that f 0(1) = �g0(1)[1� af(1)℄21� jaj2 = �g0(1)(1� a)21� jaj2 :Sine jg0(1)j � 1, this gives thatjf 0(1)j � (1� jaj)21� jaj2 = 1� jaj1 + jaj > 0:This ompletes the proof.From the proof of Theorem 6.51, beause of its independent interest, wenotie the following:6.52. Corollary. If f is analyti on �, f(0) = 0, jf(z)j < 1 in �and if f is analyti at z = 1 with f(1) = 1, then jf 0(1)j � 1.



6.4 Liouville's Theorem 2916.4 Liouville's TheoremWe wish to address, in detail, the following questions:� Whih entire funtions are bounded?� Whih entire funtions omit two distint omplex values? Reall thata funtion f : 
 ! C is said to omit a value a if a 2 C nf(
). Forexample, the entire funtions ez and 1+ez omit 0 and 1, respetively.� Whih meromorphi funtions omit three distint omplex values?For example, the meromorphi funtion 1=(1� e2�iz) in C omits twodi�erent values, namely 0 and 1.These questions have elegant and omplete answers in the form of Liouville'stheorem and Piard's little theorem. In Piard's great theorem, we shallatually answer a more general question. Let us disuss the �rst questionand the remaining will be done in Setion 12.7.Reall that a funtion is entire i� it is analyti on the whole omplexplane C . The simplest examples of entire funtions are polynomials. Entirefuntions whih are not polynomials (e.g. ez, sin z, os z, osh z, sinh zexp(sin z) et.) are alled entire transendental funtions.Suppose now that f is entire and a 2 C is arbitrary. Then, f admits aTaylor expansion around a:f(z) = 1Xn=0 an(z � a)n; an = f (n)(a)n! :If an = 0 for all n � 1, then f(z) = f(a) = a0; that is, f is a onstantfuntion. Note that a non-zero onstant funtion is the only (rational)entire funtion having no zeros. If ak 6= 0 for some integer k � 1 butan = 0 for all n > k, then f is a polynomial of degree k � 1. Finallyif ak 6= 0 for an in�nite number of values of k, then f beomes an entiretransendental funtion. Reall that entire funtions are just the Taylor'sseries about any point a with in�nite radius of onvergene. For instane,the power series suh as1Xn=0 zn(n!)� (� > 0); 1Xn=0 e�n2zn; 1Xn=0 zn2�nn! ; 1Xn=0 zn2nn! ;whih are onvergent for all z 2 C . In onlusion, a non-onstant entirefuntion is either a polynomial of degree n so that it has a pole of order n atin�nity; or else an entire transendental funtion in whih ase it will havean essential singularity at in�nity (see Chapter 7). With this observation,elementary examples of the last type are the exponential funtion ez, thetrigonometri funtions sin z, os z, and the hyperboli funtions sinh z,osh z (whih are, of ourse, well-known simple ombinations of exponentialfuntions). From our earlier results, it an be easily observed that the



292 Maximum Priniple, Shwarz' Lemma, and Liouville's Theoremsum, di�erene and produt of a �nite number of entire funtions are alsoentire; and the quotient of two entire funtions is also entire provided thedenominator is nowhere zero.Now, our aim is to examine the behavior of entire funtions for suÆ-iently large jzj. Let us start with the following simple problem.6.53. Problem. Are there non-onstant funtions of a real variablex whih are both bounded and di�erentiable on R?We shall �rst see that familiar funtions on R suh as ex, sinx, osxand log(1+x2) exhibit surprising behavior when we allow x to be omplexrather than just real. To do this, we shall look at three di�erent types ofsimple examples before stating the theorem. Let us look at the funtionf : R ! R given by f(x) = ex. Then� f is non-onstant and di�erentiable on R� f is unbounded on R and f (n) exists on R for eah n 2 N� f is one-to-one on R.In any subjet, just with one example, it may not be possible to onludethat there exists no funtion with the desired property as in Problem 6.53.Note that f(z) = ez is not one-to-one on C . Now, we look at the seondexample. Consider g : R ! R de�ned by g(x) = sinx or osx for x 2 R.Clearly,� g is non-onstant and di�erentiable on R� g is bounded by 1 and g(n) exists on R for eah n 2 N� g is not one-to-one on R (beause it is a periodi funtion).As the third example, let us onsider f : R ! R given byfa(x) = (x2 + a2)�1;where a is a �xed non-zero real number. Then, 0 < fa(x) � 1=a2 for eahx 2 R. However, we see that neither of these funtions, namely, fa(x), osxand sinx, is bounded if \omplex values are permitted for the variable x."Indeed, for fa(z) = 1z2 + a2 ;the absolute value of fa(z) approahes 1 whenever z approahes �ia, a 2R nf0g. Note that fa(z) is not di�erentiable on the whole of C . On the otherhand, sinx and osx are non-onstant bounded funtions of real variableand eah of them is di�erentiable on R. Observe that os z and sin z arethe well-known non-onstant entire funtions de�ned byos z = eiz + e�iz2 ; and sin z = eiz � e�iz2i :



6.4 Liouville's Theorem 293It follows that for z = iy, y 2 R,os(iy) = e�y + ey2 and j sin(iy)j = je�y � eyj2whih implies that both j os zj and j sin zj inrease inde�nitely when zapproahes in�nity along the imaginary axis. Thus, the entire funtionsos z and sin z are unbounded on C ; i.e. no K an exist suh that j os zj �K on C . Similarly, noK an exist suh that j sin zj � K on C . In partiular,we say that the range of eah of the funtions exp z, os z and sin z is anunbounded set in C . As a onsequene, it follows that both sin z and os zare bounded for jzj < 2004 whereas both sin z and os z are unbounded forjzj > 2004. More generally, for suÆiently large R, both sin z and os zmaps jzj > R into any presribed neighborhood of in�nity.6.54. Example. Let �, �,  and Æ be some �xed real numbers.Then, we have the following:� if 
 = fz 2 C : Im z > �g, then the entire funtion f(z) = e�iz is un-bounded on the half-plane 
 (note that f(iy) = ey whih approahes+1 as y ! +1);� if 
 = fz 2 C : Re z > �g, then the entire funtion g(z) = ez isunbounded on the half-plane 
;� the entire funtion h(z) = e�z2 is unbounded on any open set whihontains either part of the imaginary axes fiy : y > g or fiy : y <Æg. Note that h(iy) = ey2 . �Finally, for n 2 N, we onsider fn(z) = z=(1 + njzj) or sin(jzjn). Then,for eah n, fn(z) is ontinuous on C and jfn(z)j < 1 on C . This observationshows that there exist non-onstant bounded ontinuous funtions on C .Thus, it is natural to expet a simple haraterization for funtions of om-plex variable that are both bounded and analyti in C . This is preiselygiven by Liouville's theorem in the following form whih implies that therange of every non-onstant entire funtion is an unbounded set in C .6.55. Theorem. (Liouville's Theorem) A bounded and entire fun-tion is onstant.We have already observed through examples that this result is quitedi�erent from any that ould possibly hold for real-valued funtions of areal variable. We remark that Liouville's theorem10an be viewed as astatement about the range of a non-onstant entire funtion. Therefore,10Liouville (1809-1882), a Frenh mathematiian, is known for his work on analysisand di�erential geometry.



294 Maximum Priniple, Shwarz' Lemma, and Liouville's Theoreman equivalent formulation of Liouville's theorem is that \the range of abounded and entire funtion is a singleton set".As an immediate onsequene of Liouville's theorem, we have the fol-lowing simple appliations:� Non-onstant entire funtions must be unbounded. For example, aswe have already seen, the entire funtions sin z and os z are un-bounded unlike their real ounterparts.� Every analyti funtion in the extended omplex plane is neessarilyonstant. In fat if f is analyti at z = 1, then limjzj!1 f(z) is�nite. Let this limit be L. This means that, given � > 0 there existsan R > 0 suh thatjf(z)j � jLj � jf(z)� Lj < � whenever jzj > R;and so, in partiular, f is bounded for jzj > R and thus, by theontinuity of f on the ompat set fz : jzj � Rg, f is boundedon the whole of C . Hene, by Liouville's theorem, f is onstant.Equivalently, we say that the only funtion whih is analyti on theRiemann sphere is the onstant funtion.� If f is entire and if there exists an M > 0 with jf(z)j > M for allz 2 C , then f is onstant. This is beause the given onditions implythat f 0(z) exists and f(z) 6= 0 in C so that 1=f(z) is analyti on Cand j1=f(z)j < 1=M for all z 2 C . Now applying Liouville's theoremto 1=f(z), we onlude that f is onstant.6.56. Problem. Do we really need the boundedness ondition in thehypotheses of Liouville's theorem?For instane, an we replae the `boundedness' ondition in Liouville'stheorem by a ondition suh as the following?� Re f(z) or Im f(z) is bounded on C� Re f(z) or Im f(z) lies in a half-plane.The answer is `yes' under eah of the above onditions. For example, if f isentire and Re f(z) �M for some �xed M 2 R, then f is bounded. Indeed,f(z) is entire =) �(z) = ef(z) is entire=) j�(z)j = jef(z)j = eRe f(z) � eM for all z 2 C=) �(z) is onstant, by Liouville's theorem,=) �0(z) = ef(z)f 0(z) = 0 for all z 2 C=) f 0(z) = 0 in C , sine ef(z) 6= 0 in C=) f(z) is onstant:



6.4 Liouville's Theorem 295Alternatively, it suÆes to observe that if f is entire and Re f(z) �M theng(z) = 1=[1+(M�f(z))℄ is entire and bounded by 1 so that g (and, hene,f) is onstant.The other ases may be handled in a similar fashion. However, it isimportant to remark that all these examples follow as a simple onsequeneof Piard's theorem whih we shall disuss in Setion 12.7. Note also thatthe above disussion (together with the fat that a harmoni funtion in Cpossesses a harmoni onjugate in C ) learly shows the following:6.57. Theorem. A funtion whih is harmoni and bounded in Cmust be onstant.This statement an be viewed as the harmoni analog of Liouville'stheorem.6.58. First proof of Liouville's theorem. Sine f is boundedon C , there is a �nite M suh that jf(z)j � M for z 2 C : Let a be anarbitrary omplex number and let � = fz : z = Rei�, 0 � � < 2�g, wherejaj < R <1. Then, aording to the Cauhy integral formula, we havef(a)� f(0) = 12�i Z�� 1z � a � 1z� f(z) dz = a2�i Z� f(z)z(z � a) dzso that for eah �xed a, we havejf(a)� f(0)j � jaj2� �maxjzj=R ���� f(z)z(z � a) ����� 2�R � M jajR� jajwhih approahes zero as R ! 1. Thus, f(a) = f(0) for eah a 2 C andhene, f is onstant.6.59. Seond proof of Liouville's theorem. By hypothesis, thereexists a �nite M > 0 suh that jf(z)j �M for jzj < R and for any R > 0.Equivalently, jf(Rz)j �M for jzj < 1: In partiular, jf(0)j �M . Setg(z) = f(Rz)� f(0)2M ; jzj < 1:Then g satis�es the hypotheses of Shwarz' lemma for eah R > 0, sineg(0) = 0 and jg(z)j � jf(Rz)j+ jf(0)j2M � M +M2M = 1:Hene, we have jg(z)j � jzj for jzj < 1. In other words,jf(Rz)� f(0)j � 2M jzj for jzj < 1;



296 Maximum Priniple, Shwarz' Lemma, and Liouville's Theoremor equivalently, jf(z)� f(0)j � 2MR jzj for jzj < R:Again remember that M is a �xed onstant, whereas R is at our disposal,and an be hosen as large as we please. Thus, restriting z in the unit diskjzj < 1 and letting R tend to in�nity in the inequality, we �nd that f(z) =f(0) for jzj < 1, whih, by the Uniqueness theorem, gives f(z) = f(0) forall z 2 C ) and so f is onstant.Third proof of Liouville's theorem is atually an immediate onsequeneof Cauhy estimate. So we leave this as a simple exerise.Our fourth proof is ontained in the following theorem whih shows thatif f is an entire funtion suh that jf(z)j inreases slower than some powerof jzj as jzj ! 1, then the funtion must be a polynomial.6.60. Theorem. (A Generalized Version of Liouville's Theorem).An entire funtion f , whih satis�es the inequality jf(z)j �M jzj� for some� � 0, M > 0 and all suÆiently large jzj, redues to a polynomial ofdegree n where n is the largest integer suh that n � �.Proof. Note that the ase � = 0 is Liouville's theorem. Let f be entire.Then, f admits a Taylor expansion around 0:f(z) = 1Xn=0 anzn; ak = 12�i Zjzj=R f(z)zk+1 dz for any R > 0:Hene, taking R � M and using the standard estimate for integrals andthe given growth ondition on f , we havejakj � 12� �MR�Rk+1 � � 2�R =MR��k:Sine R an be made arbitrarily large, it follows that for k > � we musthave ak = 0. We onlude that f an only be a polynomial of degree notgreater than �.For example if f(z) is entire suh that f(z)=zn is bounded in C , thenf(z) = zn for some onstant . For a generalization of Theorem 6.60, werefer to Exerise 6.89.6.61. Remark. We remark that it is possible that a real di�eren-tiable funtion f an map C onto the unit disk � = fz : jzj < 1g, as theexamplez 7! zp1 + jzj2 ; i.e. f(x; y) =  xp1 + x2 + y2 ; yp1 + x2 + y2! ;



6.5 Doubly Periodi Entire Funtions 297shows. Note that this has an inverse given byw 7! wp1� jwj2 ; i.e. f�1(u; v) =  up1� (u2 + v2) ; vp1� (u2 + v2)! :However, an immediate appliation of Liouville's theorem shows that this isnot the ase with analyti funtions as \every analyti funtion f : C ! �is onstant." In other words, there an be no bianalyti (i.e. a bijetionwhih is analyti together with its inverse) mapping of the unit disk � ontothe whole omplex plane C or of the upper half-plane onto C . �Moreover, as a onsequene of Theorem 6.60, we onlude that if f isentire and jf(z)j � A + Bjzj� for all suÆiently large jzj and for some�xed onstants A;B and 0 � � < 1, then f is onstant. This observationreminds us that we need not assume that jf(z)j is bounded in Liouville'stheorem, only that its growth is suÆiently slow.6.62. Example. Suppose that f = u+ iv is an entire funtion whihis blessed with the property that uy � vx = �2 for all z 2 C . What anyou say about the funtion f? Can it be a onstant funtion? Clearly not!Can this be a polynomial of higher degree? The given ondition shows thatthis is not the ase (how?). Let us now try to �nd the preise form of thisfuntion. By the C-R equation uy = �vx, the given ondition is the sameas vx = 1 whih, by the fat that f 0(z) = ux + ivx, is equivalent toIm f 0(z) = 1 for z 2 C :This observation implies that f 0(z) is a onstant, say a, so that f has theform f(z) = az + b with Im a = 1. Alternatively, as Im f 0(z) = 1, h(z)de�ned by h(z) = eif 0(z) is entire and jh(z)j = e�1 shows that h (and henef 0(z)) is onstant, by Liouville's theorem. �6.5 Doubly Periodi Entire FuntionsReall that a funtion f has a period ! if f(z + !) = f(z) for all z 2 C .To obtain another appliation of Liouville's theorem, we �rst reall twofamiliar periodi funtions of a real variable x:� sin(x+ 2�) = sinxos(x + 2�) = osx ; for all x 2 R:Does the property hold when we allow x to be omplex rather than justreal, for eah of these funtions? By the Uniqueness theorem, yes it is.Thus, sin z and os z are periodi funtions with period 2�. Is ex periodi ifx 2 R? No. Indeed, this funtion is a stritly inreasing one-to-one funtion



298 Maximum Priniple, Shwarz' Lemma, and Liouville's Theoremon R. However, in view of the periodiity property of sin z and os z, wehave os(z + 2�) + i sin(z + 2�) = os z + i sin z for all z 2 C ;that is ez+2�i = ez for all z 2 C showing that the omplex exponentialfuntion ez is periodi with period 2�i, whih is a purely imaginary num-ber. So, 2� is a period for the entire funtions eiz, os z and sin z. It istherefore natural to ask whether there exists a non-trivial doubly periodientire funtion f (i.e. f with two independent periods !1 and !2 suh thatf(z) = f(z + !1) = f(z + !2) for all z 2 C ). Equivalently, we raise thefollowing6.63. Problem. Does there exist an entire funtion f having both areal and an imaginary period? More preisely, are there two non-zero realnumbers �, � suh that� f(z + �) = f(z)f(z + i�) = f(z) for all z 2 C ?Let us �rst show that every entire funtion f suh thatf(z) = f(z + 1) = f(z + i) on Cis neessarily a onstant. To do this, we onsider the solid squareS = fx+ iy : 0 � x; y � 1g:Sine f is ontinuous on S, there exists an M suh that jf(z)j �M on S.Now, let z 2 C be arbitrary. Clearly, we an �nd two integers m and nsuh that z +m + in 2 S and therefore, jf(z +m + in)j � M for z 2 C .Further, the hypotheses imply thatf(z) = f(z � 1) = � � � = f(z +m) = f(z +m| {z }+i) = � � � = f(z +m| {z }+in)showing that f is bounded in C as the behavior of f(z) over C is ompletelyharaterized by its behavior on the ompat set S. Therefore, by Liou-ville's theorem, f is a onstant. More generally, a simple modi�ation ofthis disussion gives the following result whih answers Problem 6.63.6.64. Theorem. If f : C ! C is analyti andf(z) = f(z + z1) = f(z + z2) for all z 2 C ;where z1 and z2 are the two non-zero omplex numbers suh that z1=z2 62 R,then f is onstant.



6.6 Fundamental Theorem of Algebra 299Proof. Sine z1=z2 is not real, eah z 2 C an be written in the formz = �1z1 + �2z2where �1; �2 2 R. But �1 and �2 may be written as �1 = t1 + n1 and�2 = t2 + n2, that isz = (t1 + n1)z1 + (t2 + n2)z2 = (t1z1 + t2z2) + (n1z1 + n2z2)for some integers n1; n2 and some 0 � t1; t2 < 1. Obviously if z1 and z2 arethe periods of f , so is m1z1+m2z2 for any integers m1 and m2 and hene,we must have f(z) = f(t1z1+ t2z2): Thus, the behavior of f is now entirelyharaterized by its behavior on the parallelogramft1z1 + t2z2 : 0 � t1; t2 < 1g:From the analytiity of f , it follows that jf j is ontinuous on the losedparallelogram D = ft1z1 + t2z2 : 0 � t1; t2 � 1g and so, f is boundedfor all z 2 D. Consequently, f is bounded on C . We then onlude, byLiouville's theorem, that f is onstant.6.6 Fundamental Theorem of AlgebraDoes every analyti funtion have a zero in C ? Clearly, the answer isno as the familiar exponential funtion ez shows. Thus, a transendentalentire funtion may have no zeros in C . Does every polynomial in x 2 Rwith real oeÆients have a zero in R? Again the answer is no as theequation x2 + 1 = 0 has no zeros in R. Does every polynomial in x 2 Rwith rational oeÆients have a rational zero? Observe that the equationx2 � 3 = 0 has no rational zeros. How about a non-onstant polynomialwith omplex oeÆients? The answer to this question is given by thefundamental theorem of algebra.Liouville's theorem an be used to provide a natural and short proof forthe fundamental theorem of algebra whih asserts that every non-onstantpolynomial with omplex oeÆients has at least one omplex zero andhene has exatly n zeros. In fat, from the observations made below Li-ouville's theorem, it is straightforward to see that if p is a polynomial ofdegree n � 1, then p(z) = 0 has a zero in C ; beause if it did not have,then the funtion 1=p(z) would be bounded (how?) and analyti in C andwould therefore be onstant, whih is a ontradition to the hypothesis. Itremains to prove that if p does not have any zeros, then it is bounded in C .To do this, without loss of generality we an suppose that the polynomial(with omplex oeÆients) has the formp(z) = a0 + a1z + � � � + an�1zn�1 + zn (a0 6= 0, n � 1):



300 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremThen intuitively, for large z, we an expet that p(z) should behave like zn,sine the largest power dominates the other ones. Indeed, for jzj � 1 (sothat jzjn � jzjn�1 � � � � � jzj), we havejp(z)j = ���zn �a0zn + a1zn�1 + � � � + an�1z + 1����� jzjn n1� ���a0zn + � � � + an�1z ���o ; by the triangle inequality;� jzjn�1�� ja0jjzjn + � � � + jan�1jjzj ��� jzjn�1� 1jzj (ja0j+ � � � + jan�1j)� :Hene, for suÆiently large jzj (e.g. jzj = R � R0 = maxf1; 2(ja0j+ � � � +jan�1j)g), we have jp(z)j � jzjn2 :(6.65)Then, for jzj � R, ���� 1p(z) ���� � 2jzjn � 2Rn :On the ompat set �R = fz 2 C : jzj � Rg, the funtion 1=p(z), beingontinuous on �R, is bounded in the disk by some M = maxjzj=R j1=p(z)j.Therefore, j1=p(z)j is bounded above for all z 2 C by maxfM; 2R�ng. Thus,1=p(z) is a bounded entire funtion and hene, must be onstant whih isabsurd. Therefore, p(z) = 0 has a zero.Here is a preise formulation of the fundamental theorem of algebra.6.66. Theorem. Let p(z) = Pnk=0 akzk be a non-onstant polyno-mial of degree n � 1 with omplex oeÆients. Then, p has n zeros inC . That is, there exist n omplex numbers z1; z2; : : : ; zn, not neessarilydistint, suh that p(z) = anQnk=1(z � zk).Proof. If a 2 C , then by the `division algorithm' there is a polynomialq of degree n� 1 suh that p(z) = (z � a)q(z) +R; where R is a onstant.Clearly, R = 0 () p(a) = 0 () z � a is a fator of p(z):Sine there exists a z1 suh that p(z1) = 0, z � z1 is a fator of p(z) withno remainder term. By the `division algorithm' there is a polynomial pn�1of degree n� 1 suh that p(z) = (z � z1)pn�1(z); beausep(z)� p(z1) = a1(z � z1) + � � � + an�1(zn�1 � zn�11 ) + (zn � zn1 )= (z � z1)pn�1(z):



6.7 Zeros of ertain Polynomials 301This shows that p has a linear fator z�z1. Thus, if n > 1, then by applyingthe same priniple we onlude that there is another omplex number, sayz2, suh that pn�1(z2) = 0 and so pn�1 has a linear fator z�z2. Proeedingin this manner, we an express p uniquely as a produt of linear fators:p(z) = an nYk=1(z � zk)where z1; z2; : : : ; zn are (not neessarily distint) the zeros of p(z).Observe that there is no analogue of the fundamental theorem of algebrain the ase of real numbers. This an be easily seen by onsidering thequadrati polynomial p(x) = 1+ x2 whih has no real zeros. The followingresult is referred to as an abbreviated statement of the fundamental theoremof algebra.6.67. Corollary. Every polynomial p(z) of positive degree omits novalues, i.e. p(C ) = C . Eah w 2 C is the image of exatly n points in C .Proof. If p(z) is a polynomial of degree n, then q(z) = p(z)� a is alsoa polynomial of degree n for eah �xed a 2 C . By Theorem 6.66, p(z) hasn-zeros. In other words, for eah a 2 C there are n points z1; z2; : : : ; znsuh that p(zj)� a = 0 for j = 1; 2; : : : ; n. Thus, p(C ) = C .6.7 Zeros of ertain PolynomialsWe start with a simple result before we move on to a disussion on theloation of the zeros of ertain polynomials.6.68. Theorem. If a polynomial p(z) with real oeÆients has a zeroat � suh that Im (�) 6= 0, then the omplex onjugate � is also a zero ofp(z). Indeed, if � is a zero of order k then � is also a zero with order k.Proof. Set p(z) = a0+a1z+a2z2+ � � � +anzn, where a0; a1; a2; : : : ; anare all real and an 6= 0. Sine � is a zero of p(z), we have p(�) = 0: Takingonjugation on both sides, we have p(�) = 0. Hene, � is also a zero of thepolynomial p(z). To prove the seond assertion we note that if p(z) has azero at � of order k, thenp(�) = p0(�) = � � � = p(k�1)(�) = 0 and p(k)(�) 6= 0whih would then imply thatp(�) = p0(�) = � � � = p(k�1)(�) = 0 and p(k)(�) 6= 0:Thus, omplex zeros our as onjugate pairs with the same multipliity.



302 Maximum Priniple, Shwarz' Lemma, and Liouville's TheoremThe onvex hull of a set D � C is the intersetion of all the onvex setsontainingD. The losed onvex hull ofD is the intersetion of all the losedonvex sets ontaining D. In fat, it an be seen that the onvex hull ofpoints z1; z2; : : : ; zn 2 C is the set of all linear ombinations z =Pnj=1 �jzjwith 0 � �j � 1 and Pnj=1 �j = 1: The onept of onvex hull helps us todisuss the loation of the zeros of ertain polynomials.6.69. Theorem. (Gauss's Theorem) Suppose that p(z) is a polyno-mial of degree n � 1. Then, every zero of p0(z) lies in the onvex hull ofthe set of zeros of p(z).Proof. Let p(z) be a polynomial of the formp(z) = nYk=1(z � zk);where z1; z2; : : : ; zn are (not neessarily distint) the zeros of p(z). Thus,by logarithmi di�erentiation, it follows from the above representation thatfor z 6= zk p0(z)p(z) = nXk=1 1z � zk = nXk=1 (z � zk)jz � zkj2(6.70)so that �p0(z)p(z) � = nXk=1� 1jz � zkj2� (z � zk):If  2 C is suh that p() 6= 0 and p0() = 0, then the above equationbeomes  = Pnk=1 zkj� zkj�2Pnk=1 j� zkj�2 :Hene  is of the form  =Pnk=1 �kzk, where�j = j� zj j�2Pnk=1 j� zkj�2 ; j = 1; 2; : : : ; n:This shows that if z1; z2; : : : ; zn are the zeros of p(z), then for every zero of p0(z) there are non-negative numbers �1; �2; : : : ; �n suh that = nXk=1�kzk; with nXk=1�k = 1:The above onstrution uses the fat that p() 6= 0. If p() = 0 = p0(),then we simply take �1 = 1 and  = 1 � .As an example to Theorem 6.69, we onlude that if all the zeros of apolynomial p(z) have negative real parts, then all the zeros of p0(z) havenegative real parts.



6.7 Zeros of ertain Polynomials 3036.71. Alternate proof of Gauss's Theorem. Reall that every half-plane H an be de�ned by the inequality (see 5.42)Im �z � ab � > 0for some omplex onstants a and b (b 6= 0). Consider the polynomialp(z) =Qnk=1(z � zk). Assume that zk 2 H for eah k = 1; 2; : : : ; n. Then,Im �zk � ab � > 0:If  2 C nH , then p() 6= 0. Therefore, Im ((� a)=b) � 0 andIm �� zkb � = Im �� ab �� Im �zk � ab � < 0whih implies that Im (b=(� zk)) > 0 for eah k = 1; 2; : : : ; n. Finally, by(6.70), we see thatIm �bp0()p() � = nXk=1 Im � b� zk� > 0 for  =2 Hand onsequently,bp0()p() 6= 0 or p0() 6= 0 whenever  =2 H:We omplete the proof of Gauss's theorem.As an immediate appliation of Gauss's theorem, we have6.72. Theorem. (Luas's Theorem) If all the zeros of a polynomiallie in a half-plane, then the zeros of its derivative also lie in the same half-plane.If we apply Luas theorem with referene to half-planes determined byeah side of a onvex polygon, we obtain the following6.73. Corollary. If all the zeros of a polynomial lie in the smallestonvex polygon, then the zeros of its derivative also lie in the same polygon.The �rst equality in (6.70) immediately yields the following result. Laterwe shall see that this is a onsequene of a general result.6.74. Theorem. If N is the number of zeros (ounted aording tomultipliity) of the polynomial p(z) in �(a;R), thenZjz�aj=R p0(z)p(z) dz = 2�iN:



304 Maximum Priniple, Shwarz' Lemma, and Liouville's Theorem6.8 Exerises6.75. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) There exists an analyti funtion f on �, f(0) = 1+ i, jf(z)j > 2 forjzj = 1, and having a zero in �.(b) For eah n 2 N, one has maxjzj�r jzn + bj = rn+jbj and the maximumis attained at rei(Arg b+2k�)=n, k 2 Z.() Let f(z) = zm=(zn+2p), where m;n 2 N are �xed, and p is real suhthat p > 1=2. Then, maxjzj�1 jf(z)j = 1=(2p� 1):(d) If 
 = fz = x+ iy : 0 � x; y � 1g, then maxz2
 jz2 � 2zj = p5.(e) Suppose that f 2 H(�R) and satis�es the onditions jf(z)j � 2 on��R and f(0) = p3 + i. Then, f is a onstant on �R.(f) Suppose that f is an entire funtion and has zeros at z = �2i. IfM = maxjzj=3 jf(z)j, then jf(z)j � (M=5)jz2 + 4j for jzj < 3.(g) Let f be an entire funtion and has n zeros at !k = e2k�i=n (k =0; 1; 2; : : : ; n � 1), the n-th roots of unity. If M = maxjzj=3 jf(z)j,then jf(z)j �M(3n � 1)�1jzn � 1j for jzj < 3.(h) If f 2 H(�) suh that f has a zero of order n at z = 0, and M =maxjzj=1 jf(z)j, then jf(z)j �M jzjn for jzj � 1.(i) If w = 'a(z) is a M�obius map of � onformally onto itself, f 2 H(�)and g(w) = f(z), then (1� jwj2) jg0(w)j = (1� jzj2) jf 0(z)j :Note: What happens when g(w) = w?(j) There exists an analyti funtion f of � onto itself suh that f(0) =1=2, f(1=2) = 1=3, and f(1=3) = 1=4.(k) There exists an analyti funtion f : � ! � suh that f(1=2) = 0and jf 0(1=2)j � 4=3:(l) There exists an analyti funtion f : � ! � suh that f(0) = 1=2and f 0(0) = 3=4.(m) There exists no analyti funtion f : �! � suh that f(1=2) = 3=4and f 0(1=2) = 3=4:(n) If f is entire and jf 0(z)j � jzj for all z, then f is of the form a+ bz2with jbj � 1=2.(o) If jaij � 1, i = 1; 2; : : : ; n � 1, then eah zero of the polynomialp(z) = zn + an�1zn�1 + � � � + a2z2 + a1z + 1 lies in the annulusD = fz : 1=2 < jzj < 2g.(p) Eah polynomial of the form p(z) = a0 + a1z + � � � + an�1zn�1 + znsatis�es the inequality supfjp(z)j : jzj � 1g � 1:



6.8 Exerises 305(q) If f is entire and Re f(z) is bounded as jzj ! 1, then f is onstant.(r) Suppose f is entire whih takes real z into real and purely imaginaryinto purely imaginary. Then, f is an odd funtion.(s) If f is entire suh that f omits a non-empty disk, then f is onstant.(t) An entire funtion f whose imaginary part is the square of the realpart is onstant in C .(u) If k 6= 1 is a �xed onstant and f is entire suh that f(z) = f(kz) forall z 2 C , then f is onstant on C .(v) An entire funtion f suh that f(z) 6= 0 in C and limz!1 f(z) 6= 0 isneessarily a onstant.(w) An entire funtion f suh that jf 0(z)j � 2jf(z)j must be of the formbeaz for some onstants a and b with jaj � 2.(x) If f = u+ iv is entire and u2 � v2 +2004 on C , then f is a onstant.(y) If u(z) = u(x; y) is harmoni in C satisfying the ondition u(z) �aj ln jzj j+ b for some positive onstants a, b and for all z 2 C , thenshow that u is a onstant.(z) If u(z) = u(x; y) is harmoni in C suh that u(z) � jzjn for somen 2 N and for all z 2 C , then u(z) is a polynomial in x and y.6.76. De�ne f(z) = 1 � z for jzj � 1. Show that jf(z)j attains itsmaximum value when z = �1. If f(z) is replaed by g(z) = (1 � z)2 or1� z2, does the same onlusion hold?6.77. If f 2 H(�) is suh that jf(z)j < 1 for z 2 � and f �xes twodistint points of �, then show that f is the identity funtion.6.78. Does there exist an analyti funtion f : � ! � with f(0) =�1=2 and f 0(0) = 3=4? Either �nd suh an f or state why there does notexist suh a funtion f . Answer the same question when f(0) = �1=2 andf 0(0) = 4=5.6.79. Suppose that f is analyti and Re f(z) < 0 in �. Find anestimate for jf 0(0)j.6.80. If f 2 H(�), f(0) = 1 and jRe f(z)j < 1 for z 2 �, then showthat jf 0(0)j � 4=�.6.81. If f 2 H(�), f(0) = 0 and if there exists a onstant � > 0 suhthat Re f(z) < � for all z 2 �, then show that jf(z)j � 2�jzj=(1� jzj) forz 2 � and jf 0(0)j � 2�.



306 Maximum Priniple, Shwarz' Lemma, and Liouville's Theorem6.82. Suppose that f is analyti on �R with jf(z)j �M <1 for allz 2 �R, and f(z0) = w0 for some z0 with jz0j < R. Show thatM ���� f(z)� w0M2 � w0f(z) ���� � R jz � z0jjR2 � z0zj for jzj < R:Interpret the ase z0 = 0 = w0 geometrially and show that in this asethe equality is ahieved for some �0 2 �R n f0g i� f is of the form f(z) =Mei�z=R, where � is real.6.83. Suppose f is analyti and bounded by M for z 2 � and haszeros at the points z1; : : : ; zN 2 �. Prove that jf(z)j � MQNj=1 ��� z�zj1�zjz ���for all z 2 �. Is this an improvement over the hypothesized inequalityjf(z)j � M? What an you say about f if equality holds for some z 62fz1; z2; : : : ; zNg?6.84. If f : � ! � is analyti suh that f(0) = f(1=3) = f(�1=3),then show that jf(1=4)j � 7=572. Show also that the bound 7=572 annotbe made smaller.6.85. Prove or disprove the following: there is no bianalyti mappingof the right half-plane U = fz : Re z > 0g onto the whole omplex plane.6.86. Let f be entire suh that jf(z)j � eRe z for z 2 C . What anyou say about f?6.87. Find the set of all entire funtions f suh that jf(z)j � jzj5=2 +jzj9=2 for z 2 �. Justify your answer with a proof.6.88. If p(z) = a0+a1z+ � � � +an�1zn�1+zn (n � 1), then show thatthere exists a real R > 0 suh that 2�1jzjn � jp(z)j � 2jzjn for jzj � R:6.89. If f is an entire funtion whih for some real numbers � and� satis�es Re f(z) � �jzj� for all z with suÆiently large jzj, then f is apolynomial of degree not greater than � (see also Exerise 10.35).6.90. In eah ase given below, determine whether or not there existsa non-onstant entire funtion f(z) satisfying the following onditions. Ifthere is, give an example. If not explain why not.(i) f(0) = ei� and jf(z)j = 1=2 for all z 2 ��(ii) f(ei�) = 3 and jf(z)j = 1 for all z with jzj = 3(iii) f(0) = 1, f(i) = 0, and jf(z)j � 10 for all z 2 C(iv) f(0) = 4� 3i and jf(z)j � 5 for all z 2 �(v) f(z) = 0 for all z = n�, n 2 Z.



Chapter 7Classi�ation of Singularities
Consider the funtions1x2 ; x sin 1x; exp(�1=x3); 1x(x2 + 2) :Then we see that the point x = 0 is a singular point for eah of these fun-tions in the sense that the funtion is de�ned in a deleted neighborhood of0. The problem of lassifying singularities is not satisfatory for funtionsde�ned only on R. On the other hand the situation is quite di�erent forfuntions de�ned on domains in C . In Setion 7.1, we start our disussionon isolated and non-isolated singularities and lassify an isolated singularityas a removable singularity, or a pole, or an essential singularity. In Setion7.2, we disuss removable singularities and present Riemann's removablesingularity theorem for haraterizing whether an isolated singularity is re-movable. Setion 7.3 is devoted to a disussion on poles. In Setion 7.4,we show that isolated singularities an be lassi�ed in a simple way usingLaurent's series. In Setion 7.5, we introdue the notion of an isolated sin-gularity at 1. Analyti funtions with only poles as singularities play aprominent role in funtion theory with a speial name, meromorphi fun-tions. In Setion 7.6, we disuss some aspets of meromorphi funtionsthrough a number of examples and haraterizations. As a onsequene,we present an analog of Liouville's theorem for meromorphi funtions. InSetion 7.7, we disuss the errati behavior of funtions near an essentialsingularity via Casorati-Weierstrass theorem whih provides a basis for un-derstanding the importane of Piard's little theorem.7.1 Isolated and Non-isolated SingularitiesA point z = a is alled a regular point for a omplex-valued funtion fif f is analyti at a. Point a is alled a singular point or a singularity,of f , if f is not analyti at a but every neighborhood of a ontains at
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Figure 7.1: Desription for a non-isolated singularity at a.least one point at whih f is analyti. A singular point a is said to be anisolated singular point or an isolated singularity of f if f is analyti in somedeleted neighborhood of a. Otherwise, we say a is a non-isolated singularpoint of f (see Figures 7.1 and 7.2). Equivalently, we say that a point ais a non-isolated singularity of f i� a is a singularity and every deletedneighborhood of a ontains at least one singularity of f . For example, z�1has an isolated singular point at z = 0 while the funtion 1= sin(�z) hasisolated singularities at every integer point n, n 2 Z. On the other hand,every point on the negative real axis (inluding the point z = 0) is a non-isolated singularity of Log z, the prinipal branh of the logarithm funtion.How about the singularities of pz, the prinipal square root funtion?Note that the onept of singularities of a funtion f very muh dependsupon the domain of the funtion f . For instane, f(z) = z�2 on C nf0ghas an isolated singularity at z = 0 whereas the restrition g(z) = z�2 onC n� does not have a singularity at z = 0. However, this ambiguity will beremoved during the disussion on analyti ontinuation.Entire funtions have no singular points but an have zeros, for examplef(z) = znez, n 2 N. Rational funtions p(z)=q(z); where p(z) and q(z)are polynomials, have isolated singularities at points where q(z) = 0. Forexample, the rational funtionz + 1z2 � 3z on C nf0; 3ghas isolated singularities at 0; 3.7.1. Example. What are the singular points of eah of the funtionsz; Im z; Re z; zIm z; zRe z; jzj2?Observe that eah of the funtions listed here is nowhere analyti. Thisdoes not mean that every point of C is a singularity. In fat, as there existsno neighborhood (about any point of C ) whih ontains a point at whih
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N(a2)Figure 7.2: Desription for isolated Singularities at a1; a2 and a3.the funtion is analyti, none of the funtions listed above has singularitiesin C . �7.2. Example. Let us disuss the singularities of g(z) = 1=f(z),where f(z) = sin(1=z): So the disussion of singularities of g follows imme-diately from the zeros of sin(1=z). Thus, the singularities of g are at pointszn = 1=n� for n 2 Z and at their limit point z = 0. This shows g hasisolated singularities at zn = 1=n� for n 2 Z and a non-isolated singularityat the limit point z = 0.Similar disussion shows that �(z) = 1= os(1=z) has isolated singulari-ties at the points zn = 2((2n+1)�)�1; n 2 Z:Note that, every neighborhoodN of z = 0 ontains singular points di�erent from z = 0. So, z = 0 is anon-isolated singularity of �(z). In both the ases, for eah zn, there areneighborhoods (say irles of suÆiently small radius Æ) whih ontain noother singularity. This means that these singularities are isolated. �Let us now look at the following funtions de�ned for z 2 C nf0g:f1(z) = sin zz ; f2(z) = 1zn (n 2 N); and f3(z) = e1=z:Clearly, eah of these funtions is analyti in C nf0g. Is it possible to de�neeah of these funtions at the origin so that the resulting funtion in eahase beomes ontinuous at the origin? We observe the following:(1) As limz!0 f1(z) = 1, there exists an entire funtion F1(z) suh thatF1(0) = 1 and F1(z) = f1(z) for z 2 C nf0g.(2) Sine jf2(z)j is large when jzj is small, f2(z) is unbounded near 0. So,there is no way we an de�ne f2(z) at 0 so that the resulting funtionbeomes ontinuous at the origin. Also, limz!0 f2(z) =1,limz!0 znf2(z) = 1 and limz!0 zmf2(z) = 0 for all m > n:



310 Classi�ation of Singularities(3) Finally,(a) if z = x > 0, then for x near 0, jf3(z)j = e1=x is large(b) if z = �x > 0, then for x near 0, jf3(z)j = e�1=x is small() if z = iy 6= 0, then jf3(z)j = je�i=yj = 1 for eah y 6= 0.Thus, limz!0 f3(z) fails to exist (inluding the possibility of the limitbeing in�nity). In partiular, there exists no entire funtion F3(z)suh that F3(z) = f3(z) for z 2 C nf0g. Moreover, there exists non 2 N suh that the limit limz!0 znf3(z) exists. Indeed, with x > 0 anda �xed n 2 N, we havelimz=x!0 zne1=z = lim1=x=t!1 ettn =1and limz=�x!0 zne1=z = limt!1t>0 e�t(�t)n = (�1)n limt!1t>0 e�ttn = 0so that neither f3(z) nor znf3(z) is bounded near 0 for any n 2 N.The examples illustrated above motivates one to lassify isolated singu-larities of f into three ategories. Suppose that f has an isolated singularityat a point a. Then exatly one of the following holds:(a) f(z) is bounded near a(b) f(z) is unbounded near a but (z�a)nf(z) is bounded near a for somen 2 N() there exists no n 2 N suh that (z � a)nf(z) is bounded near a, i.e.neither (a) nor (b) holds.Thus, the above three situations are lassi�ed respetively as follows:(1) Removable singularity, whih upon loser examination reveals thatthis is not atually onsidered to be a singular point at all. Morepreisely, an isolated singularity z = a of f is said to be a removablesingularity for f if limz!a f(z) exists in C .(2) Pole arises from the reiproal of an analyti funtion with zero. Morepreisely, an isolated singularity z = a of f is said to be a pole for fif limz!a f(z) =1. (Note that f(z) is de�ned if z is near enough toa and z 6= a.)(3) Essential singularity, whih is neither a removable singularity nor apole. More preisely, an isolated singularity z = a of f is said to be anessential singularity for f if limz!a f(z) does not exists in C1 . Thebehavior of a funtion in a neighborhood of an essential singularity isdesribed by the Casorati-Weierstrass theorem (Theorem 7.40).We disuss eah of these ases in detail, and prove a few relevant theoremsin eah ase.



7.2 Removable Singularities 3117.2 Removable SingularitiesAn isolated singularity z0 of f is alled removable or that f has a removablesingularity at z0 if f an be de�ned at z0 so that it beomes analyti at z0.7.3. Example. Consider the following funtions:f1(z) = sin z (z 6= 1); f4(z) = �ez � 1z �2 (z 6= 0)f2(z) = zez � 1 (z 6= 0); f5(z) = 2(1� os z)z2 (z 6= 0)f3(z) = sin zz (z 6= 0); f6(z) = �Log (1� z)z (z 6= 0):All of these funtions exept f1 have removable singularities at 0; and f1has a removable singularity at z = 1: These singularities an be removedby letting f1(1) = sin 1 and fj(0) = 1 (2 � j � 6), respetively. �If f is analyti on an open set D and z0 2 D, then the funtion Fde�ned by F (z) = f(z)� f(z0)z � z0 ; z 2 D nfz0gis analyti on D nfz0g and limz!z0 F (z) = f 0(z0): Thus F has a removablesingularity at z0, whih an be removed by letting F (z0) = f 0(z0).7.4. Example. Let f be de�ned byf(z) = z2 + a2z + ia ; z 6= �ia:Clearly, f 2 H(C nf�iag). For z 6= �ia, we have f(z) = z�ia and therefore,limz!�ia f(z) = �2ai: Thus, f has removable singularity at z = �ia. Now weset g(z) = 8<: z2 + a2z + ia for z 6= �ia�2ai for z = �ia:Then, g beomes analyti everywhere inluding at z = �ia. �Suppose that f has a removable singularity at a point z0, say. Thenthere is a funtion g analyti at z0 suh that f(z) = g(z) for all z in a deletedneighborhood of z0. In partiular, f is bounded near z0. The onverseof this statement provides a useful riterion for determining whether anisolated singularity is removable.7.5. Theorem. (Riemann's Removable Singularity Theorem) If fhas an isolated singularity at z0, then z = z0 is a removable singularity i�one of the following onditions holds:



312 Classi�ation of Singularities(i) f is bounded in a deleted neighborhood of z0,(ii) limz!z0 f(z) exists,(iii) limz!z0(z � z0)f(z) = 0.Proof. Suppose that f has an isolated singularity at z0. Then f isanalyti in some deleted neighborhood of z0, say on 0 < jz � z0j < Æ. Forproving `(iii) implies z0 is a removable singularity', we introdueh(z) = ( (z � z0)f(z) for 0 < jz � z0j < Æ0 for z = z0:By the hypothesis (iii), h is ontinuous at z0. Sine h, like f , is analytiin the deleted neighborhood 0 < jz � z0j < Æ, it follows that h is analytiat z = z0 (see Corollary 4.88). This means h is analyti throughout theneighborhood jz � z0j < Æ. For z 6= z0, let g be de�ned byg(z) = h(z)� h(z0)z � z0 = h(z)z � z0 :As limz!z0 g(z) exists and equals h0(z0) and g = f for z 6= z0, we de�nef(z0) = h0(z0). Thus, when (iii) holds, f an be extended to be analyti injz � z0j < Æ. This observation, by de�nition, shows that the singularity atz = z0 is removable.The remaining parts are deduible from (iii), as limz!z0(z�z0)f(z) = 0holds under (i) or (ii). Indeed, (ii) implies (iii) is trivial.Finally, it remains to show that (i) implies that f has a removablesingularity. Now, we suppose that (i) holds. Then, jf(z)j � M for 0 <jz � z0j � r and for a small r > 0. The Laurent oeÆient ak givesjakj = ����� 12�i Zjz�z0j=r f(z) dz(z � z0)k+1 ����� � Mrkwhih approahes zero as r ! 0, when k < 0. We dedue that ak = 0 when�k 2 N. Consequently, limz!z0 f(z) exists and therefore, z0 is a removablesingularity of f .From the proof of Theorem 7.5, it follows that if f has an isolatedsingularity at z = z0 and satis�es the onditionjf(z)j � Mjz � z0j5=6in a neighborhood of z = z0, then z = z0 must be a removable singularityof f . Is it the ase if we replae 5=6 by an � with � < 1? Also, Theorem 7.5



7.2 Removable Singularities 313infers that there exists no funtion analyti at z0 with f(z) � (z � z0)��whenever � 2 (0; 1).Next we illustrate by an example that a result similar to Theorem 7.5is not available for funtions of a real variable. Consider f : R nf0g ! Rde�ned by f(x) = x�1=3. We see that jxf(x)j = jxj2=3 ! 0 as x ! 0 butf(x) annot be extended to be (real) di�erentiable near 0. Here is anotherexample. Consider g(x) = jxj for x 6= 0. Then limx!0 g(x) = 0 but g(x)annot be extended so that it is (real) di�erentiable at x = 0.7.6. Example. Consider the funtionf(z) = os(1=jzj) or sin(1=jzj); z 2 C n f0g:Then f is ontinuous (in fat real di�erentiable in�nitely often) and boundedon C nf0g, yet f annot be extended to be ontinuous on any neighborhoodof the origin. Thus, the situation for (real-valued) C1-funtions is di�erentfrom that of the ase of analyti funtions. �7.7. Remark. Let us look at the statement (ii) of Theorem 7.5.Then the following situations our:(a) f may not be de�ned at z0(b) f may be de�ned at z0 but f(z0) may not be equal to limz!z0 f(z)() f may be de�ned at z0 and f(z0) is equal to limz!z0 f(z).In the last ase, f is not singular at z0. Thus if f has a removable singularityat z0 then either (a) or (b) holds, as disussed in the introdution. �7.8. Remark. If f and g are analyti and if both have a zero oforder n at z0, then we may writef(z) = (z � z0)nf0(z); and g(z) = (z � z0)ng0(z)where f0 and g0 are both analyti and non-zero at z0, and henelimz!z0 f(z)g(z) = f0(z0)g0(z0)exists. This means that f(z)=g(z) has a removable singularity at z0. Forinstane eah of the funtions fj (j = 1; 2), wheref1(z) = ez � 1z and f2(z) = z � sin zz sin z ;has a removable singularity at z = 0. �



314 Classi�ation of Singularities7.9. Example. Consider the funtionf(z) = (1� z2) s(�z):Then f is analyti on C nZ, and so f an be expressed as a Laurent seriesabout 0. Considering the loation of the singularities of f(z), we see thatthe Laurent series about 0 is valid for 0 < jzj < 1. Clearly, f extends tobe analyti both at z = 1 and z = �1. This observation shows that thelargest open set on whih the Laurent expansion for f(z) about 0 onvergesis 0 < jzj < 2.Moreover, for funtions suh as g(z) = s(�z), there exist in�nitelymany Laurent series about the origin. For the funtion g, the Laurentseries about 0 is valid in eah of the annuliDk = fz 2 C : k < jzj < k + 1g (k = 0; 1; 2; : : :): �7.3 PolesWe have seen that if f is bounded in a deleted neighborhood of an isolatedsingularity at z0, then z0 is a removable singularity of f . Thus if z0 is nota removable singularity of f then, by Theorem 7.5, f is not bounded nearz0. We might then ask whether (z � z0)nf(z) is bounded near z0 for somen 2 N. In this ase, we say that the point z0 is a pole of f and the smallestpositive integer n suh that (z � z0)nf(z) is bounded near z0 is alled theorder of the pole at z0. A pole of order one is alled a simple pole. Forexample, the funtion f(z) = z8=(z � 1)2 has a double pole at z = 1.7.10. Example. The funtion f(z) = 1=(1 + ei�z) has simple polesat z = 1+2k (k 2 Z) and z =1 is the limit point of these poles, sine theondition 1 + ei�z = 0 implies that ei�z = ei�e2ki� ; k 2 Z. �7.11. Example. Consider the funtionf(z) = z os(�z=2a)(z � a)(z2 + b2)7 sin5 z ;where a and b are distint non-zero real numbers. Then we see that f haspoles of orders: 7 at �ib, 4 at z = 0, 5 at �k� (k 2 N) and a removablesingularity at z = a. �Observe that the ondition limz!z0(z � z0)nf(z) 6= 0 is equivalent tothe ondition that n is the smallest positive integer suh that (z� z0)nf(z)has a removable singularity at z0. This expresses the following7.12. Theorem. If f is analyti in a deleted neighborhood of z0,then f has a pole at z0 i� there exists an n suh that (z � z0)nf(z) is



7.3 Poles 315bounded near z0. More preisely, f has a pole of order n i� limz!z0(z �z0)nf(z) 6= 0, and (z � z0)nf(z) has a removable singularity at z0, i.e.limz!z0(z � z0)n+1f(z) = 0:7.13. Remark. Let f be analyti in a domain D and z0 2 D. Reallthat the funtion f has a zero of order n at z0 i� f (k)(z0) = 0 for k =0; 1; 2; : : : ; n�1 and f (n)(z0) 6= 0. From Taylor's expansion, it follows thatf has a zero of order n i� f(z) = (z � z0)ng(z)where g is analyti at z0 and g(z0) = f (n)(z0)=n! 6= 0. Thus, we see thatf(z) has a zero of order n at z0 i� 1=f(z) has a pole of order n at z0.For instane let f(z) = sin(z2). Then we see that f(z) has a double zeroat z0 = 0 and simple zeros at zk = p� �pk, k = �1;�2; : : : , beausef(zk) = 0 and f 0(zk) = 2zk os(z2k) 6= 0 for k 6= 0, and f(z0) = f 0(z0) = 0,f 00(z0) 6= 0 (Here the notation �pk is de�ned as in item 1.3). Thus, 1=f(z)has a double pole at z0 and simple poles at zk, k = �1;�2; : : : . Note thatLaurent's expansion for 1=f(z) in 0 < jzj < p� ontains even powers of zonly. �In general, the following theorem tells us how we may determine polesby their behavior in a deleted neighborhood.7.14. Theorem. Let N be a deleted neighborhood of z0 suh that fis analyti in N . If f has an isolated singularity at z0, then z0 is a pole oforder n i� there are positive onstants C1 and C2 suh thatC2 � j(z � z0)nf(z)j � C1for some deleted neighborhood N0 of z0 suh that N0 � N .Proof. Suppose that the inequalities hold. Then the right hand side ofthe above inequality shows that (z � z0)nf(z) is bounded for points nearz0 so that (z � z0)n+1f(z)! 0 as z ! z0whereas the left inequality gives j(z � z0)nf(z)j � C2 as z ! z0: So, byTheorem 7.12, z0 is a pole of order n for f .Assume that f has a pole of order n at z0. Then, (z � z0)nf(z) isbounded for points near z0. By the removability theorem, there exists afuntion g whih is analyti at z0 suh that (z � z0)nf(z) = g(z) in somedeleted neighborhood N0 of z0. If g were suh that g(z) = (z�z0)eg(z) witheg analyti at z0, then eg(z) = (z � z0)n�1f(z)



316 Classi�ation of Singularitiesin N0 and is bounded near z0. This ontradits the fat that z0 is a pole oforder n. This fat shows that (z � z0)n�1f(z) is unbounded near z0. Thatthere are onstants C1 and C2 satisfying the required inequalities is then aonsequene of boundedness or unboundedness as the ase may be.Note that Theorem 7.14 haraterizes poles of f through the behaviorof the values of f near z0 in the following form:7.15. Theorem. If f(z) has an isolated singularity at z0, then f(z)has a pole at z0 if and only if limz!z0 f(z) =1:Proof. Suppose that f has a pole of order n at z0. Thenf(z) = (z � z0)�ng(z);where g is analyti and is non-zero at z0. So, by the ontinuity of g at z0(see for example the proof of Theorem 2.10()), there is a neighborhood Nof z0 on whih f is de�ned (exept at z0) andjg(z)j � jg(z0)j2 for z 2 N:Hene, jf(z)j � jg(z0)j jz�z0j�n=2 for z 2 N nfz0g; i.e. limz!z0 jf(z)j =1:Conversely, suppose that f has an isolated singularity at z0 suh thatlimz!z0 f(z) =1: Then, for a given � = 1, there exists a Æ > 0 suh thatjf(z)j > � = 1 for 0 < jz � z0j < Æ:Consequently, the funtion 1=f(z) is analyti and bounded on the pun-tured disk 0 < jz � z0j < Æ with limz!z0 1=f(z) = 0: By Riemann's remov-ability theorem, it follows that 1=f(z) has a removable singularity at z0.De�ne g(z) = ( 1=f(z) for 0 < jz � z0j < Æ0 for z = z0:Then, g 2 H(�(z0; Æ)). Clearly, g is not identially zero on �(z0; Æ) butg(z) has a zero at z0. It follows that there exists an n 2 N suh thatg(z) = (z � z0)n (z);where  2 H(�(z0; Æ)) and  (z0) 6= 0. As  (z0) 6= 0 and g(z) 6= 0 on0 < jz � z0j < Æ, we havef(z) = 1g(z) = �(z)(z � z0)n ��(z) = 1 (z)�where �(z) is analyti at z0. Hene, limz!z0(z�z0)nf(z) = �(z0) 6= 0 showingthat f has pole of order n at z0.



7.4 Further Illustrations through Laurent's Series 317The following theorem is an equivalent formulation of Theorem 7.14 inthe language of zeros�a useful haraterization of zeros.7.16. Theorem. If f is analyti in a deleted neighborhood N of z0,then z0 is a zero of order n i� there are �nite positive onstants C1 and C2suh that C2 � j(z � z0)�nf(z)j � C1 for some deleted neighborhood N0of z0 suh that N0 � N .7.17. Example. Let us now disuss the singularities off(z) = z � 1� iz2 � (4 + 3i)z + (1 + 5i) :First we obtain that the poles of f , if any, are determined byz2 � (4 + 3i)z + (1 + 5i) = 0;that is (with t2j = 3+4i for j = 1; 2), we have 2z = 4+3i+tj = 4+3i�(2+i):Therefore, we write f(z) = z � �(z � �)(z � �)with � = 1 + i and � = 3 + 2i: Thus, f has a simple pole at z = � and aremovable singularity at z = �. �In view of Theorems 7.15 and 7.5, we arrive at a haraterization ofisolated essential singularities.7.18. Theorem. If f has an isolated singularities at z0, then f(z)has an essential singularity at z0 i� limz!z0 f(z) fails to exist either as a�nite value or as an in�nite limit.7.4 Further Illustrations through Laurent's SeriesAn obvious tool in haraterizing singularities is the Laurent series expan-sion of a given funtion about its isolated singularities. If f has an isolatedsingularity at z0, then we have the unique representationf(z) = �1Xk=�1 ak(z � z0)k + 1Xk=0 ak(z � z0)k; 0 < jz � z0j < r;(7.19)where ak = 12�i ZC f(�)d�(� � z0)k+1(7.20)and C an be any irle with enter at z0 and radius less than r. If z0 isthe only singularity of f(z) in C , then (7.19) is valid with r = 1. Notealso that the integral over C is taken in the positive diretion and has the



318 Classi�ation of Singularitiessame value on any positively oriented urve whih enloses z0 but no othersingularity of f (see the Cauhy deformation theorem). Then, aording to(7.20), a�1 = 12�i ZC f(z) dz:(7.21)The oeÆient a�1 of (z�z0)�1 in the Laurent expansion (7.19) of f aboutz0, whih is of speial signi�ane, is alled the residue of f at z0. We usethe notation a�1 = Res [f(z); z0℄to denote the residue of f at z0. Equation (7.21) provides a onvenientway of evaluating ertain integrals (see Chapters 8 and 9) of a funtion faround an isolated singularity, sine its value is simply the produt of 2�iand the oeÆient of (z � z0)�1 in its Laurent expansion (7.19).Note that, throughout the above disussion, we have supposed that fis de�ned for all z near z0, but not neessarily at z0 itself. Thus, thelassi�ation of the isolated singularity of f at z0 depends only on the loalbehavior of f in a deleted neighborhood of z0.The �rst part in (7.19), i.e. the series with negative powers of (z � z0),is alled prinipal part whereas the seond part in (7.19), i.e. the series withnon-negative powers of (z � z0), is alled the regular/holomorphi/analytipart. It is the �rst part whih plays an important role in deriving the har-ater of the singularities of f at the isolated singularity z0. The followingthree ases are mutually exlusive.Case 1. No prinipal part. In this ase (7.19) takes the formf(z) = 1Xk=0 ak(z � z0)k; 0 < jz � z0j < r:Thus if we de�ne f(z0) = a0 = limz!z0 f(z); then f beomes analyti atz0 and so, on the entire disk jz � z0j < r. This observation shows that z0is a removable singularity. Similarly if f has a removable singularity at z0,then ak = 0 for k � �1; for, sine we may write f(z) = g(z) for z 6= z0;the Laurent series expansion for f must oinide with the Taylor seriesexpansion for g near z0. In other words, \f has a removable singularityi�, in (7:19), a�k = 0 for k � 1." For example, onsider the followingfuntions: f1(z) = z � z33! + z55! � � � � (jzj > 0)f2(z) = 1� z22! + z33! � � � � (jzj > 0)f3(z) = z � z22 + z33 � � � � (0 < jzj < 1):



7.4 Further Illustrations through Laurent's Series 319Then eah of these funtions have a removable singularity at z = 0, beausefj (j = 1; 2; 3) an be de�ned at z = 0 in suh a way that fj (j = 1; 2; 3)beomes analyti at z = 0.7.22. Example. Let f 2 H(� n f0g) suh that jf(z)j � ln(1=jzj)for z 2 � n f0g. Then, z = 0 is a removable singularity of f . Indeed, theLaurent oeÆients an (n 2 Z) of f are given byan = 12�i Zjzj=r f(z)zn+1 dzso that janj � r�n ln(1=r). When n < 0, letting r ! 0 gives that an = 0,and when n = 0, letting r ! 1� implies that a0 = 0. This observationshows that the Laurent series expansion of f about the origin does nothave the prinipal part, and so z = 0 is a removable singularity of f . �Case 2. Finite prinipal part. In this ase, aording to Theorem7.14, (7.19) beomes f(z) = (z�z0)�ng(z) where g is analyti and non-zeroat z0. Hene if g(z) =P1k=0 bk(z � z0)k; then we may writef(z) = 1Xk=�n ak(z � z0)k; bn+k = ak;(a�n = b0 = g(z0) 6= 0). The uniqueness of f(z) is obvious from theuniqueness of g(z). The onverse assertion is lear. In other words, \fhas a pole of order n i�, in (7:19), a�n 6= 0, but a�k = 0 for k � n + 1."Moreover, the disussion here is equivalent to7.23. Theorem. An isolated singularity at z0 of f(z) is a pole oforder n i� f(z) = (z � z0)�ng(z), where g is analyti at z0 and g(z0) 6= 0.Consider the following funtions:f1(z) = ez(z � 1)4= e(z � 1)4 + e(z � 1)3 + e2!(z � 1)2 + � � � ; jz � 1j > 0;f2(z) = (1� zn)ezzm = 1zm + � � � ; jzj > 0 (m > n):Then, it is lear that f1 has a pole of order 4 at z = 1 and f2 has a pole oforder m at z = 0.Case 3. In�nite prinipal part. The funtion f has an essentialsingularity at z = z0 exatly when neither Case 1 nor Case 2 prevails.In other words, \f has an essential singularity i�, in (7:19), a�k 6= 0 forin�nitely many k � 1."



320 Classi�ation of SingularitiesIn this ase, limz!z0 f(z) fails to exist (inluding the possibility of thelimit being in�nity) as we have seen with the funtion f(z) = e1=z. Heree1=z has an essential singularity at z = 0. Similarly, it is easy to see thatthe funtion f(z) = ez=(z�b) = eeb=(z�b) (b 6= 0) has an essential singularityat z = b.Consider the Laurent series�1Xk=�1 zk + 1Xk=0 zk2k+1 :(7.24)Observe that the �rst series onverges for jzj > 1, while the seond forjzj < 2. Then the ombined series onverges to f(z) for 1 < jzj < 2, wheref(z) = 1=z1� 1=z + 1=21� z=2 = �1(z � 2)(z � 1) :Observe that the Laurent series (7.24) has an in�nite number of negativepowers of z. But, sine the region of onvergene of the given Laurentseries does not inlude a deleted neighborhood of the origin, it would notbe orret to onlude that the origin is an essential singularity of f . Infat, the limit funtion f has simple poles at z = 1 and z = 2. This remarkis to aution the reader when dealing with a series of the form (7.24).7.25. Example. Let f(z) = (z � a)2004 sin (1=(z � b)) : Then, wemay rewrite f(z) asf(z) = (z � b+ b� a)2004 1Xk=1(�1)k�1 1(2k � 1)! 1(z � b)2k�1whih implies that z = b is learly an essential singularity of f . Similarly, itis easy to see that eah of the funtions ze1=z2 , e�1=z, sin(1=z), and os(1=z)has an essential singularity at z = 0. �7.5 Isolated Singularities at In�nityIn the earlier setions, we have disussed singularities of a funtion whihlie in C . In this setion we shall be onerned with funtions that havesingularities at the point at in�nity � as it is sometimes useful to thinkabout 1 just like any other point in C .The role of the point at in�nity is understood through the inversionw = z�1 as it allows us to pass bak and forth between the neighborhoodsof 1 and the neighborhoods of 0. This funtion is de�ned for every z 6= 0and maps eah point z in C exept z 6= 0, into a point in the w-plane. Forinstane, the irle jzj = R is mapped onto jwj = 1=R. If we assign thepoint at in�nity in the extended w-plane to z = 0 and w = 0 to the point at



7.5 Isolated Singularities at In�nity 321in�nity in the extended z-plane, then the inversion is one-to-one from theextended z-plane to the extended w-plane, i.e. C1 onto C1 , a fat whihwas disussed in Chapter 5.Let f(z) be analyti for jzj > R, for some R with 0 � R < 1. Byputting z = 1=w in f(z), we obtainF (w) = f(1=w):(7.26)Then, F (w) is analyti in the deleted neighborhood fw : 0 < jwj < 1=Rg ofzero. The nature of the singularity of f(z) at z =1 (the point at in�nity)is de�ned to be the same as that of F (w) at w = 0. That is, f(z) has anisolated singularity at 1 i� F (w) = f(1=w) has an isolated singularity atw = 0. In partiular, \an analyti funtion f(z) on jzj > R is said to havea removable singularity, a pole of order n, or an essential singularity at 1i� the funtion f(1=z) has a removable singularity, a pole of order n, or anessential singularity at 0, respetively".For instane, the funtion f de�ned by f(z) = zn (n 2 N) has a pole oforder n at z =1, sine the orresponding F de�ned byF (w) = f(1=w) = w�nhas a pole of order n at w = 0. More generally, every polynomial ofdegree n has a pole of order n at 1. Similarly, the funtion f de�ned byf(z) = z�2 + zm has a pole of order two at z = 0 and a pole of order mat in�nity. On the other hand, the funtion f de�ned by f(z) = ez hasan essential singularity at z = 1, sine F de�ned by F (w) = f(1=w) =e1=w has an essential singularity at w = 0. In the same way, it is easyto verify that eah of the funtions eiz ; e�z; sinh z; osh z; sin z; os z hasan essential singularity at z = 1. Also, we see that every nononstantand nonvanishing entire funtion on C neessarily has an isolated essentialsingularity at 1.Suppose that f(z) has an isolated singularity at z = 1 and R is thedistane from the origin to the farthest singular point of f(z). (If point atin�nity is the only singularity, then R may be hosen as an arbitrary largepositive number). Sine we may writef(z) = f(1=w) = F (w) (w = 1=z; jzj > R);F (w) has an isolated singularity at w = 0 and so the nearest singularityof F (w) from w = 0 is at a distane 1=R. Therefore, F (w) has a Laurentexpansion about w = 0:f(1=w) = F (w) = 1Xn=�1anwn; 0 < jwj < 1=R:(7.27)Thus, f(z) = 1Xn=�1a�nzn = 0Xn=�1a�nzn + 1Xn=1 a�nzn; jzj > R:



322 Classi�ation of SingularitiesThen the following ases arise.Case 1. Suppose that, in (7.27), a�n = 0 for all n � 1. Then, we de�neF (0) = a0 so that the orresponding F (w) is analyti at w = 0. Hene,F (w) has a removable singularity at w = 0 i�, in (7.27), a�n = 0 for alln � 1. That is, f(z) has a removable singularity at z = 1 i� its Laurentexpansion about z =1 has the formf(z) = 1Xn=0 anz�n; jzj > R;that is, i� the Laurent expansion of f(z) on jzj > R has no positive powerof z with nonzero oeÆients.Case 2. Reall that F (w) has a pole of order k at w = 0 i� (7.27) takesthe formF (w) = a�kwk + � � � + a�1w + 1Xn=0 anwn (a�k 6= 0; 0 < jwj < 1=R):Hene, f(z) has a pole of order k at z = 1 i� its Laurent expansion hasthe formf(z) = a�kzk + � � � + a�1z + 1Xn=0 anz�n (a�k 6= 0; jzj > R);that is i� the Laurent series of f(z) for jzj > R has only a �nite number ofpositive powers of z with nonzero oeÆients. Here we de�ne the prinipalpart of f(z) at z =1 to be the polynomiala�kzk + a�k+1zk�1 + � � � + a�1z:Case 3. If an in�nite number of a�n for n � 1 in (7.27) do not vanish,then F (w) has an essential singularity at w = 0. In terms of f(z), we saythat f(z) has an essential singularity at z =1 and we havef(z) = 1Xn=�1 anz�n; jzj > R;where an in�nite number of a�n's are non-zero for n � 1.Case 3 gives rise to the following interesting observation. \An entirefuntion f(z) is transendental i� f(1=z) has an essential singularity at 0."To see this we suppose that f(z) is an entire transendental. Then, we havef(z) = 1Xn=0 anzn for all z 2 C :



7.5 Isolated Singularities at In�nity 323If 0 is not an essential singular point of f(1=z), then there exists a k (pos-sibly for a suÆiently large k) suh thatzkf(1=z) = 1Xn=0 anzk�n; jzj > 0;has a removable singularity at 0. This means that an = 0 for all n � k+1,that is f(z) is a polynomial of degree at most k, ontrary to our assumptionthat f(z) is entire transendental.To prove the onverse part, suppose f(z) is not transendental. Then,by the de�nition of transendental funtion, f(z) is a polynomial and so wewrite g(z) = f(1=z) = a0 + a1z�1 + � � � + anz�n:But then g has either a pole (if n > 0) or a removable singularity (if n = 0)at z = 0. The proof of the observation is omplete.The above disussion an be equivalently stated as follows: \an entiretransendental funtion has neessarily an essential singular point at in-�nity", for, otherwise it would have no singularities at all and would, byLiouville's theorem, redue to a onstant.Let f be de�ned in some open set 
 of C1 , and let f have isolatedsingularities at a1; a2; a3; : : :. Also, let a 2 C1 be a limit point of the setof these singularities. Then, for any neighborhood N of a, there is a singu-larity (di�erent from a) inside N , i.e. f annot be analyti in any deletedneighborhood (�(a; Æ) nfag if a 2 C and jzj > Æ if a 2 1) of a. So f hasno Laurent expansion about a. In other words, a is neither a regular pointnor an isolated singularity. Thus, a is a non-isolated (essential) singularityof f .For instane, ot(1=z) has poles at z = 1=k�; k = �1;�2; : : : . Henethe limit point z = 0 of these poles is a non-isolated (essential) singularityof this funtion.7.28. Example. Consider f(z) = 1= sin z for z 6= k�, k 2 Z: Let usdisuss the singularity of f at 1. For this we de�neg(z) = f(1=z) = 1= sin(1=z)and disuss the orresponding singularity of g at 0. Note that g is notanalyti at the origin, sine every neighborhood of the origin ontains asingularity. It follows that g(z) has poles at the points z = 1=(k�) (k 2 Z).Note that z = 0 is not an isolated essential singularity for g(z) as z = 0 isa limit point for its poles at 1=(k�) (k 2 Z). This observation shows thatf(z) is not analyti in fz : jzj > Rg for any R > 0 and 1 is a non-isolated(essential) singularity for f(z).Similarly, it is easy to see that1 is a non-isolated (essential) singularityfor f(z) = (ez � 1)�1. �



324 Classi�ation of Singularities7.29. Example. Consider the funtion g(z) = z�1(1 + z)�1: Theng(1=w) = w2=(1+w) whih is analyti at w = 0 and hene, g(z) is analytiat in�nity. Similarly, we may easily verify that eah of the funtions11 + z ; z1 + z ; exp(1=z2)is analyti at the point at in�nity.On the other hand, funtions sin z and os z are not analyti at the pointat in�nity, beause both sin(1=z) and os(1=z) have an isolated essentialsingularity at z = 0. �7.30. Example. The funtion g de�ned by g(z) = z4 sin(1=(z + 1))has a pole of order three at the point at in�nity. On the other hand, thefuntion 1=(z2 sin(1=z)) has a removable singularity at in�nity. �Suppose that f is entire. Then f has a power series expansion of theform f(z) =Pn�0 anzn whih onverges absolutely for all z 2 C . Thus,F (z) = f(1=z) =Xn�0 anz�n for jzj > 0and so z = 1 is an isolated singularity of f(z), sine 0 is an isolatedsingularity of F (z). There are now three possibilities:(i) f(z) has a removable singularity at z =1(ii) f(z) has a pole of order k at z =1(iii) f(z) has an essential singularity at z =1.In ase (i), the expansion ontains no powers of z and so f(z) = a0.Alternatively, by Liouville's theorem, f(z) redues to a onstant. Thus,\an entire funtion f : C ! C has a removable singularity at z = 1 i�f(z) is onstant".In ase (ii), as disussed above, f(z) has a pole of order k (� 1) at 1 i�the expansion of f(z) ontains only a �nite number of positive powers andan = 0 for n > k. Consequently, \an entire funtion f : C ! C has a poleat z =1 (of order k) i� f(z) is a nononstant polynomial (of degree k)".Case (iii) ours i� an 6= 0 for in�nitely many n's. Consequently, f(z)is a transendental entire funtion-a fat whih has been on�rmed earliertoo.7.6 Meromorphi FuntionsA funtion analyti in a domain D � C exept possibly for poles is alledmeromorphi in D.



7.6 Meromorphi Funtions 325Suppose that f is meromorphi in D suh that D ontains fz : jzj > rgfor some r > 0. Then, the funtion f is said to be meromorphi at z =1 ifg(z) = f(1=z) is meromorphi in a neighborhood of z = 0, i.e. in the usualsense on �1=r. The de�nition as stated is equivalent to requiring that fhas a pole at 1 but has no poles in fz : jzj > Rg for some R > r.Here are some basi examples of meromorphi funtions in C .(i) f(z) = ez=z2 is meromorphi in C , sine f is analyti in C nf0g andthe singularity at 0 is a double pole.(ii) every analyti funtion in D � C is obviously meromorphi. Conse-quently, sums and produts of meromorphi funtions are meromor-phi. It is important to remark that the funtions f(z) = ez=z2 andg(z) = z � ez=z2 are meromorphi in C , but f + g has a removablesingularity at z = 0. Here we regard f + g as an extended analytifuntion in C (by de�ning its value at the origin as its limiting value,namely (f + g)(0) = 0) and hene, we treat f + g as a meromorphifuntion.(iii) f(z) = 1= sinh z is meromorphi in C sine the singularities of fare poles at z = k�i; k 2 Z. Further, funtions 1= sin z, 1= os z,os z= sin z, sin z= osz, 1= osh z and 1=(ez � 1) are all meromorphiin C . Note also that 1 is the limit point of poles for these funtions.(iv) any rational funtion R(z), where the numerator and the denomina-tor of R(z) have no ommon fator, is meromorphi in C sine it isanalyti in C exept at the zeros of the denominator where R(z) haspoles. (Note that eah of the funtions involved in (iii) is not rationalsine the set of poles for eah of these funtions is ountably in�nite).We an express R(z) as a quotient of polynomials of the formR(z) = A Qki=1(z � ai)niQlj=1(z � bj)mj ;where ai's and bj 's are all distint, and A is some onstant.(v) the quotient of a meromorphi funtion is meromorphi, provided thatthe denominator term is not identially zero.(vi) the funtions (z2+4)�1e1=z and (z2� 4)�1 sin(1=z) are meromorphiin C nf0g. They are not, however, meromorphi in C , beause eah ofthem has an essential singularity at the origin.(vii) every meromorphi funtion in an open set 
 admits a representationas the quotient of two analyti funtions in 
, whih will be on�rmedin Chapter 11.(viii) the only singularities of f(z) = ot z are the simple poles at n�(n 2 Z) and hene, f(z) is meromorphi in C . It is, however, notmeromorphi in C1 beause 1 is a limit point of poles of f(z).



326 Classi�ation of Singularities7.31. Remark. A meromorphi funtion in C an have only a �nitenumber of poles in any bounded subset D of C . For instane, neitherf(z) = 1= sin(�=z) nor g(z) = 1= os(1=�z) is meromorphi in C . Notethat the set of poles of f(z) is a bounded set S = f1=n : n 2 Zg andthe limit point of S is 0, whih is a non-isolated (essential) singularity off(z). A similar argument shows that g(z) is not meromorphi in C . On theother hand, both f(z) and g(z) are meromorphi in C nf0g. However, thefuntions suh as 1=(ez +1) and 1=(1+ os z) are all meromorphi in C . �When we speak of a meromorphi funtion f without mentioning thedomain of de�nition for f , it is understood that f is meromorphi in C .We observe that analyti funtions are, in some sense, a generalization ofpolynomials while the meromorphi funtions are then a generalization ofrational funtions.The next two theorems whih haraterize rational funtions are simpleand elegant. From Liouville's theorem it follows that an entire funtion onC1 is onstant. An analog of this result for meromorphi funtions in C1follows.7.32. Theorem. A funtion f(z) is rational i� it is meromorphi inthe extended omplex plane C1 .Proof. As notied above a rational funtion is meromorphi in C1 .Suppose onversely f is meromorphi in C1 . Note that f(z) an have only�nitely many poles in C1 sine otherwise the limit point of the poles wouldbe a non-isolated (essential) singularity whih is not a pole at all. Let thepoles of f(z) be z1; z2; : : : ; zm 2 C , of orders k1; k2; : : : ; km, respetively.Then, g de�ned by g(z) = f(z) � mYj=1(z � zj)kjis an entire funtion. Thus g is a polynomial, sine otherwise g wouldneessarily have an essential singularity at 1. The result follows.For instane, f(z) = (z5 + 3z2 + 1)(z2 � 2z � 1)�1 has a triple pole at1 beause the funtion f(1=z) has a triple pole at the origin.7.33. Theorem. Let f(z) be meromorphi in C and there exist anatural number n, M > 0, and R > 0 suh thatjf(z)j �M jzjn for jzj > R:(7.34)Then, f is a rational funtion.Proof. Proeeding exatly as in Theorem 7.32, we obtain an entirefuntion g, where g(z) = f(z) � p(z) with p(z) =Qmj=1(z� zj)kj : Therefore,



7.7 Essential Singularities and Piard's Theorem 327for suÆiently large jzj, we easily have (see (6.65))jp(z)j � 2jzjN(7.35)where N = k1 + k2 + � � � + km. Thus, by (7.34) and (7.35),jg(z)j = jf(z)j jp(z)j � 2M jzjN+nfor suÆiently large jzj. It follows from Theorem 6.60 that g is a polynomial,and hene, f(z) is a rational funtion.Note that if, in Theorem 7.33, f is assumed to be analyti in C , thenf would be a polynomial. Thus, Theorem 7.33 is learly a natural general-ization of Liouville's theorem (see Theorem 6.60).7.7 Essential Singularities and Piard's TheoremWe have already proved that sin(C ), os(C ) and exp(C ) are all unboundedsubsets in C . Therefore, it is natural to ask: Can we say something moreabout entire unbounded funtions? In fat, suh questions lead to er-tain beautiful onlusion about the image domains of non-onstant entireunbounded funtions. For ertain familiar entire funtions muh more istrue:� eah non-onstant polynomial p(z) assumes every omplex number asa value; that is p(C ) = C .� eah of the trigonometri funtions sin z, os z, and of the hyperbolifuntions sinh z, osh z assumes every omplex number as a value;that is, sin(C ) = os(C ) = sinh(C ) = osh(C ) = C :� the exponential funtion ez never assumes zero, as exp(C ) = C nf0g.The �rst assertion has been proved in Theorem 6.66 while the other twoassertions an be proved by looking at the solutions of the equation f(z) = for a given  2 C , where f(z) is one of the funtions given bysin z; os z; sinh z; osh z; and ez:For example, as sin z = (eiz�e�iz)=(2i), the solution of sin z =  is obtainedfrom eiz = i�p1� 2:Note that there exists no  2 C suh that i�p1� 2 = 0. Consequently,for eah , the equation sin z =  has in�nitely many solutions given byz = �i log(i�p1� 2):These observations probably led to \the Piard little theorem" whih weshall disuss soon. Let us start with the following preliminary result whih



328 Classi�ation of Singularitiesmay be alled a weaker form of the Casorati-Weierstrass theorem (see The-orem 7.40).7.36. Theorem. The range of a non-onstant entire funtion is adense subset of C .Proof. Let f be a non-onstant entire funtion. Suppose on the on-trary that f(C ) is not dense. Then, there would exist a point w0 2 C and aneighborhood �(w0; �) suh that �(w0; �) \ f(C ) = ;: Then, for all z 2 C ,we have jf(z)� w0j > � so that jg(z)j < 1 for z 2 C , whereg(z) = �f(z)� w0 :But then, g being a bounded entire funtion, would be onstant, and henef would be onstant, whih is a ontradition.Note that a subset D of D0 is said to be dense in D0, if for eah z0 2 D0and any Æ > 0, �(z0; Æ) \D 6= ;:Aording to Theorem 7.36, it is almost trivial to show the following:Suppose that f is an entire funtion satisfying any one of the followingonditions for all z 2 C and for some �xed M > 0:(a) jf(z)j �M ;(b) Re f(z) �M or Im f(z) �M or jRe f(z)j > M or jIm f(z)j > M .Then, f is neessarily a onstant. We have already shown these as a on-sequene of Liouville's theorem. In partiular, this result demonstrates asimple fat that \the range of a non-onstant entire funtion is never on-tained in a half-plane or in bounded domain or in the omplement of anybounded simply onneted domain in C ". This piee of information learlyimproves Liouville's theorem but obviously falls far short of Piard's littleand big theorems. To be a little more preise, muh more than Theorem7.36 holds: if f is a non-onstant entire funtion then C nf(C ) ontains atmost one point. This result is known as Piard's little theorem.11 We mayrestate it in the following form. For a proof of this result, we refer to p. 540.7.37. Theorem. (Piard's Little Theorem) Every non-onstant en-tire funtion omits at most one omplex number as its value.12 In otherwords, if an entire funtion omits two values, then it is onstant.11Emile Piard (1856-1941) was a Frenh mathematiian who published the proofs ofthe two famous theorems at the age of 22. He has made a number of ontributions inmany other areas.12A number  2 C is said to be an exeptional value of a omplex-valued funtion fif  does not belong to the range of f .



7.7 Essential Singularities and Piard's Theorem 329Now we need some preparations for the proof of Piard's little theorem.Piard's original proof of his little theorem is of entirely di�erent hara-ter. The proof whih we are going to present is due to Landau-K�onig.Let us start with a remark that Piard's little theorem is an astonish-ing generalization of the theorem of Liouville as well as the theorem ofCasorati-Weierstrass. In 1879, with the aid of ellipti modular funtions,Piard proved a more general and deep result�the so alled Piard's greattheorem: \if f has an essential singularity at a, then the range under f ofany deleted neighborhood of a is the whole omplex plane with at most oneexeption". Equivalently, we may state it in the following form.7.38. Theorem. (Piard's Great Theorem) Suppose that f is an-alyti in �(z0; r) nfz0g and z = z0 is an essential singularity of f . ThenC nf(�(z0 ; r) nfz0g) is a singleton set.Examples 7.46 and 7.48 below are speial ases of Piard's theorem.We shall present the proof of Piard's little theorem in Setion 12.7 as itrequires Bloh's theorem. However, let us �rst restrit ourselves to the fol-lowing muh weaker and simpler result�also alled the Casorati-Weierstrasstheorem.7.39. Theorem. (Weaker Form of Piard's Great Theorem) Sup-pose that f 2 H(�(z0;R) nfz0g) and z0 is an essential singularity of f .Then for eah Æ > 0 with Æ � R, f(�(z0; Æ) nfz0g) is dense in C .Proof. Suppose on the ontrarary that the range f(f0 < jz� z0j < Æg)is not dense. Then there is a point w0 2 C and a disk �(w0; �) = fw 2 C :jw � w0j < �g suh that �(w0; �) \ f(f0 < jz � z0j < Æg) = ;:For all z with 0 < jz�z0j < Æ, we have jf(z)�w0j > � > 0 and therefore,the funtion g de�ned by g(z) = �f(z)� w0is bounded and analyti in the deleted neighborhood �(z0; Æ) nfz0g, sinef(z)� w0 is analyti and non-zero there. From the removability theorem,it follows that g has a removable singularity at z0. Thus, by de�ning g(z0)properly, g beomes analyti in �(z0; Æ). Clearly, g(z) 6� 0 in �(z0; Æ). Ifg(z0) 6= 0, f(z) = �g(z) + w0is analyti at z0. If g(z) has a zero at z0, then z0 is a pole of 1=g(z) andhene, the same holds for f(z). In either ase this ontradits the hypothesisthat z0 is an essential singularity of f(z).7.40. Theorem. (Casorati-Weierstrass Theorem) If f has an es-sential singularity at z0 and if w0 is a given �nite omplex number, then



330 Classi�ation of Singularitiesthere exists a sequene fzng with zn ! z0 suh that f(zn)! w0. In otherwords, f takes values arbitrarily lose to every omplex number in everyneighborhood of an essential singularity.Proof. By hypothesis, f(z) is analyti throughout a deleted neighbor-hood of z0. Suppose that there exists a omplex number w0 and a sequenefzng with zn ! z0 suh that f(zn) 6! w0. Then there exist an � > 0 and aÆ > 0 suh that jf(z)� w0j � � for 0 < jz � z0j < Æ. De�neg(z) = 1f(z)� w0 :Now, proeeding exatly as in Theorem 7.39, we would get that f(z) haseither a removable singularity or a pole at z = z0. In either ase thisontradits the hypothesis that z0 is an essential singularity of f(z).7.41. Remark. Note that Theorem 7.40 and Theorem 7.39 areequivalent. �If 1 is regarded as an isolated essential singularity of g(z), then 0 is anisolated essential singularity of f(z), where f(z) = g(1=z). In view of thisobservation, Theorem 7.39 may be rephrased as follows:7.42. Theorem. If g(z) is an entire transendental funtion, thennear 1, the values assumed by g(z) are dense in C . In other words, g(z)takes values arbitrarily lose to every omplex number in every neighbor-hood of 1.Next we reord a very useful appliation of Theorem 7.40.7.43. Theorem. An entire funtion f(z) is univalent in C i� f(z) =a0 + a1z (z 2 C ), where a0; a1 are onstants with a1 6= 0; that is,Aut (C ) = ff 2 H(C ) : f(z) = a0 + a1zg:Proof. If f(z) is entire, then, by Theorem 4.93 (see also Corollary3.73), f(z) has a power series expansion of the form f(z) = Pn�0 anznwhih onverges absolutely for all z 2 C . There are now three possibilities:(i) f(z) = a0, i.e. onstant(ii) f(z) =Pkn=0 anzn; ak 6= 0 (k � 1)(iii) f(z) =Pn�0 anzn; an 6= 0 for in�nitely many n.Suppose further that f(z) is univalent in C . Then ase (i) annot our.In ase (ii), f(z) is a polynomial of degree k � 1. But, by the fun-damental theorem of algebra, f(z) has k zeros whih lie inside some irle



7.7 Essential Singularities and Piard's Theorem 331jzj = R, R large enough. Therefore, f is univalent only when k 6> 1. Hene,k = 1 and so, f(z) = a0 + a1z, where a1 6= 0.In ase (iii), f(z) is transendental and hene f(z) has an essentialsingularity at 1. Then, by the Casorati-Weierstrass theorem (see alsoTheorem 7.42), for any given omplex number w, there exists a sequenefzng suh that zn !1 and f(zn)! w. In partiular, for w = 0, we havelimn!1 zn = limn!1 f�1(f(zn)) = f�1(0) 6=1:This ontradition shows that f(z) is a polynomial whih by ase (ii) yieldsthat f is linear. The onverse part is obvious. This proves that an entirefuntion whih assumes every omplex value exatly one is preisely thelinear funtion.Piard's results mark the beginning of a development whih eventuallyulminated in the value distribution theory of R. Nevanlinna. In 1896,E. Borel derived Piard's little theorem with elementary funtion-theoretitools. The theory then took a surprising turn in 1924, when A. Blohdisovered the theorem named after him. We shall prove Piard's theoremusing Bloh's theorem (see Setions 12.6 and 12.7).Now, we observe that an entire funtion h omits two distint values,namely a and b with a 6= b, i� the funtion f de�ned byf(z) = h(z)� ab� ais entire and omits 0 and 1. Therefore, h is onstant if and only if f isonstant. In view of this observation, Theorem 7.37 is equivalent to thefollowing7.44. Theorem. If f is an entire funtion suh that 0 =2 f(C ) and1 =2 f(C ), then f is onstant.It is natural to see what happens when we replae \f(z) is entire" by\f(z) is meromorphi in C ." To see this, we onsider�(z) = 11 + ezwhih never assumes 0 or 1 as its value. Clearly, � is meromorphi in C , �omits 0 and 1, but � is not a onstant funtion. This example shows thatmeromorphi funtions in C an omit two omplex numbers. A value thata meromorphi funtion does not assume is known as Piard's exeptionalvalue. For instane, the funtion �(z) has two exeptional values, namely0; 1. Similarly, it is easy to see that tan z is meromorphi in C and has anessential singularity at z = 1 whih is the limit point of poles of tan z.



332 Classi�ation of SingularitiesMoreover, tan z assumes every omplex value with Piard's exeptionalvalues �i. Meromorphi funtions of this type are signi�ant in view of thefollowing result.7.45. Theorem. (Piard's Little Theorem for Meromorphi Fun-tions) Every meromorphi funtion � in C that omits three distint valuesa; b;  2 C is neessarily onstant.Proof. The desired onlusion follows from Theorem 7.44 as the fun-tion f de�ned by f(z) = (�(z)�a)�1 is entire and omits two distint values1=(b� a) and 1=(� a).7.46. Example. We show that e1=z assumes every value in�nitelymany times with an exeption of zero (Piard's exeptional value). To dothis we reall that exp(1=z) has an essential singularity at the origin andomits the value zero. By Piard's theorem, it therefore assumes all the othervalues in eah puntured neighborhood �(0; r) nf0g. Let us now verify thisby a diret omputation. Consider e1=z =  = elog  ( 6= 0), or equivalently,e1=z = eln jj+i arg (7.47)where  may be taken as a omplex number. If  is real and non-negative,then (7.47) implies1z = ln jj+ i arg  = ln jj+ 2k�i; i.e. zk = 1ln jj+ 2k�i ; k 2 Z:Thus, we have a sequene fzng suh that zn ! 0 and e1=zn =  for eahn 2 N: The general ase for  6= 0 an be handled similarly. Observe thatPiard's exeptional value `zero' is a limit point. �7.48. Example. Let us disuss one more funtion whih has anessential singularity at z = 0. Consider sin(1=z). Suppose for  real and 6= 0, sin(1=z) = : Then the solution to this equation is given by1z = arsin  = 1i log(i+p1� 2); i.e. z = ilog(i+p1� 2) :For k 2 Z, letzk = iln ji+p1� 2j+Arg (i+p1� 2) + 2k�i:Then, we obtain a sequene fzng suh that zn ! 0 and sin(1=zn) = ,n 2 N:In partiular, if  = 1 then sin(1=z) = 1 is satis�ed by in�nitely manyvalues, namely, zk = 2=(4k + 1)�, k 2 Z.However, z = 0 is also an essential singularity of os(1=z) and there areno exeptional values (exept 1). �



7.8 Exerises 3337.8 Exerises7.49. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) An entire funtion f(z) having z = 1 as a removable singularity isonstant.Note: See the disussion at the end of Setion 7.5.(b) An entire funtion f(z) has a pole of order n at in�nity i� f(z) is apolynomial of degree n.() If f(z) has a pole at z0, then expff(z)g has an essential singularityat this point.(d) If f(z) is a nononstant entire funtion, then expff(z)g has an essen-tial singularity at z =1.(e) If a is an isolated singularity of f whih is not removable, then a isan essential singularity of expff(z)g.(f) If f is analyti in C1 exept for a �nite number of poles, then thenumber poles and zeros of f (ounted aording to multipliity) areequal.(g) If f is non-onstant and analyti at z0, then f (n)(z0) 6= 0 for somen � 1.(h) Poles are isolated. That is, f has a pole of order m at a i� f(z) =(z � a)�mg(z), where g is analyti at a and g(a) 6= 0.(i) Suppose f has an essential singularity at z = a and g has a pole atz = a. Then the produt fg has an essential singularity at z = a.(j) The funtion f(z) = z4 + 1(�z � jzj2)(�z � jzj2) ; �; � 2 C nf0g (� 6= �)has two simple poles at z = �; � and a double pole at z = 0.(k) The funtion f de�ned by the Laurent seriesf(z) = �1Xk=�1 z2k(�k)! + 1Xk=0 zk2k+1has an essential singularity at the origin.(l) If f is meromorphi, then f and f 0 have the same poles and the orderof the poles of f 0 inreases by one.(m) The funtion f(z) = 1= sin(1=z) has a singularity at the origin andthe Laurent series expansion about the origin does not exist.(n) If z = a is an isolated essential singularity for f(z), then z = a isneither a regular point nor a pole for g(z) = 1=f(z). Further, z = ais not neessarily an isolated essential singularity for g(z).



334 Classi�ation of Singularities(o) Suppose f has an essential singularity at z0. Then there exists asequene fzng with zn ! z0 suh that limn!1 jf(zn)j =1.(p) If f is a transendental entire funtion, then there exists a sequenezn !1 for whih f(zn)! 0.(q) If f(z) is analyti at 1, then f 0(1) = 0.(r) The funtion f(z) = e1=(z�1)ez � 1 has a simple pole at z = 2k�i (k 2 Z)and an essential singularity at z = 1.(s) Every f 2 H(C nf0g) suh that jf(z)j � ajzj1=2 + bjzj�1=2 for somea; b > 0 is neessarily onstant.(t) Every f 2 H(C nf0g) suh that jf(z)j � jzj2+jzj�1=2 for all z 2 C nf0gis neessarily a polynomial of degree at most two.(u) There does not exist a funtion f 2 H(C nf0g) that satis�es jf(z)j �jzj�� for all z 2 C nf0g, and for a �xed � 2 (0; 1).(v) The meromorphi funtion ot z never assumes i and �i and so, �iare the Piard exeptional values for ot z.(w) The meromorphi funtion eiz= os z never assumes 0 and 2.(x) If f and g are two entire funtions suh that ef + eg = 1, then f andg are onstant funtions.(y) If f(z) = epz � ep�zsinpz , then z = 0 is not a branh point of f(z).(z) If f(z) = sinpzpz , then z = 0 is a removable singularity of f .7.50. Suppose that f 2 H(C nf0g) and satis�es jf(z)j � ajzj2+ bjzj�2for all z 2 C nf0g, and for some a; b > 0. If f is an odd funtion of z, whatform must the Laurent series of f have? How about when f is an evenfuntion of z?7.51. Classify [type (and order where appliable)℄ the isolated singularpoints (inluding at the point at 1) of the following funtions:(a) f(z) = sin4 zz8 (e) f(z) = sin�1z�+ 1z2(2� z)(b) f(z) = (1 + z) os zz (f) f(z) = s z � 1z() f(z) = 1� 8z31� 4z2 (g) f(z) = z2(z � ip)4(z + q)3 ; p; q 2 R nf0g(d) f(z) = sin(�z) e1=z3(z � 1)z3 (h) f(z) = z10(z2 + 1)e1=(z�4)5(z � �)2 sin10 z



7.8 Exerises 3357.52. Prove or disprove that f(z) = 1= sin z is not meromorphi onthe Riemann sphere. Does f(C ) = C nf0g? Does se(C ) = C nf0g?7.53. Prove or disprove the following: The point z = 0 is the onlysingularity of the funtion f(z) = sin(1� 1=z) and z = 0 is a simple pole.7.54. Give an example of a funtion whih is meromorphi in C with-out being meromorphi on the Riemann sphere.7.55. Suppose that f is any one of (z3�z)e1=z, z sin(1=z), e1=z�e�1=zand e1=z+e�1=z. Assuming the validity of Piard's theorem, deide whetherf(0 < jzj < 1) = C or not.7.56. Let fj (j = 1; 2; : : : ; 6) be de�ned as in Example 7.3. Classifythe singularity of eah of these funtions at 1.7.57. Find the general form of a funtion in C1 having the followingsingularities:(i) only simple pole at z0,(ii) one pole of order n at z0,(iii) one pole of order n at in�nity and a pole of order m at z0.7.58. Suppose z = a is a singularity of f(z). Can z = a be a singularityfor 1=f(z)? If so what will be the nature of the singularity. Disuss in detailswith an example for eah ase.7.59. Suppose f and g are analyti in a neighborhood of z0, f(z0) = 0with multipliity m, g(z0) = 0 with multipliity n. What is the multipliityof z0 as a zero of the omposite funtion f Æ g?7.60. Construt a funtion � whih is analyti exept at the fourdistint points zj ; j = 1; 2; 3; 4, where it has the following properties:(i) simple pole at z1,(ii) simple zeros at z2; z3; z4,(iii) simple pole at in�nity,(iv) limjzj!1 z�1�(z) = 2.7.61. Find the onstant  suh thatf(z) = 1zn + zn�1 + � � �+ z2 + z � n + z � 1an be extended to be analyti at z = 1, where n 2 N is �xed.



336 Classi�ation of Singularities7.62. Prove that the funtion f de�ned by f(z) = (ez � 1)=(z(z� 2))has a removable singularity at z = 0 whereas it has a simple pole at z = 2.Prove also that it has an essential singularity at z =1.7.63. Prove that the funtion f de�ned by f(z) = exp(z= sin z) hasa removable singularity at z = 0 whereas it has essential singularities atz = k�, k 2 Znf0g.7.64. Suppose that f(z) is analyti on C exept for a double pole atz = ei� for some � 2 [0; 2�). Suppose that f(z) =P1n=0 anzn for jzj < 1:Is fang bounded? Does fang onverge? Justify your answer. How about ifwe replae the word `double pole' by `simple pole'?7.65. Let f 2 H(�3 nf0g). Suppose that f has a simple pole at z = 2iand f(z) =Pn�0 anzn for jzj < 2. Is fang bounded? Does fang onverge?Justify your answer.7.66. Let f be a meromorphi funtion in a domain 
. Then provethat neither the set of zeros nor the set of poles of f an have a limit pointin 
 unless f is identially zero in 
.7.67. Assume that ot(�z) =P1n=�1 anzn in the annulus 0 < jzj < 1.Find a�n for n � 1.



Chapter 8Calulus of Residues
If f is analyti at a point z = a, then there is a neighborhood N of a insidewhih f is analyti. Let C be a positively oriented losed ontour ontainedin N . Then the elebrated Cauhy theorem tells us that RC f(z)dz = 0: If,however, f fails to be analyti at �nitely many isolated singularities insideC, then the above argument fails; whih means eah of these singularitiesontribute a spei�ed value to the value of the integral. This motivates usto generalize the Cauhy theorem to funtions whih have isolated singular-ities. This generalization results in the Residue theorem. This result is oneof the most important and often used, tools that applied sientists need,from the theory of omplex funtions.In Setion 8.1, we are onerned with the notion of what we all \theresidue at an isolated singularity" and disuss the onept of residue indetail and illustrate it with a number of examples for �nding the residueof a given funtion at an isolated singularity. In Setion 8.2, we disussthe notion of residue at the point at 1. The main result in Setion 8.3is Cauhy's residue theorem whih states that the integral of an analytifuntion f around a simple losed ontour C equals 2�i times the sumof the residues of f at the isolated singular points inside C. Using thisimportant theorem, we shall then develop and illustrate some of the ba-si methods employed in omplex integration for evaluating omplex lineintegrals. The residue theorem extends Cauhy's theorem by allowing fora �nite number of isolated singularities inside the ontour of integration.Formulae enabling us to do this inlude an alternate proof of the so-alledgeneralized Cauhy integral formula. When there are no singularities, theresidue theorem simply redues to Cauhy's theorem. The materials pre-sented in Setion 8.1-8.3, provide a good training ground for the evaluationof omplex integration in the next hapter. In Setion 8.4, we derive theargument priniple whih is another of the most important appliations ofthe Cauhy residue theorem. Also, we disuss several of its onsequenes,



338 Calulus of Residuesfor example, loating the zeros of an analyti funtion. The argument prin-iple provide a tool in the form of Rouh�e's theorem to see how the numberof zeros of analyti funtions remains onstant under small perturbations.We disuss a version of Rouh�e's theorem in Setion 8.5.8.1 Residue at a Finite PointWe reall that if f has an isolated singularity at z0, then the residue of f(z)at z0 is Res [f(z); z0℄ := a�1 = 12�i ZC f(z) dz;(8.1)where C is any irle entered at z0 and lying inside a disk about z0. Forinstane, onsider f(z) = ot z. Sine sin z = 0() z = k� (k 2 Z), andlimz!k�(z� k�) ot z = limz!k� z � k�sin z � limz!k� os z = limz!k� 1os z � limz!k� os z = 1;f has simple poles at z = k�, k 2 Z. Suppose we hoose z0 = 0. Thenf(z) = 1z + 1Xn=0 anzn (0 < jzj < �)and, in view of (8.1), this gives,ZC ot z dz = 2�i:Here C ould be any irle around zero in 0 < jzj < �. If z0 = k�, thenf(z) = 1z � k� + 1Xn=0 an(z � k�)n; jkj� < jz � k�j < (jkj+ 1)�:8.2. Example. We know that the oeÆient of zk in (1+ z)n is �nk�.So, we may write�nk� = oeÆient of z�1 in (1 + z)n=zk+1= Res [f(z); 0℄; f(z) = (1 + z)n=zk+1;= 12�i ZC (1 + z)nzk+1 dz;where C is any simple losed ontour enlosing the origin (note that f isanalyti for all z 2 C nf0g). Similarly, we also see that�nk � = oeÆient of z�k in (1 + 1=z)n= onstant term in zk(1 + 1=z)n



8.1 Residue at a Finite Point 339and therefore, we havenXk=0�nk�2 = oeÆient of z�1 in � (1 + z)nzk+1 � [zk(1 + 1=z)n℄= 12�i ZC F (z) dz; F (z) = (1 + z)2nzn+1 ;= Res [F (z); 0℄= oeÆient of zn in (1 + z)2n= � 2nn � : �We wish to point out that the most onvenient way to �nd the residue isdiretly from the Laurent expansion (if it were already available). We wantatually to develop tehniques for alulating the residue of a funtion fwithout having to �nd its Laurent expansion. However if z0 is an essentialsingularity of f , then, in most of ases, the Laurent expansion of f aboutz0 will be needed in order to �nd the residue at z0. For instane, at theessential singular point z = 0 of sin(1=z) we havesin�1z� = 1z � 13! 1z3 + � � � ; jzj > 0:Thus, we see thatRes [sin(1=z); 0℄ = 1; i.e. ZC sin(1=z) dz = 2�i:Similarly, we obtainRes [z3 sin(1=z2); 0℄ = 0; i.e. ZC z3 sin(1=z2) dz = 0;where C is any irle around the origin in the puntured plane, C nf0g.The same idea may be used to derive examples of this type (using Taylor'sseries expansion of the exponential funtion):(a) Res [z�4eiaz; 0℄ = � ia33! , a 2 C .(b) If a 2 C and n 2 N0 = N [ f0g, thenRes [eaz=zn+1; 0℄ = ann! and Zjzj=r eazzn+1 dz = 2�iann! :If a is real and r = 1, then we let z = ei� and easily obtainZ 2�0 ea os �ei(a sin ��n�) d� = 2�ann!



340 Calulus of Residueswhih, by equating real and imaginary parts, givesZ 2�0 ea os � sin(n� � a sin �) d� = 0and Z 2�0 ea os � os(n� � a sin �) d� = 2�ann! :() 12�i ZC e1=zn dz = Res [f(z); 0℄ = � 0 if n 6= 11 if n = 1 ; where C is any irlearound zero in the puntured plane C nf0g.(d) Res [(z � 2)�4 sin(z � 2); 2℄ = �1=6! and Res [sin(1=(z � 2)); 2℄ = 1.8.3. Example. De�nef(z) = sin(z2)z2(z � a) ; a 6= 0:Then the singularities of f are at z = 0 and z = a. Sine limz!0 f(z) =�1=a; z = 0 is a removable singularity of f . Thus, Res [f(z); 0℄ = 0: As fadmits a Laurent series expansion about zero in 0 < jzj < jaj, we onludethat, for any r with r < jaj,Zjzj=r sin(z2)z2(z � a) dz = 0: �8.4. Remark. If f is analyti at z0, then Res [f(z); z0℄ = 0: However,this simple fat holds for other situations as well. For instane iffn(z) = bn(z � z0)�n; n = 1; 2; : : : ; and b1 6= 0;then Res [fn(z); z0℄ = 0 for n � 2: Also, we observe that Res [f1(z); z0℄ = b1but Res [f21 (z); z0℄ 6= b21: �In view of Laurent's expansion and Cauhy's priniple of deformationof ontour, the following result is almost trivial.8.5. Theorem. If f has a removable singularity at z0, then we haveRes [f(z); z0℄ = 0: In partiular, if C is a simple losed ontour ontain-ing only removable singularities at zk (k = 1; 2; : : : ; n) inside C, thenRC f(z) dz = 0:For instane, using Theorem 8.5, we haveRes [(os z � 1)2=z2; 0℄ = 0 and Res [z2= sin2 z; 0℄ = 0:



8.1 Residue at a Finite Point 341Note that the funtions involved here are even. More generally, we have8.6. Theorem. If f has an isolated singularity at z0 and if f is evenin z � z0, i.e. f(z � z0) = f(�(z � z0)), then Res [f(z); z0℄ = 0:Proof. Suppose that f is even in z � z0. Then the Laurent seriesexpansion around z0 annot have odd powers of z�z0. Hene, the assertionfollows.Consider the funtion f de�ned byf(z) = 1z2(z2 � a2) (a 2 R nf0g):Then the point z = 0 is a double pole and z = �a is a simple pole. Observethat f(z) = f(�z) and hene, by Theorem 8.6, we have Res [f(z); 0℄ = 0:This shows that the residue an be zero, even though f has a non-removablesingularity at z = 0 (see Remark 8.4).Similarly, f(z) = e1=z2 has an essential singularity at z = 0. Again, asf is even, we have Res [f(z); 0℄ = 0: By Theorem 8.6, we easily obtain thefollowing:(i) Res [(sin z)�2; k�℄ = 0; k = 0;�1;�2; : : : (sin2(z � k�) = sin2 z)(ii) Res [1= sin(z2); 0℄ = 0(iii) Res [z3 sin(1=z); 0℄ = 0(iv) Res [(sin z � z)=z3; 0℄ = 0(v) Res [e�1=z2 os(1=z); 0℄ = 0(vi) Res [1=[2 + z2 � 2 osh z℄; 0℄ = 0.For evaluating residues in onrete examples, the following theorem isvery useful.8.7. Theorem. If f has a pole of order n at z0, thenRes [f(z); z0℄ = limz!z0 1(n� 1)! dn�1dzn�1 ((z � z0)nf(z)):(8.8)The oeÆient of (z � z0)�k in the Laurent expansion isa�k = 1(n� k)! limz!z0 dn�kdzn�k ((z � z0)nf(z)); k = 1; 2; : : : ; n:(Case k = n means that we have only to look at (z � z0)nf(z).)Proof. Suppose that f has a pole of order n at z0. Then, we havef(z) = a�n(z � z0)n + � � � + a�1z � z0 + 1Xk=0 ak(z � z0)k (0 < jz � z0j < Æ)



342 Calulus of Residuesfor some Æ > 0, where a�n 6= 0. Further, limz!z0(z � z0)nf(z) exists andis non-zero. Note that for z 6= z0,(z�z0)nf(z) = a�n+a�n+1(z�z0)+ � � �+a�1(z � z0)n�1+ 1Xk=0 ak(z�z0)k+nand the formula (8.8) follows at one if we di�erentiate the last equation(n� 1)-times and then allow z ! z0. Alternatively, de�ne g byg(z) = ( (z � z0)nf(z) for 0 < jz � z0j < Ælimz!z0(z � z0)nf(z) for z = z0so that f(z) = (z � z0)�ng(z); 0 < jz � z0j < Æ; where g is analyti injz � z0j < Æ with g(z0) = a�n 6= 0. This observation, aording to theCauhy integral formula applied to C = fz : jz � z0j = rg for 0 < r < Æ,implies Res [f(z); z0℄ = 12�i ZC f(z) dz= 12�i ZC g(z)(z � z0)n dz= 1(n� 1)!g(n�1)(z0)and the result follows at one. By a similar argument, we have the seondpart.Theorem 8.7 is useful in the ase of rational funtions. For instane,onsider the funtion f(z) = z(z � 2)(z + 4)2(z � 1)2 ;whih has a double pole at z = 1. Using (8.8), we obtainRes [f(z); 1℄ = ddz �z(z � 2)(z + 4)2�����z=1 = 2125 :At the double pole z = �4, we haveRes [f(z);�4℄ = ddz �z(z � 2)(z � 1)2�����z=�4 = ddz � �1(z � 1)2�����z=�4 = 2125 :Similarly, we see thatRes [(z3 + 7)(z � 2)�3; 2℄ = 12! d2dz2 (z3 + 7)����z=2 = 6:



8.1 Residue at a Finite Point 3438.9. Example. Consider the funtion f(z) = e2z= osh�z: Sineos z = 0 i� z = (2k + 1)�=2; k 2 Z, and os(iz) = osh z; we haveosh�z = 0 () z = � (2k + 1)i2 :Thus, f has a simple pole at z = �(2k + 1)i=2 (k 2 Z). From this we seethat if C = fz : jz � i=2j = 1=2g, thenZC f(z) dz = 2�iRes� e2zosh�z ; i2� = 2�i � ei� sinh(�i=2)� = 2�iei�i = 2ei:Inside the ontour  : jz � i=2j = 1, f has a singularity only at z = i=2.Therefore, if C is any irle around i=2 lying ompletely inside  then wehave RC f(z) dz = 2ei: �8.10. Example. De�nef(z) = (1 + z2)n+kz2n+1 :Then f has a pole of order 2n+ 1 at z = 0 andRes [f(z); 0℄ = oeÆient of z�1 in f(z)= oeÆient of z2n in (1 + z2)n+k= oeÆient of zn in (1 + z)n+k= �n+ kn �:On the other hand, by Theorem 8.6, we have Res [zf(z); 0℄ = 0. �8.11. Example. Considerf(z) = 1(z3 � 1)(z + 1)2 :Then f has a double pole at �1 and simple poles at 1; !; !2, where ! is aube root of unity. We easily see thatRes [f(z);�1℄ = limz!�1 ddz � 1z3 � 1� = limz!�1 �3z2(z3 � 1)2 = �34 :If a is any one of the ube roots of unity, then we haveRes [f(z); a℄ = limz!a (z � a)z3 � 1 (z + 1)�2 = 13a2(1 + a)2 = 13(2 + a+ a2)



344 Calulus of Residuesso that Res [f(z); 1℄ = 1=12, Res [f(z);!℄ = Res [f(z);!2℄ = 1=3. �From Theorem 8.7, we have a simple result for omputing residues: \if fhas a simple pole at z = z0, then we have Res [f(z); z0℄ = limz!z0(z�z0)f(z):"From this observation, we also obtain another result whih is also extremelyuseful in pratie.8.12. Theorem. If f has a simple pole at z = z0 and if h is analytiat z0 with h(z0) 6= 0, then Res [f(z)h(z); z0℄ = h(z0)Res [f(z); z0℄:Proof. Observe thatlimz!z0(z � z0)f(z)h(z) = h(z0) limz!z0(z � z0)f(z)and the result follows immediately.Reall that, f has simple pole at z0 i� g(z) = 1=f(z) has simple zero atz0: Thus, in this ase (sine g(z0) = 0 and g0(z0) 6= 0),Res [f(z); z0℄ = limz!z0(z � z0)f(z) = limz!z0 z � z0g(z) = 1g0(z0) :Hene we have8.13. Theorem. Suppose � is analyti at z0 with �(z0) 6= 0 and g hasa simple zero at z0. Then Res [�(z)=g(z); z0℄ = �(z0)=g0(z0): In partiular,Res [1=g(z); z0℄ = 1=g0(z0):Consider the funtionf(z) = �(z)an + zn (a 6= 0, n � 1),where � is analyti at z0 suh that �(z0) 6= 0 for eah z0 2 C satisfyingzn0 +an = 0. Then, using Theorem 8.13 (sine f has simple poles), we haveRes [f(z); z0℄ = �(z0)nzn�10 = z0�(z0)nzn0 = �z0�(z0)nan :In partiular if �(z) = 1, thenRes [(zn + an)�1; zk℄ = � zknanwhere zk (k = 1; 2; : : : ; n) is the simple pole of 1=(zn+an). If �(z) = zn�1,then Res� zn�1zn + an ; zk� = 1n; a 6= 0:



8.1 Residue at a Finite Point 345As the order of poles inreases, the formula for the residue beomesmore ompliated. However, at a double pole, we have the following resultwhih an be proved easily.8.14. Theorem. Suppose � is analyti at z0 with �(z0) 6= 0, g has apole of order two at z0 and h has a zero of order two at z0. Then we have(i) Res [�(z)g(z); z0℄ = �0(z0)Res [(z � z0)g(z); z0℄ + �(z0)Res [g(z); z0℄(ii) Res ��(z)h(z) ; z0� = 6�0(z)h00(z)� 2�(z)h000(z)3[h00(z)℄2 ����z=z0 :Proof. By hypothesis, there exist r1, r2 suh that�(z) = a0 + a1(z � z0) + � � � for jz � z0j < r1;g(z) = b�2(z � z0)2 + b�1z � z0 + b0 + b1(z � z0) + � � �for 0 < jz � z0j < r2, respetively. The oeÆient of (z � z0)�1 in �(z)g(z)is a0b�1 + a1b�2 and thereforeRes [�(z)g(z); z0℄ = a0b�1 + a1b�2= �(z0)Res [g(z); z0℄ + �0(z0)Res [(z � z0)g(z); z0℄and the seond part follows similarly.8.15. Example. Consider f(z) = �(z)=g(z), with �(z) = 1 + z andg(z) = os z � 1: Then the singularities of f are given by g(z) = 0. Sineos z = 1() z = 2k� (k 2 Z), the singularities our at z0 = 2k�, k 2 Z.Further, we note thatg0(z) = � sin z and g00(z) = � os zand, sine sin z = 0() z = n� (n 2 Z), we see thatg0(2�k) = 0 and g00(2�k) 6= 0 for k 2 Z:Consequently, g has a double zero at z0 = 2�k for k 2 Z. In other words,for eah suh k, f has a double pole at z0 = 2�k. Sine � and g onsideredabove are analyti at z0 with g(z0) = 0 = g0(z0) and g00(z0) 6= 0; we omputethat Res [f(z); z0℄ = 6�0(z)g00(z)� 2�(z)g000(z)3[g00(z)℄2 ����z=z0 = � 2os z0 = �2:Similarly, Res �ez(z � z0)�2; z0� = ez0 : �8.16. Example. As an immediate appliation of Theorem 8.13, weobtain (a) to (g) in the following:



346 Calulus of Residues(a) Sine sin z has simple zeros at z = k�, k 2 Z,Res hos zsin z ; k�i = Res h� os�zsin�z ; ki = os k�os k� = 1:Similarly, we have Res [osh z ot z; k�℄ = osh k�:(b) Res [s z; k�℄ = Res [� s�z; k℄ = (�1)k; k 2 Z:() Res [ez= sin z; k�℄ = ek�os k� ; k 2 Z:(d) For k 2 Z, Res� sinh zosh z ; (2k + 1)�i=2� = sinh((2k + 1)�i=2)sinh((2k + 1)�i=2) = 1;where osh z has simple zeros at z = (2k + 1)�i=2.(e) For z0 6= z00, Res� ez(z � z0)(z � z00) ; z0� = ez0z0 � z00 :(f) Res [f(z); 1℄ = �e and Res [f(z); 0℄ = e� 1, where f(z) = e1=z1� z .(g) For the funtion f(z) = � ot�z=z2, we have (using Theorem 8.7)Res [f(z); k℄ = 1=k2 for k 2 Z nf0g and Res [f(z); 0℄ = ��2=3; beausef has a pole of order 3 at z = 0 and a simple pole at k, k 2 Znf0g. �8.17. Example. Consider f(z) = (1 + z + z2 + z3)�1: As1� z4 = (1� z)(1 + z + z2 + z3);f has a simple pole at k = ek�i=2; k = 1; 2; 3. So (see Theorem 8.13),Res [f(z); k℄ = 1� z�4z3 ����z=k = � z(1� z)4 ����z=k = �k(1� k)4 ; k = 1; 2; 3:A simpli�ation givesRes [f(z); ek�i=2℄ = �ek�i=2(1� ek�i=2)4 = ie3k�i=42 sin�k�4 � : �8.18. Example. Consider the funtion f(z) = (z sin z)�1: Then fhas a double pole at z = 0 and a simple pole at z = k�, k 2 Znf0g. Notethat f is even. By Theorem 8.6, we immediately have Res [f(z); 0℄ = 0:Sine the nearest singularity of f to zero is at ��, we obtainZC dzz sin z = 0for any irle C entered at zero and radius less than �.



8.1 Residue at a Finite Point 347Similarly, we see that the funtion f(z) = (z2 sin z)�1 has a triple poleat z = 0 and simple pole at z = k�, k 2 Znf0g. Sinef(z) = 1z3 �1��z23! � z45! + � � ����1 = 1z3 + 13! 1z + � � � for jzj > 0;we obtainRes� 1z2 sin z ; 0� = 16; i.e. Zjzj=r<� dzz2 sin z = �i3 : �8.19. Theorem. If � and g are analyti at z0, where � has a zero oforder m at z0 and g has a zero of order n at z0. Then(a) �=g has a removable singularity at z0 if m � n(b) �=g has a pole of order n�m at z0 if m < n.Proof. By hypotheses, there exists a disk jz � z0j < R suh that�(z) = 1Xk=m �(k)(z0)k! (z � z0)k ; and g(z) = 1Xk=n g(k)(z0)k! (z � z0)k:Sine zeros are isolated, we have g(z) 6= 0 in 0 < jz � z0j < Æ for someÆ < R. This observation shows that(i) m > n =) limz!z0 �(z)g(z) = 0(ii) m = n =) limz!z0 �(z)g(z) = �(m)(z0)g(n)(z0)(iii) m < n =) limz!z0 �(z)g(z) =1from whih the required onlusions follow.8.20. Example. Take �(z) = sin z and g(z) = (1 � ez)2. Then�(0) = 0, �0(0) = 1, g(0) = g0(0) = 0 and g00(0) = �2. This implies thatthe funtion f de�ned by f(z) = �(z)=g(z) has a simple pole at the origin.Therefore, Res [f(z); 0℄ = limz!0 z sin z(1� ez)2 = 1: �8.21. Example. We wish to onstrut a funtion f(z) whih has thefollowing properties:(i) The only singularities of f(z) in C1 are poles of order 1 and 2 atz = 1 and z = �1, respetively.(ii) f(0) = 0 = f(�1=2) and Res [f(z); 1℄ = 1 = Res [f(z);�1℄.



348 Calulus of ResiduesTo do this, by hypotheses, we observe that the prinipal part of f(z) hasthe form P (z) = 1z � 1 + 1z + 1 + b(z + 1)2so that F (z) = f(z)�P (z) extends to be analyti in C . As f has no othersingularities in C1 , f is analyti at1 and so, F (z) is analyti at1. Thus,by Liouville's theorem, F (z) is onstant. Hene, f(z) = P (z) + a for someonstant a. Finally, as f(0) = 0 = f(�1=2), it follows thata+ b = 0 and 4b+ a = �4=3:Solving these equations imply that b = �a = �4=9. �The �nal example of this setion relates to �nding the residue of abranh of a multi-valued funtion.8.22. Example. Consider the funtionf(z) = (1 + z2)�2 Log (1 + z):Note that Log (1 + z) is analyti in C n(�1;�1℄ and f has a pole of order2 at z = i and �i. Hene,Res [f(z);�i℄ = limz!�i ddz [(z + i)2f(z)℄= limz!�i ddz � Log (z + 1)(z � i)2 �= limz!�i � 11 + z � 1(z � i)2 + Log (1 + z) �� �2(z � i)3��= 11� i � 1(�2i)2 + Log (1� i) �� �2(�2i)3�= 1 + i2 � ��14�+ hlnp2� i�4 i � ��28i �= ��18 + �16�+ i"�18 + lnp24 # :Res [f(z); i℄ may similarly be omputed. �8.2 Residue at the Point at In�nityFirst onsider z = 1=w and reall the geometri aspet of this transforma-tion. If we set z =Me�i�, then we have w =M�1ei�: This shows that as zdesribes the irle jzj =M in the z-plane in the lokwise diretion, w de-sribes the irle jwj = 1=M in the w-plane in the anti-lokwise diretion.



8.2 Residue at the Point at In�nity 349Thus, the point z0 = �e�i� (� > M) outside the irle jzj =M orrespondsto a point w0 = ��1ei� inside the irle jwj = 1=M .Let f be analyti in a deleted neighborhood of the point at in�nity.Then f admits a Laurent series expansion of the formf(z) = 1Xk=�1 akzk (R < jzj <1); ak = 12�i ZC+ f(z)zk+1 dz;with R > 0 suÆiently large. Here C+ denotes the positively oriented irlejzj =M , whereM > R andM is suÆiently large so that a �nite number ofsingularities in C will be inside C0, where intC0 � intCR = fz : jzj < Rg.De�ne C� = fz : jzj =M > R; M is suÆiently largegwhere C� is traversed in the lokwise diretion (so that the point at in�nityis to the left of C� as in the ase of a �nite point). Put z =Me�i�. Thenit follows that (sine the termwise integration is permissible)ZC� f(z) dz = 1Xk=�1 ak ZC� zk dz= � 1Xk=�1 iakMk+1 Z 2�0 e�i(k+1)�d�= �ia�1 Z 2�0 d� = �2�ia�1:In view of this reasoning, it is natural to de�neRes [f(z);1℄ = 12�i ZC� f(z) dz = �a�1:In other words, Res [f(z);1℄ is the negative of the oeÆient of 1=z in theLaurent series expansion of f(z) with enter at the point at in�nity. Oneshould be alerted that a�1 here is neither the residue of f at in�nity northe residue of f at z = 0. Further, we observe that for z = Me�i� withM = 1=R0, Res [f(z);1℄ = 12�i ZC� f(z) dz= � 12�i Z 2�0 f(Me�i�)iMe�i�d�= � 12�i Z 2�0 f � 1R0ei�� d(R0ei�)(R0ei�)2= � 12�i ZC f � 1w� dww2= �Res�f(1=w)w2 ; 0� ;



350 Calulus of Residueswhere C = fw : jwj = 1=R0g is desribed in the anti-lokwise (positive)diretion. Alternatively, if we replae z by 1=z, we see that1z2 f �1z� = 1Xk=�1 akzk+2 = 1Xk=�1 ak�2zk (0 < jzj < 1=R)so that Res � 1z2 f �1z� ; 0� = a�1 = oeÆient of z�1 in 1z2 f �1z�and hene, in both methods, we quikly haveRes [f(z);1℄ = �Res� 1z2 f �1z� ; 0� :(8.23)Here is an alternate proof of Liouville's Theorem (Theorem 6.55). Letf(z) be a bounded entire funtion. Then f(z) has a power series expansionf(z) =P1n=0 anzn for all z 2 C , so that g de�ned byg(z) = f(1=z) = 1Xn=0 anz�nis analyti for all jzj > 0. Sine f(z) is bounded in C , g(z) is bounded ina deleted neighborhood of 0, and so g(z) has a removable singularity at 0.Therefore, an = 0 for all n > 0. Thus, f(z) = a0 is a onstant.8.24. Example. Consider the funtion f(z) = 1+ z�1, z 6= 0. ThenF (w) = f(1=w) = 1 + w (w 6= 0); and limw!0F (w) = 1:Thus, F (w) has a removable singularity at w = 0 and therefore, the pointat in�nity is a removable singularity of f(z). Further, Res [f(z);1℄ = �1:From this we also observe that if f has a removable singularity at the pointat in�nity, then the residue of f at1 may prove to be non-zero in ontrastto the ase when f has a removable singularity at a �nite point. �8.3 Residue TheoremThe e�etiveness of the residue theorem depends, of ourse, on how e�e-tively we an evaluate residues at various singularities. However, autionmust be exerised to avoid reahing a hasty onlusion based on appear-anes. Having identi�ed the type of singularities, we have to hoose aproper ontour. Most often the following theorem will be applied in thenext hapter to evaluate di�erent types of line integrals.



8.3 Residue Theorem 3518.25. Theorem. (Cauhy's Residue Theorem) If f is analyti in adomain D exept for isolated singularities at a1; a2; : : : ; an, then, for anylosed ontour  in D on whih none of the points ak lie, we haveZ f(z) dz = 2�i nXk=1n(; ak)Res [f(z); ak℄:Proof. Sine  does not pass through any of aj 's, we an hoose num-bers Æ1; Æ2; : : : ; Æn so small that(i) for every j = 1; 2; : : : ; n no two irles j : jz � aj j = Æj interset,(ii) every irle j (j = 1; 2; : : : ; n) lies inside .Sine aj is an isolated singularity of f , f admits a Laurent series expansionof the form f(z) = 1Xn=�1 a(j)n (z � aj)n; 0 < jz � aj j � Æj ;(8.26)for eah j = 1; 2; : : : ; n. We denote the prinipal part of f(z) at eah ofthese isolated singularities bypj(z) = �1Xn=�1 a(j)n (z � aj)n:Then for eah j, funtion pj is analyti on and outside the irle j (seeTheorems 4.117 and 4.139).Sine aj lies inside  and pj onverges uniformly on j , we haveZ pj(z) dz = a(j)�1 Z dzz � aj (aj lies inside )= 2�ia(j)�1n(aj ; )= 2�in(aj ; ) Res [f(z); aj ℄; j = 1; 2; : : : ; n:If we subtrat the prinipal parts p1(z); p2(z); : : : ; pn(z) from f , it followsthat the funtion g de�ned by the di�ereneg(z) = f(z)� nXj=1 pj(z)(8.27)is analyti on D nfa1; a2; : : : ; ang. It follows that all the aj 's are removablesingularities of g and, by Cauhy's theorem (see also Theorem 8.5), we haveR g(z) dz = 0. Consequently, by (8.27),Z f(z) dz = nXk=1 Z pk(z) dz = 2�i nXk=1n(ak; ) Res [f(z); ak℄:



352 Calulus of ResiduesIn most of the appliations  will be a simple losed ontour with positiveorientation and hene, in these ases (see Setion 4.5),n(; ak) = � 0 if ak is in the unbounded omponent of C nfg1 if ak is inside :Thus, the residue formula beomes elegant for simple losed ontours. Thusif  � D is a simple losed ontour with positive orientation, then underthe hypotheses of Theorem 8.25 we have the following simple form.8.28. Theorem. (Residue Formula)Z f(z) dz = 2�iXRes [f(z); ak℄:Here the sum is taken over all ak's inside .The proof of this speial ase is trivial beause for the simple losedontour  in D, by Cauhy's priniple of deformation of ontour, we haveZ f(z) dz = 2�i nXk=1 Zk f(z) dz = 2�i nXk=1Res [f(z); ak℄:The general ase an also be proved in the same spirit.The Cauhy integral formula (see Theorem 4.63) an be onsidered as aspeial ase of the residue theorem. Indeed, if f is analyti in D and a 2 D,then g de�ned by g(z) = f(z)z � ais analyti in D nfag and has the residue f(a) at the simple pole a, by The-orem 8.13. In fat, the Cauhy integral formula for higher order derivativesan also be dedued as a speial ase of Theorem 8.25.8.29. Remark. In Theorem 8.25, f(z) an have only a �nite numberof singularities, beause otherwise singularities of f(z) would have a limitpoint � (possibly at the point at in�nity), and so � would not be an isolatedsingularity of f(z), ontrary to our assumption. �8.30. Example. Let us evaluateI� = Zjzj=1 Re zz � � dz; j�j 6= 1:For jzj = 1, we have Re z = �z + z�1� =2 so thatI� = 12 Zjzj=1 f(z) dz;



8.3 Residue Theorem 353where f(z) = z2 + 1z(z � �) = 8>><>>: z2 + 1z2 if � = 0z2 + 1� � 1z � � � 1z� if � 6= 0:To ompute the integral, we may either use the Cauhy integral formula orthe residue theorem. Note that Res [f(z); 0℄ = 0 if � = 0.Thus, I0 = 0.When j�j > 1, the Cauhy integral formula gives thatI� = 12 Zjzj=1 (z2 + 1)=(z � �)z dz = 2�i2 �� 1�� = ��i� :When 0 < j�j < 1, we see thatRes [f(z); 0℄ = � 1� and Res [f(z);�℄ = �2 + 1� ;and so, if 0 < j�j < 1 then the Cauhy residue theorem givesI� = 2�i2 fRes [f(z); 0℄ + Res [f(z);�℄g = ��i:Similarly, for j�j 6= 1, we an easily see thatZjzj=1 Im zz � � dz =8<: 0 if � = 0�=� if j�j > 1�� if 0 < j�j < 1: �8.31. Example. For jaj 6= R and C = fz : jzj = Rg, we wish toshow that I = ZC jdzjjz � aj2 = 2�RjR2 � jaj2j :For a proof, we let z = Rei�. Then dz = iz d�, jdzj = Rd� = Rdz=iz andjz � aj2 = (z � a)(z � a) = z�1(z � a)(R2 � az)so that I takes the formI = Ri ZC f(z) dz; f(z) = 1(z � a)(R2 � az) :For a = 0, the result is trivial. For a 6= 0, f has two simple poles at z = aand z = R2=a. If one of them lies inside the irle jzj = R, then the otherlies outside. Finally, the result follows from the residue theorem. �Combining the residue at the point at in�nity and Theorem 8.25, wehave the\Residue Formula for the Extended Complex Plane" as follows:8.32. Theorem. (Extended Residue Formula) Let f be analyti inC exept for isolated singularities at a1; a2; : : : ; an. Then we have



354 Calulus of Residues(i) the sum of all residues (inluding the residue at in�nity) of f is zero.Equivalently (by Theorem 8.28 and equation (8.23)), we writeRes � 1z2 f �1z� ; 0� = nXk=1Res [f(z); ak℄:(ii) if  is a simple losed ontour in C suh that all ak's are interior to, then Z f(z) dz = 2�iRes� 1z2 f �1z� ; 0� :The extended residue formula an be used to give another simple proofof Liouville's theorem (see Theorem 6.55).8.33. Proof of Liouville's Theorem (see Theorem 6.55). Supposethat f is entire and bounded in C . Choose two distint points, say 0 and ain C , and onsider the funtionF (z) = f(z)z(z � a) :Then F (z) has singularities at z = 0; a and possibly at the point at in�nity.Sine limjzj!1 zF (z) = 0 (as f is bounded in C ), Res [F (z);1℄ = 0. Notealso that Res [F (z); 0℄ = �f(0)a ; and Res [F (z); a℄ = f(a)a :In view of Theorem 8.32, we haveRes [F (z); 0℄ + Res [F (z); a℄ + Res [F (z);1℄ = �f(0)a + f(a)a = 0whih proves f(a) = f(0) for eah a 2 C . Hene, f must be onstant.On most oasions, alulation of the residues at many isolated sin-gularities of the integrand is quite diÆult. In this situation, we an useTheorem 8.32 to evaluate ertain ontour integrals. Now, we demonstratethis advantageous situation by a number of examples. Considerf(z) = z21(z2 � 1)4(z4 � 2)3 :Then we see that all the singularities of f lie inside the irle jzj = 3. Notethat f has a simple pole at in�nity with Res [f(z);1℄ = �4. Consequently,Zjzj=3 f(z) dz = �2�iRes [f(z);1℄ = 8�i:



8.4 Number of Zeros and Poles 3558.34. Example. Let us evaluate the integralI = 12�i Zjzj=R f(z) dz; f(z) = z2n+3m�1(z2 + a)n(z3 + b)m ;where a; b 2 C nf0g; R > maxfpjaj; jbj1=3g and m and n are �xed positiveintegers. First we note that f has poles of order n at the zeros of z2 + a,say z1 and z2, and poles of order m at the zeros of z3+ b, say z3; z4 and z5.By the onditions on a; b and R, these poles lie inside the irle jzj = R.Therefore, by the residue theorem,I = 5Xj=1Res [f(z); zj ℄:As the alulation of residues at these poles is quite diÆult, to om-plete the solution, we make use of Theorem 8.32. Aording to this,I +Res [f(z);1℄ = 0. Sine�Res [f(z);1℄ = Res � 1z2 f �1z� ; 0� = Res� 1=z(1 + az2)n(1 + bz3)m ; 0� = 1;this gives I = 1. �The oasional short ut method used in the above two examples shouldnot be missed.8.4 Number of Zeros and PolesBefore we onsider some useful onsequenes of Theorem 8.32, let us de�nethe hange in arg f(z) as z goes around C. This is denoted by �C arg f(z).Let f be analyti inside and on a simple losed ontour C exept possiblyfor poles inside C and f(z) 6= 0 on C. As z desribes C one in the positivediretion in the z-plane, the image point w = f(z) desribes a losed urve� = f(C) in the w-plane in a partiular diretion whih determines theorientation of the image urve �. Sine f(z) 6= 0 on C, � never passesthrough the origin in the w-plane. Let w0 be an arbitrary �xed pointon � and let �0 be a value of the argument of w0. Then, let argw runontinuously from �0, as the point begins at w0 and traverses � one inthe diretion of orientation assigned to it by w = f(z). If w returns to thestarting point w0, then argw assumes a partiular value of argw0 whihwe denote by �1. We de�ne�C arg f(z) = �1 � �0:Note that the di�erene �1��0 is independent of the hoie of the startingpoint w0. Further, we also note that the di�erene �1 � �0 is an integral



356 Calulus of Residuesmultiple of 2� and the integer (�1 � �0)=2�, denoted by n(�; 0), is thewinding number of � around the origin in w-plane as z desribes C onein the positive diretion (see 4.5). If n(�; 0) = �1, then � winds aroundthe origin one in the lokwise diretion. If � does not enlose the origin,then it is obvious that n(�; 0) = 0.For instane, onsider the speial ase whenf(z) = zn (n 2 N)where C = fz : z = ei�; 0 � � � 2�g. The funtion f has a zero of ordern at z = 0. Then, � = fw : w = ein�; 0 � � � 2�g whih is the irletraversed n-times and so, we may deompose � as� = [nj=1�j ; �j = �w : w = ein�; 2(j � 1)�n � � � 2j�n � :Note that eah �j is desribed in the positive diretion and has the originin its interior. Hene, we �nd thatn(�; 0) = 12��C arg f(z) = n = 12�i Z� dww = 12�i ZC f 0(z)f(z) dz:8.35. Theorem. If f has a zero of order m at z = a,Res �f 0(z)f(z) ; a� = m:Proof. If f has a zero of order m at z = a then f(z) = (z � a)mg(z),where g is analyti at z = a and g(a) 6= 0. It follows that in a deletedneighborhood of af 0(z)f(z) = (z � a)m�1[mg(z) + (z � a)g0(z)℄(z � a)mg(z)= mz � a + g0(z)g(z) ; 0 < jz � aj < Æ; for some Æ:As g0=g is analyti at z = a, the onlusion follows.A proof analogous to that of the above theorem shows that if f has apole of order n at z = b, then near z = b we havef 0(z)f(z) = � nz � b + an analyti funtion at z = b.Hene at eah pole z = b of f , f 0=f has a simple pole at z = b with residueequal to �n.One of the important appliations of Cauhy's residue theorem onernsthe number of zeros and poles of meromorphi funtions.



8.4 Number of Zeros and Poles 3578.36. Theorem. (Argument Priniple) Let f be meromorphi in adomain D � C and have only �nitely many zeros and poles in D. If C is asimple losed ontour in D suh that no zeros or poles of f lie on C, then12�i ZC f 0(z)f(z) dz = N � P(8.37)where N and P denote, respetively, the number of zeros and poles of finside C, eah ounted aording to their order.Proof. De�ne F (z) = f 0(z)=f(z): Then, the only possible singularitiesof F inside C are the zeros and poles of f . Therefore1312�i ZC F (z) dz =XRes [F (z);C℄:(8.38)If aj is a zero of order nj of f and if bk is a pole of order pk of f , then (seeTheorem 8.35) it follows thatRes �f 0(z)f(z) ; aj� = nj and Res�f 0(z)f(z) ; bk� = �pk:Thus (8.38) beomes12�i ZC f 0(z)f(z) dz =Xj nj �Xk pk = N � P:8.39. Remark. If, in addition, � is analyti on D, then under thehypotheses of Theorem 8.36 we easily get that12�i ZC �(z)f 0(z)f(z) dz =Xj nj�(aj)�Xk pk�(bk)where aj and bk are the zeros of order nj and the poles of order pk for f ,respetively. �Why is Theorem 8.36 known as an argument priniple? Let us nowrestate Theorem 8.36 in terms of the properties of the logarithmi funtionlog f(z). For this, under the hypotheses of Theorem 8.36, onsider thetransformation w = log f(z): Note that f is analyti on C and f(z) 6= 0on C. Hene, f(z) 6= 0 in a neighborhood of C. For any analyti branhlog f(z) of logarithm of f(z), we haveddz (log f(z)) = f 0(z)f(z)13We use PRes [f(z);D℄ to denote the sum of the residues of f at the singulari-ties aj , where aj belongs to the interior of D. Sometimes, we denote this simply byPRes [f(z);C℄ where C is a given losed ontour.



358 Calulus of Residuesand therefore,12�i ZC f 0(z)f(z) dz = 12�i ZC d(log f(z)) = 12�i�C log f(z):(8.40)We refer to this integral as the logarithmi integral of f(z) along C. Here�C log f(z) denotes the inrease in log f(z) when C is traversed one in thepositive diretion, and we say that the logarithmi integral measures thehange of log f(z) along the ontour C. Now, we expresslog f(z) = ln jf(z)j+ i arg f(z)where ln jf(z)j is single-valued and hene, �C ln jf(z)j = 0; as ln jf(z)jreturns to its original value when C is traversed. This observation impliesthat �C log f(z) = i�C arg f(z):Therefore, (8.40) yields12�i ZC f 0(z)f(z) dz = 12��C arg f(z)where �C arg f(z) is referred to as the inrease in the argument of f(z)along C. Thus, the argument priniple an be restated as follows.8.41. Corollary. Under the hypotheses of Theorem 8.36, we have12��C arg f(z) = N � P:8.42. Corollary. If f is analyti inside and on a simple losedontour C and f(z) 6= 0 on C, then (1=2�)�C arg f(z) = N:8.43. Example. Consider the integral I = 12�i ZC f 0(z)f(z) dz; whereC = fz : jz � 1� ij = 2g and(i) f(z) = z � 2z(z � 1) ; (ii) f(z) = z � 2z(z � 1)2 ; (iii) f(z) = z2 � 9z2 + 1 :Then, we note that 0; 1; 2 and i are inside C and 3;�3 and �i are outsideC. Thus for (i), I = 1� 2 = �1; for (ii), I = 1� 3 = �2 and for the lastase, I = 0� 1 = �1. �8.44. Example. Note that os z = 0() z = (k + 12 )�; k 2 Z; theonly zero of os z inside the unit irle about �=2 is at z = �=2. Therefore,by the argument priniple, we haveZjz��=2j=1 tan z dz = � Zjz��=2j=1 f 0(z)f(z) dz = �2�i; f(z) = os z:
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Figure 8.1: Mapping w = z2 � 1.From this integral, we also note that Res [tan z;�=2℄ = �1. �8.45. Examples. Let f(z) = tanh z and C = fz : jzj = 3g. Sineosh z = 0 () z = �i(k + 12 )� (k 2 Z); we see that osh z has 2 zeros atz = ��i=2 in the interior of C. Further, we note thatddz (osh z) = sinh z; and Zjzj=3 tanh z dz = 4�i;by the argument priniple. Similarly we easily obtain the following:(i) Zjz�1j=2 tanh z dz = 4�i(ii) Zjzj=3� ezez � 1 dz = 6�i(iii) Zjzj=� tan�z dz = 12i(iv) Zjzj=1 dzsin z = Zjzj=1 f 0(z)f(z) dz = 2�i; with f(z) = tan(z=2): �8.46. Example. Consider f(z) = z2 � 1, C = fz : jz � 1j = 1g:Using the image points, it is easy to sketh the values whih w = f(z)assumes on C: z : 2 1 + i 0# # #w : 3 �1 + 2i �1:Sine f(z) = f(z) and sine the ontour C in the z-plane is symmetriabout x-axis, the image urve � in the w-plane must be symmetri aboutu-axis. From Figure 8.1, we easily dedue that12��C arg f(z) = 1
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Figure 8.2: The urve C = fz : jzj = R; 0 � arg z � �=2g.as C is traversed one in the positive diretion starting from a point andending at the same point. Further, we also note that f has two simple zerosat z = 1 and z = �1. Only the zero at z = 1 lies inside C. Thus, N = 1.Similarly, it is easy to see that if f(z) = z�n and C is a losed ontour(or irle) enlosing the origin, then 12��C arg f(z) = �n; whih agreeswith the fat that in the interior of C, the funtion has a pole of order nat z = 0. �8.47. Example. Consider f(z) = z4 + z3 + 1: If z = x with x > 0,then f(z) = x4 + x3 + 1(8.48)and if z = �x with x > 0, thenf(z) = x4 � x3 + 1 = �x3(x � 1) + 1 if x � 1;x4 + (1 + x+ x2)(1� x) if 0 < x � 1:(8.49)Thus, (8.48) and (8.49) imply that f(z) has no real roots. Further if z = iywith y-real, then f(z) = y4 + 1� iy3whih shows that f has no purely imaginary roots. On the other hand ifC = fz : z = Rei�; 0 � � � �=2g, i.e. C is taken round the part of the�rst quadrant bounded by jzj = R for suÆiently large R (see Figure 8.2),then f(z) = R4ei4� +R3ei3� + 1 = R4e4�i �1 + 1Rei� + 1R4e4�i � :If R is suÆiently large, then the square braketed term is pratially 1 andso �C arg f(z)! 4��2� = 2� as R!1:On the axis of y, arg f(iy) = artan�� y31 + y4� :



8.5 Rouh�e's Theorem 361Here y ranges from 1 to 0 along the positive imaginary axis, the initialand �nal values of arg f(z) are zero. Thus, the total hange when R issuÆiently large is given by �C arg f(z) = 2� � 0 whih means that thereis a root lying in the open �rst quadrant. �8.5 Rouh�e's TheoremThe argument priniple allows a omparison, under ertain onditions, ofthe number of zeros of two analyti funtions.8.50. Theorem. (Rouh�e's Theorem) Let f and g be meromorphiin a domain D � C and have only �nitely many zeros and poles in D.Suppose that C is a simple losed ontour in D suh that no zeros or polesof f or g lie on C, and, in addition, assume thatjg(z)j < jf(z)j on C:(8.51)Then �Cf(z) = �C(f(z) + g(z)); i.e. the di�erene between the numberof zeros and number of poles is the same for f and f + g:Nf � Pf = Nf+g � Pf+g :Proof. By the hypotheses, both f(z) and f(z) + g(z) are nonzero onC. By the argument priniple (see Corollary 8.41), we haveNf � Pf = 12�i ZC f 0(z)f(z) dz and Nf+g � Pf+g = 12�i ZC (f + g)0(z)(f + g)(z) dzso that a straightforward alulation gives thatNf � Pf � (Nf+g � Pf+g)= 12�i ZC �f 0(z)(f(z) + g(z))� f(z)(f 0(z) + g0(z))f(z)(f(z) + g(z)) � dz= � 12�i ZC F 0(z)F (z) dz; F (z) = 1 + g(z)f(z) :In view of (8.51), jg(z)=f(z)j < 1 on C so that, the meromorphi funtionF (z) maps C into jw� 1j < 1. Thus, as z desribes C, the point w = F (z)traverses a losed ontour � lying ompletely inside the domain jw� 1j < 1(see Figure 8.3) so that � neither passes through the origin nor ontainsthe origin. It follows thatZC F 0(z)F (z) dz = Z� dww = 0and so, Nf � Pf � (Nf+g � Pf+g) = 0. The result follows.



362 Calulus of Residues 1

O 1 2 x

y

C D
|z − 1| = 1

O 1 Ŵ 2 u

v

|w − 1| = 1w = 1 + g(z)

f (z)

Figure 8.3: Illustration for the proof of Rouh�e's theorem.Sometimes Rouh�e's theorem is given an equivalent formulation: Insteadof assuming jg(z)j < jf(z)j on C, it is assumed thatjg(z)� f(z)j < jf(z)j on C:Then the onlusion with respet to this assumption is that �Cg(z) =�Cf(z), i.e. Nf � Pf = Ng � Pg :8.52. Remark. If f and g have no poles in D, then the onlusionof Theorem 8.50 shows that f and f + g have the same number of zerosinside the ontour C. �Consider, f(z) = z6 � 5z4 + 7. Then we have(i) jf(z)� 7j < jzj6 + 5jzj4 < 7 for jzj = 1, and so f(z) has no zeros injzj < 1(ii) jf(z) � (�5z4)j < jzj6 + 7 = 26 + 7 < 5jzj4 for jzj = 2, and so f(z)has four zeros in jzj < 2(iii) jf(z)� z6j < 5jzj4 + 7 < jz6j for jzj = 3, and so f(z) has all the sixzeros in the disk jzj < 3.8.53. Remark. We next show that the fundamental theorem ofalgebra follows from Rouh�e's theorem. Consider f(z) = a0 + a1z + � � � +an�1zn�1+ zn and let C = fz : jzj = Rg, R > 1. Then, for z 2 C, we have����f(z)zn � 1���� � ja0jRn + ja1jRn�1 + � � � + jan�1jR< [ja0j+ ja1j+ � � � + jan�1j℄ 1R (sine R > 1):Thus, for suÆiently large R, i.e. for R > maxf1; ja0j+ ja1j+ � � �+ jan�1jg,we see that ����f(z)zn � 1���� < 1; or jf(z)� znj < jzjn on jzj = R:



8.5 Rouh�e's Theorem 363By Rouh�e's theorem, f has n zeros inside this irle. �8.54. Example. Take f(z) = 2+ z2 and g(z) = eiz . For z = x 2 R,we have f(x) = 2 + x2 > jeixj = 1 = jg(x)j; i.e. jf(z)j > jg(z)j:On the other hand if z = Rei�, 0 � � � �, thenjf(Rei�)j = j2 +R2ei2�j � R2 � 2 and jg(Rei�)j = jeiRei� j = e�R sin �:Therefore, on the upper semi-irle, we have jf(z)j > jg(z)j if R satis�esthe ondition R2 � 2 > e�R sin �: If we hoose R > p3 thenR2 � 2 > 1 � e�R sin � for 0 � � � �:By Rouh�e's theorem, the number of zeros of f + g in
R = fz : jzj � R and Re z � 0gfor R > p3 is equal to the number of roots of the equation f(z) = 2+z2 = 0in 
R. Thus, in the entire upper half-plane equation 2 + z2 � eiz = 0 hasonly one root. �8.55. Example. Let f(z) = 1+z4 and g(z) = iz3. Then, on jzj = R,jf(z)j � R4 � 1 and jg(z)j = R3 so that the inequality jf(z)j > jg(z)j holdson jzj = R if R4 � 1 > R3: By Rouh�e's theorem, f and f + g havesame number of zeros in jzj < R for whenever R4 � 1 > R3: For example,z4 + iz3 + 1 = 0 has all the four roots in jzj < 3=2. �8.56. Example. Consider f(z) = 3 + �z + (j�jR � 3)zn; wherej�jR � 3 > 0 with 0 < R � 1 and n = 2; 3; : : : . Then, on jzj = R, we havej3 + �zj � j�jR � 3 � (j�jR � 3)Rn = j(j�jR � 3)znjand therefore, f has exatly one zero inside the irle jzj = R. For instanef(z) = 3 + �z + (j�j � 3)zn has one zero in jzj < 1 if j�j > 3. �8.57. Example. Given � > 1, we wish to prove that e�z+z�� = 0has a unique solution in fz : Re z > 0g. To do this, we take f(z) = z � �and g(z) = e�z. Then, for z = iy, we havejf(iy)j = jiy � �j =py2 + �2 > 1 = je�iyj = jg(iy)jso that jg(z)j < jf(z)j for z in the vertial line segment onneting iR and�iR. On the other hand if jzj = R, Re z � 0, then we havejf(z)j � jzj � � = R� � > 1 � je�zj = e�Re z = jg(z)j(8.58)



364 Calulus of Residues(sine �Re z � 0), provided R > 1+�. By Rouh�e's theorem, the equationf(z) + g(z) = e�z + z � � = 0 has only one root inside 
 = fz : jzj =R; Re z > 0g for R > �+ 1. The root is real beause the left hand side ofthe equation e�z + z � � = 0 for z = x = 0 gives 1� � whih is negativeand approahes +1 as x! +1. This shows the root must be real. �8.59. Example. It is easy to prove that for eah R > 0 there is aninteger N = N(R) suh thatfn(z) = 1 + z + z22! + � � � + znn!has no zeros in jzj < R for n � N . Indeed, sine fn(z) ! ez on C asn!1, for a given � > 0, there exists an N suh thatjfn(z)� ezj < � for all jzj = R; n � N:That is, if we hoose � < minjzj=R jfn(z)j, then the last inequality givesjez � fn(z)j < jfn(z)j for jzj = R:Our assertion therefore follows from Rouh�e's theorem (and the fat thatez 6= 0 in C ). One an also use Hurwitz' theorem (see Theorem 12.4) toget an alternate treatment of this example.On the other hand, we easily see that if m;n 2 N, then the polynomialp(z) = 1 + z1! + z22! + � � �+ znn! + azmhas m zeros in the unit disk whenever e < jaj. Indeed, as����� nXk=0 zkk! ����� � 1Xk=0 1k! = e < jaj = jazmj for jzj=1 ;Rouh�e's theorem gives the desired result. �8.6 Exerises8.60. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) If f and g are analyti in a deleted neighborhood of z0, and if a andb 2 C , then Res [af(z) + bg(z); z0℄ = aRes [f(z); z0℄ + bRes [g(z); z0℄:(b) If f(z) has an isolated singularity at a 2 C with nonzero residue atz = a, then the residues of f 0(z) and (z � a)f 0(z) at z = a are zero.



8.6 Exerises 365() If f has an isolated singularity at a, and  is a non-zero omplexnumber, then f(z) has an isolated singularity at a=, andRes [f(z); a=℄ = (1=)Res [f(z); a℄:(d) Let f 2 H(�(a; Æ) n fag) for some Æ > 0 and f have a simple pole ata with residue a�1. Then, for a irular ar (�) of the form a+ �ei�(� 2 [�1; �2℄; 0 � �1 < �2 � 2�; � < Æ), one haslim�!0 Z� f(z) dz = ia�1(�2 � �1):(e) If f(z) = Pn2Zanzn and g(z) = Pn2Zbnzn have an isolated singu-larity at 0, then Res [f(z)g(z); 0℄ =Pn2Zanb�n�1.Note: Is this result helpful to ompute Res [e1=z2 sin(1=z); 0℄ = 0?(f) If f 2 H(C nf0g and Res [f(z); 0℄ = a�1, then there exists z 2 ��suh that jf(z)� 1=zj � ja�1 � 1j.(g) If f is analyti at 1 and has a zero of order n (� 2) at 1, thenRes [f(z);1℄ = 0.(h) If f is analyti at1 and has a simple zero at1, then Res [f(z);1℄ =� limz!1 zf(z):(i) If D � C is a domain, M > 0 and f : D ! �(M ;M) is analyti,then for every losed ontour  in D, R(f 0(z)=f(z)) dz = 0:(j) Zjzj=1 1ez � 1� 2z dz = �2�i.(k) If f is a rational funtion suh that the degree of its denominatorexeeds that of numerator by at least two, then the sum of residuesat all the poles is zero.(l) If p is a polynomial of degree at most n and jaj < R, thenZjzj=R p(z)zn+1(z � a) dz = 0:(m) If p(z) is a polynomial of degree n (� 2), then Rjzj=R dzp(z) = 0 for largeR, and the same is also true if p(z) is a linear funtion, i.e. if n = 1.(n) There does not exist an analyti funtion f de�ned on C nf0g suhthat f 0(z) = 1=z (see also Example 4.89).(o) The funtion f(z) = [1 + z + z2 + � � � + zn�1℄�1; has simple poles atzk = e2k�i=n (k = 1; 2; : : : ; n� 1) andRes [f(z); zk℄ = 2ie3k�i=nn sin�k�n � :



366 Calulus of Residues(p) If k is a �xed integer and C = fz : jzj = (2jkj+ 1)�=2g, then12�i ZC osh z ot z dz = kXj=�k osh j�:(q) For f(z) = ez+1=z, Res [f(z); 0℄ = 1Xn=0 1n!(n+ 1)! = �Res [f(z);1℄:(r) For a > 1 and b-real,Zjzj=1 ebza2z2 + 1 dz = 2�i sin(b=a)a :(s) The equation ez = 2 + 3z has at most one solution in the unit diskjzj < 1.(t) If jzj = 1 and a > 1, then the equation zea�z = 1 has exatly onesolution in jzj < 1.(u) All the roots of the polynomial p(z) = 1 + z + z2 + z3 + z4 haveabsolute value less than 2.(v) If jf(z)j > m on jzj = 1, f is analyti for jzj � 1 and jf(0)j < m, thenf has at least one zero in jzj < 1.(w) Let f be analyti in a neighborhood of � = fz : jzj � 1g. If jf(z)j < 1for all jzj = 1, then f has exatly one �xed point in �.(x) If fn(z) = 1 +Pnk=1 kzk�1 and 0 < R < 1, then there exists an Nsuh that fn has no zeros in jzj < R whenever n > N .(y) All the roots of the equation z3 � 5z2 + 10 = 0 lie in the annulusfz : 1 < jzj < p2g.(z) If f is a meromorphi funtion on the Riemann sphere, then Nf = Pf ,whereNf and Pf are respetively the number of zeros and the numberof poles of f , ounted with multipliity.8.61. Find the residues at eah of the isolated singularities of thefollowing funtions in C or C1 :(i) zz2 + 3z + 3 (ii) �z2 + z + 1z + 1 �3 (iii) 1(z3 + 1)(z + 1)2 :8.62. Suppose f and g are analyti in a domain D and f 0(z) 6= 0 inD. Let  be a losed ontour in D. Then for a 62 , show thatg(a)f 0(a) n(; a) = 12�i Z g(z)f(z)� f(a) dz:Apply this result for g(z) = 1, ez, os z.



8.6 Exerises 3678.63. Evaluate Zjzj=1 f(z) dz, where f(z) is given by the followingfuntions:sin6 z(z � �=6)3 ; zz4 � 6z2 + 1 ; z(z2 + 4z + 1)2 ; 1� os z(ez � 1) sin z ; (ez � e�z)2z3 :8.64. Evaluate the following integrals using the residue theorem:(i) Zjzj=1 dzz2(ez � e�z) and Zjzj=4 dzz2(ez � e�z)(ii) Zjz�1j=3 z(z2 � 1)3(1 + z2) dz(iii) Rjzj=� ot�z dz(iv) Zjzj=3 e1=(z�1)z � 2 dz(v) ZC dz1 + z2 ; where C is any irle enlosing i and �i inside.8.65. Let C be a simple losed ontour enlosing the points 0; 1; 2; : : : ; n.If fm(z) =Qmk=1(z � k) for m = 1; 2; : : : ; n, then ompute the integralsIm = ZC dzzfm(z) and Jm = ZC fm(z)z dz for m = 1; 2; : : : ; n:8.66. Suppose that f 2 H(�) and suh that f(��) � R. Show thatf is a onstant.8.67. De�ne f(z) = 1Xn=1 17nn!zn + 1Xn=0 zn5n2 + n! :Does the series onverge for all z 6= 0? If so, �nd the value of Rjzj=1 f(z) dz:8.68. Let f(z) = �(z)=g(z), where � and g are both analyti aroundz0. If �(z0) 6= 0, g(z0) = g0(z0) = g00(z0) = 0, and g000(z0) 6= 0, show thatRes [f(z); z0℄ = 3 � �00(z)g000(z) � 12 �0(z)g(iv)(z)(g000(z))2 �����z=z0 :8.69. De�ne f�(z) = ln jzj+ i arg� z; z 2 D�; where D� = C nfRei� :R > 0g, � 2 R is �xed suh that arg� z is the hoie of arg z in (�� 2�; �).Assuming � 6= �=2; 3�=2, �nd Res [(z2 + a2)�1f�(z);�ia℄:



368 Calulus of Residues8.70. Find the analog of (8.8) when f has a pole at1. More preisely,if f has a pole of order n at 1, then show thatRes [f(z);1℄ = limz!1 (�1)n(n+ 1)!zn+2f (n+1)(z):In the ase when f is analyti at 1, then this formula ontinues to hold ifn = 0.8.71. Let p(z) and q(z) be polynomials with no ommon zeros, andwith degrees m and n, respetively. Set f(z) = p(z)=q(z). Show that(i) f has a removable singularity at 1 if n � m(ii) Res [f(z);1℄ = 0 if n � m+ 2.8.72. Suppose that f is meromorphi on C1 . Then prove or disprovethe following: f has a pole only at 1 i� Res [f(z);1℄ = 0.8.73. Suppose that f is analyti on jzj � 1, jf(z)j < 1 wheneverjzj = 1, and that j�j < 1. Find the number of solutions of f(z) =((z � �)=(�z � 1))2 in jzj � 1.8.74. Let jaj > eR=Rn for a positive integer n. Prove that the equationazn � ez = 0 has n solutions (ounting multipliity) z satisfying jzj < R.In the ase when R = 1, show that these solutions are simple roots withpositive real part in jzj < 1.8.75. If f(z) = a0 + a1z + � � � + an�1zn�1 + zn, and C is a simplelosed ontour enlosing all the zeros of f , then show thatZC zf 0(z)f(z) dz = �2�an�1i and ZC z2f 0(z)f(z) dz = 2�i(a2n�1 � 2an�1):8.76. Suppose that f(z) is analyti in the disk jzj < 2 andIn = 12�i Zjzj=1 zn f 0(z)f(z) dz:Find the value of In when n = 0; 1; 2:8.77. Let f be analyti for jzj < 2. Show that12�i Zjzj=1 f(z)z � a dz = ( f(0) if jaj < 1f(0)� f(1=a) if jaj > 1:



Chapter 9Evaluation of ertain Integrals
This hapter desribes some systemati methods to evaluate ertain types ofde�nite and improper integrals ourring in Real Analysis. The method ofresidue alulus, using the Residue Theorem, is a powerful tool for evaluat-ing suh integrals. Here we illustrate the methods together with a suitablefuntion f and a suitable losed ontour C; the hoie, nevertheless, de-pends on the problem. In Setion 9.1, we �rst disuss the evaluation ofintegrals of ertain periodi funtions over the interval [�; 2� + �℄. In theremaining setions we apply the residue theorem to evaluate various typesof real integrals whose integrands have no known expliit anti-derivatives.Let us start with a simple example:I = Zjzj=r f(z) dz; f(z) = ezz :An immediate onsequene of the Cauhy residue theorem (or the Cauhyintegral formula) gives I = 2�i as f has a simple pole at 0 with Res [f(z); 0℄ =1: If we substitute z = rei�, then dz = irei�d� = izd� so that2�i = I = i Z 2�0 exp(rei�) d�:Equating real and imaginary parts, we haveZ 2�0 er os � sin(r sin �) d� = 0 and Z 2�0 er os � os(r sin �) d� = 2�:9.1 Integrals of Type R 2�+�� R(os �; sin �) d�This setion provides a method of evaluating integrals of the formI = Z 2�+�� R(os �; sin �) d�;(9.1)



370 Evaluation of ertain Integralswhere R(os �; sin �) is a rational funtion of os � and sin � (with real o-eÆients) whih is �nite in the range of the integral.Quite often the integrals of the above type an be evaluated by meansof some substitutions suh as t = tan �, t = tan(�=2), et., but sometimesthe evaluation may prove to be diÆult or even impossible with the realanalyti methods at our disposal.In equation (9.1), � varies between � and 2� + �. Sine � varies overa range of 2�, we may onsider � as an argument of a point z on the unitirle C = fz : jzj = 1g. Therefore, we may write z = ei� so thatos � = z2 + 12z ; sin � = z2 � 12iz and d� = dziz ; (0 � � � 2�):Thus, the integral in (9.1) beomesI = ZC f(z) dz = ZC R�z2 + 12z ; z2 � 12iz � dzizwhere f is a rational funtion of z that is �nite on the path of integration C.By the residue theorem, we then have I = 2�iPnk=1Res [f(z);�k℄; where�k denotes those poles of f whih lie inside C and the integral along C istaken in the positive diretion.9.2. Remark. As pointed out above, by means of the substitutiont = tan �=2 or simply by t = tan �, we an prove(i) Z �=2��=2 d�1� 2� sin � + �2 = �1� �2 (j�j < 1)(ii) Z �=20 1 + 2 sin2 �1 + 2 os2 �d� = �(4p3� 3)6 : �9.3. Example. Let us evaluateI = Z 2�0 d�a+ b sin � ;where a and b are real with jbj < jaj: First, we note that if b = 0 thenI = 2�=a. If b 6= 0, thenI = 1b Z 2�0 d�(a=b) + sin � (a; b real; 1 < ja=bj):So, it suÆes to ompute the integral for b = 1. Now, putting z = ei� (andassuming b = 1 and a 2 R with jaj > 1), we �nd thatI = 2 Zjzj=1 f(z) dz; f(z) = 1z2 + 2iaz � 1 =: 1(z � �)(z � �) :



9.1 Integrals of Type R 2�+�� R(os �; sin �) d� 371We see that the only singularities of f are the simple poles at� = �i(a+pa2 � 1) and � = �i(a�pa2 � 1) = � 1�:Observe that, sine 1 < jaj and the produt of the two roots is �1, one rootlies inside the unit irle jzj = 1 while the other lies outside. In fat � liesin jzj < 1 whenever a < �1, and � = �1=� lies in jzj < 1 whenever a > 1.Now,Res [f(z);�℄ = 1� � � = 12ipa2 � 1 ; and Res [f(z);�℄ = � 1� � �:Therefore, by the residue theorem, we haveZ 2�0 d�a+ sin � = 2 h2�iXRes [f(z);C℄i =8>><>>: 2�pa2 � 1 if a > 1� 2�pa2 � 1 if a < �1: �9.4. Example. In the following examples, we skip some steps. Fora > 1;Z 2�0 d�(a+ os �)2 = 4i Zjzj=1 f(z) dz; f(z) = z(z2 + 2az + 1)2 :Observe that f has two poles (eah of order two) at� = �a+pa2 � 1 and � = �a�pa2 � 1:As z2 + 2az + 1 = (z � �)(z � �), we have �� = 1 so that one pole liesinside the unit irle jzj = 1 while the other must lie outside. Clearly, �lies inside jzj = 1, and therefore, it suÆes to omputeRes [f(z);�℄ = limz!� ddz �(z � �)2f(z)�= limz!� ddz � z(z � �)2�= � (�+ �)(�� �)3= a4(a2 � 1)3=2 :Finally, by the Cauhy residue theorem,Z 2�0 d�(a+ os �)2 = 4i �2�i� a4(a2 � 1)3=2�� = 2�a(a2 � 1)3=2 :
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Figure 9.1: Illustration for an integral by area under a urve.What happens to the integral if a < �1?Similarly, for a > 1, we an writeZ 2�0 d�(a+ sin �)2 = �4i Zjzj=1 f(z) dz;where f(z) = z(z2 + 2iaz � 1)2 = z(z � �)2(z � �)2and � and � are as in Example 9.3. It follows that f has a double pole atz = � inside the unit irle, andRes [f(z);�℄ = � (�+ �)(�� �)3 = � a4(a2 � 1)3=2so that Z 2�0 d�(a+ sin �)2 = 2�a(a2 � 1)3=2 ; for a > 1:What is the value of the integral when a < �1? �9.5. Remark. One may adopt the method of the above example toevaluate suh integrals whose range of integration is not of length 2�. Inthis ontext we often use the following:\If f(x) = f(2a� x); then Z 2a0 f(x) dx = 2 Z a0 f(x) dx:"One an be readily onvined of this fat by interpreting the integrals asareas under a urve (see Figure 9.1). Sine the urve is symmetri aboutx = a, the two di�erent shaded regions are equal in area. Alternately, itsuÆes to rewriteZ 2a0 f(x) dx = Z a0 f(x) dx + Z 2aa f(x) dxand use the hange of variable x = 2a � t for the seond integral on theright. An integral over [0; �℄ an also be handled whenever f(�) is even in� and is 2�-periodi, sine in this situation



9.1 Integrals of Type R 2�+�� R(os �; sin �) d� 373Z �0 f(�) d� = 12 Z ��� f(�) d� = 12 Z 2�0 f(�) d�: �9.6. Remark. If a and b are onstants, x a real parameter,  � x � d,and R(�; x) a ontinuous funtion with a ontinuous partial derivative withrespet to x for a � � � b,  � x � d, then, aording to Leibnitz's rule, wehave ddx  Z ba R(�; x) d�! = Z ba �R�x d�:Leibnitz's rule an be extended suitably to ases where the limits a and bare in�nite or dependent on x. Using this rule, we an easily dedue fromExample 9.3 that for 1 < jaj,Z 2�0 d�(a+ sin �)2 = ( 2�a=(a2 � 1)3=2 for a > 1�2�a=(a2 � 1)3=2 for a < �1: �9.7. Example. Set I = Z 2�0 d�1 + �2 � 2� os � ; 1 6= � > 0: As in theprevious examples, to evaluate this integral, we may rewrite it asI = i� Zjzj=1 f(z) dz; f(z) = 1(z � �)(z � 1=�) :The only singularities of f are the simple poles at z = � and z = 1=�. If0 < � < 1, then z = � is inside jzj < 1 while the other is outside the unitirle. Therefore, for 0 < � < 1,I = i�f2�iRes [f(z);�℄g = �2�� limz!�(z � �)f(z) = 2�1� �2 :Similarly, we dedue that I = 2�=(�2 � 1) for � > 1: �9.8. Example. Let us show that(i) I = Z 2�0 os2n � d� = Z 2�0 sin2n � d� = 2�(2n)!22n(n!)2(ii) Z 2�0 (a os � + b sin �)2n d� = 2�(2n)!(a2 + b2)n22n(n!)2 (a; b are real):As usual, let z = ei�. Then the �rst integral, whih we have alreadyenountered in Chapter 4, beomesI = 1i22n Zjzj=1 f(z) dz; f(z) = (z2 + 1)2nz2n+1 = 1z �z + 1z�2n :



374 Evaluation of ertain IntegralsThe only singularity of f is the pole at z = 0 of order 2n+ 1. Sinef(z) = 1z 2nXk=0�2nk � z2n�k �1z�k = 2nXk=0�2nk � z2(n�k)�1; jzj > 0;we see that the oeÆient of z�1 is a�1 = � 2nn � : Consequently,I = 1i22n f2�i Re [f(z); 0℄g = 2�22n �2nn � = 2�22n � (2n)!(n!)2�and the integration formula for the �rst part follows. Similarly, by onsid-ering funtions of the form zkf(z) (k 2 Z), we an atually evaluateZ 2�0 os2n(�) os k� d� and Z 2�0 os2n(�) sin k� d�:However, for the proof of (ii), we may rewrite (as there is nothing to proveif (a; b) = (0; 0))a os � + b sin � =pa2 + b2 � apa2 + b2 os � + bpa2 + b2 sin ��and observe that, given a pair (a; b) 6= (0; 0), there exists a unique � 2[0; 2�) suh thatos� = a=pa2 + b2 and sin� = b=pa2 + b2:Thus, a os � + b sin � = pa2 + b2 os(� � �) and1(a2 + b2)n Z 2�0 (a os � + b sin �)2n d� = Z 2�0 os2n(� � �) d�= Z 2�0 os2n � d�so that (ii) follows from (i). �9.9. Remark. If osn� or sinn� ours in the integrand, we mayuse the formulasosn� = zn + z�n2 and sinn� = zn � z�n2iwhere z = ei� and n 2 Z. �Finally, for a > 1, we writeI = Z 2�0 sin2 �a+ os � d� = i2 Zjzj=1 f(z) dz; f(z) = (z2 � 1)2z2(z � �)(z � �) ;



9.2 Integrals of Type R1�1 f(x) dx 375where � = �a+pa2 � 1 and � = �a�pa2 � 1are the roots of the quadrati equation z2 + 2az + 1 = 0. We note thatz = � lies in jzj < 1 while z = � lies outside the unit irle jzj = 1. Further,f has a pole of order two at z = 0. Also, it is easy to see thatRes [f(z); 0℄ = �2a and Res [f(z);�℄ = 2pa2 � 1:Therefore, by the residue theorem,I = i2 n2�i��2a+ 2pa2 � 1�o = 2�(a�pa2 � 1):What happens if a < �1?9.2 Integrals of Type R1�1 f(x) dxIn the previous setion, we transformed ertain real trigonometri integralsinto ontour integrals and then omputed them with the help of residuetheorem. This setion proposes to evaluate ertain types of improper andde�nite integrals, but by interpreting the given integral as 2�i times thesum of residues at the singularities of a properly hosen analyti funtion.We start with a simple example of evaluatingI = Z 1�1 f(x) dx;(9.10)where f(x) is a ontinuous funtion on R. As we know, this is an improperintegral of f on (�1;1) and has the meaningI = limR!1 Z 0�R f(x) dx + limS!1 Z S0 f(x) dx = Z 0�1 f(x) dx+ Z 10 f(x) dxprovided these two limits exist. We an now write I asI = limR;S!1 Z S�R f(x) dxwith the understanding that R and S have to be allowed to run to 1independently of eah other; i.e. the existene of limR!1 R R�R does notimply the existene of R1�1 as the funtion f(x) = x demonstrates thisfat. However, we next give a preise example illustrating this note.Suppose f is ontinuous on interval (a; b) exept at a point x0 in (a; b),where f has a singularity (in whih sense?), i.e. f(x) is unbounded nearx0. Then, Z ba f(x) dx(9.11)



376 Evaluation of ertain Integralsmight not be de�ned and so we have to �nd a natural way to make ameaningful de�nition. For �1 > 0 and �2 > 0, onsiderZ x0��1a f(x) dx + Z bx0+�2 f(x) dx(note that both the integrals exist for eah �1 and �2) and let �1 ! 0 and�2 ! 0. If both limits exist, we say that the integral (9.11) is onvergent.It may happen that even though this limit does not exist, the limit when�1 = �2 = � with � ! 0 may exist. For instane onsider f(x) = x�3,x 2 [�1; 1℄ nf0g: Then, with x0 = 0, we haveZ 0��1�1 dxx3 = 12 �1� 1�21� and Z 10+�2 dxx3 = 12 � 1�22 � 1� :Clearly, the limit of eah of these integrals does not exist as �1 ! 0 and�2 ! 0. This shows that the integrals R 0�1 x�3 dx and R 10 x�3 dx are notonvergent. On the other hand, if we take �1 = �2 = �, we �nd thatZ ���1 dxx3 + Z 1� dxx3 = 0for all � suh that 0 < � < 1. Thus if we de�neZ ba f(x) dx = lim�1!0�2!0 (Z x0��1a f(x) dx+ Z bx0+�2 f(x) dx)(9.12)and Z ba f(x) dx = lim�!0(Z x0��a f(x) dx + Z bx0+� f(x) dx)(9.13)we see that we may get di�erent values for (9.11), depending on whetherwe use de�nition (9.12) or (9.13). Thus if jf(x)j ! 1 as x ! x0 andthe limit in (9.13) exists, then R ba f(x) dx is alled a onvergent improperintegral. The limit in (9.13), whih is also of interest to us, is alled theCauhy's prinipal value of the integral (9.11). Note also that if the limitexists in (9.12), then it also exists in the sense de�ned in (9.13) and hene,both the limits are equal. When f(x) is �nite for all real values, then bythe Cauhy prinipal value of R1�1 f(x) dx we mean limR!1 R R�R f(x) dx(if it exists). For instane, sine R R�R x dx = 0 for every R > 0, the Cauhyprinipal value of R1�1 x dx is zero.In general if f is ontinuous on R exept for a �nite number of pointsx0; x1; : : : ; xn (x0 < x1 < � � � < xn) and iflim�!0R!1 ( Z x0���R + Z x1��x0+� + � � � + Z xn��xn�1+�+ Z Rxn+�! f(x) dx)



9.2 Integrals of Type R1�1 f(x) dx 377exists and is �nite, then we all this limit the Cauhy prinipal value ofthe integral R1�1 f(x) dx denoted by itself with the additional remark, ifneessary, that the prinipal value is meant. Some books denote for brevityby PV Z 1�1 f(x) dx:By (9.13), we see that for a > 0Z 2a�a dxx = lim�!0�Z 0���a dxx + Z 2a0+� dxx � = lim�!0[ln �� lna+ln 2a� ln �℄ = ln 2:On the other hand, using (9.12), we getZ 2a�a dxx = lim�1!0�2!0 �ln 2 + ln��1�2�� :(9.14)Clearly, the limit in (9.14) on the right does not exist. This shows thatPV Z 2a�a dxx = ln 2whereas the integral R 2a�a dxx does not exist as an improper integral. Simi-larly, we an easily see thatI = PV Z 1�1 xn�1xn + 1 dx = limR!1 Z R�R xn�1xn + 1 dxso that I = 0 if n is even.Now we start with f(x) = 1=(1 + x2) and onsider R1�1 f(x) dx; wherethe path of integration is the line Im z = y = 0. If we want to use theCauhy residue formula, we need to onsider an integral along a losedontour. This observation suggests that we may have to start with anexperiment J = ZC f(z) dz; f(z) = 11 + z2 ;where C is the semi-irular ontour shown in Figure 9.2. Here we hooseR > 1 so that z = i lies inside C. Therefore, by the residue theorem, weeasily get J = 2�iRes [f(z); i℄ = �: Write J = J1 + J2, whereJ1 = Z R�R dx1 + x2 and J2 = Z Rei�Rei0 dz1 + z2 = Z �0 iRei�d�1 + (Rei�)2 :Sine jJ2j � Z �0 RR2 � 1 d� ! 0 as R!1;
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Figure 9.2: Contour C = [�R;R℄ [ �R.we dedue that R1�1 dx1+x2 = �: In partiular, we have the well-known resultZ 10 dx1 + x2 = �2 :Next, we use the same idea and show thatZ 10 osaxm2 + x2 dx = �e�am2m (a; m > 0):(9.15)Note that if we onsider the most obvious omplex funtion osaz=(m2 +z2), then we will not be able to ahieve the desired result, beause forz = �iR (R large enough)���� osazm2 + z2 ���� ����z=iR = eaR + e�aR2jm2 �R2j ! 1 as R!1:Nevertheless, as the term eiaz = eiaxe�ay is bounded in the upper half-plane, it is natural to onsiderf(z) = eiazm2 + z2 = (z + im)�1eiazz � imand we use the same semi-irular ontour as above. Then, we haveZC f(z) dz = 2�iRes [f(z); im℄ = �e�amm :Now, we writeZC f(z) dz = Z R�R f(x) dx+ Z �0 iRei�eiaRei�m2 +R2ei2� d� = J1 + J2; say:(9.16)Sine sinx is odd and osx is even, we haveJ1 = Z R�R f(x) dx = Z R�R� osaxm2 + x2 + i sin axm2 + x2� dx = 2 Z R0 osaxm2 + x2 dx



9.2 Integrals of Type R1�1 f(x) dx 379and (as e�aR sin � � e0 = 1 for � 2 [0; �℄, a > 0 and R > 0)jJ2j � Z �0 Re�aR sin �R2 �m2 d� � RR2 �m2 Z �0 d� ! 0 as R!1:The above observations prove (9.15), in view of (9.16). Further, usingLeibnitz's rule, (9.15) readily givesZ 10 x sin axm2 + x2 dx = �e�am2m ; a > 0:In general, problems of this type may be solved using the same idea.Consider the integral I = R1�1 f(x) dx, where f(x) is a rational funtionwithout real poles. Therefore, to evaluate suh an integral, we letJ = ZC f(z) dz = Z R�R f(x) dx + Z�R f(z) dz;where C = [�R;R℄ [ �R is the same ontour as in Figure 9.2. ThenZ R�R f(x) dx+ Z�R f(z) dz = 2�iXRes [f(z);C℄:As R !1, the �rst integral on the left tends to I . We shall then have toshow that the seond integral tends to 0. If so, this would then imply thatZ 1�1 f(x) dx = 2�iXRes [f(z);C℄:Thus, we have to �nd a suitable ondition under whih R�R f(z) dz ! 0as R!1: Before we establish suh a ondition (see Theorem 9.23) let us�rst disuss a few more examples.9.17. Example. We wish to prove thatZ 10 xm�11 + xn dx = �n sin(m�=n) ; for m;n 2 N with n > m > 0.To do this, we let f(z) = zm�11 + zn :Then f has simple poles at ak = ei(1+2k)�=n (k = 0; 1; 2; : : : ; n� 1) withRes [f(z); ak℄ = zm�1nzn�1 ����z=ak = zm�n ����z=ak = �amkn :Here we use a di�erent ontour to evaluate the integral.
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xFigure 9.3: Contour [0; R℄ [ �R [ [Rei�; 0℄.Note that these poles are simple and the only pole inside C (see Figure9.3 with � = 2�=n) is at a0, whereC = [0; R℄ [ fz = Rei� : 0 � � � 2�=ng [ fz = rei2�=n : 0 � r � Rg= [0; R℄ [ �R [ R:Now (see Theorem 8.13), by the residue theoremZC f(z) dz =  Z[0;R℄+ Z�R + ZR! f(z) dz = �2�iam0n :(9.18)Sine jf(z)j � jzjm�1jzjn � 1 � 2jzjm�1jzjn as jzj ! 1, we have����Z�R f(z) dz���� � 2Rn+1�m 2�Rn ! 0 as R!1:(9.19)Next,ZR f(z) dz = � Z R0 f(rei2�=n) d(rei2�=n) = �ei2m�=n Z R0 rm�1dr1 + rn :Using this equation and (9.19), (9.18) beomes as R!1,(1� a2m0 ) Z 10 xm�11 + xn dx = 2�i��am0n �and therefore,Z 10 xm�1 dx1 + xn = � 2�in(am0 � a�m0 )� = �n sin(m=n)� : �9.20. Remark. If C is the retangular ontour with verties at �Rand �R+ 2�i (see Figure 9.4) and iff(z) = eaz1 + ez (0 < a < 1);
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Figure 9.4: Retangular ontour with verties at �R; �R+ 2�i.then we see thatZ R�R f(x) dx + Z 2�0 f(R+ iy) d(R+ iy) + Z �RR f(x+ 2�i) d(x+ 2�i)+ Z 02� f(�R+ iy) d(�R+ iy) = 2�if�ea�ig;as the only pole of f inside C is at z = �i. Sine f(z + 2�i) = e2�aif(z);the above equation simpli�es to(1� e2�ai) Z R�R f(x) dx + i Z 2�0 [f(R+ iy)� f(�R+ iy)℄ dy = �2�ie�ai:Observe that����Z 2�0 f(R+ iy) dy���� = ����Z 2�0 eaReaiy1 + eReiy dy���� � 2�eaReR � 1 = e(a�1)R1� e�R :Similarly, we �nd that����Z 2�0 f(�R+ iy) dy���� � 2�e�aR1� e�R :As R!1, we easily have (sine 0 < a < 1)(1� e2�ai) Z 1�1 f(x) dx = �2�ie�aifrom whih we getZ 1�1 eax1 + ex dx = Z 1�1 f(x) dx = 2�ie�ai � e��ai = �sin�a:(9.21)Using the new variable ex = t, (9.21) redues toZ 10 ta�11 + t dt = �sin(�a) :(9.22)



382 Evaluation of ertain IntegralsFurther, if we use the transformation t = xn with a = m=n in (9.22), itbeomes Z 10 xm�11 + xn dx = �n sin(m�=n) for n > m > 0:However, we an obtain (9.22) diretly by integrating a suitable funtionaround a suitable ontour. �We may use the same idea as in previous examples to solve more suhproblems (in general) by means of the residue theorem. They are mostlydealt with by appliation of the following9.23. Theorem. Suppose that f is analyti on C exept for a �nitenumber of poles suh that none of its poles lies on the real axis. If thereexist two positive numbers M and R0 suh thatjf(Rei�)j � MR� for R > R0;(9.24)for some � > 1, thenZ 1�1 f(x) dx = 8<: 2�iXRes [f(z); H+ ℄�2�iXRes [f(z); H� ℄;(9.25)where H+ ; H� are respetively the upper and lower half-planes.Proof. Let R be arbitrarily large enough so that all the poles of f(z) arein jzj < R. Let C = [�R;R℄[�R; where �R = fz : jzj = R; 0 � arg z � �g;the semi-irular ar of radius R (see Figure 9.2). ThenZC f(z) dz = Z R�R f(x) dx + Z�R f(z) dz:(9.26)But, by (9.24), the seond integral on the right of (9.26) is suh that����Z�R f(z) dz���� = ����Z �0 f(Rei�)iRei� d����� � MR�R� = M�R��1 ;whih approahes zero as R!1, sine � > 1. The onlusion now followsfrom (9.26) by letting R!1.9.27. Corollary. The onlusion of the above theorem holds if f isa rational funtion, f(z) = P (z)=Q(z); where(i) f has no poles on the real axis, and(ii) P (z) and Q(z) are polynomials of degree m and m+ n, respetively,with n � 2.



9.2 Integrals of Type R1�1 f(x) dx 383Proof. The ondition (ii) implies that there exist two positive numbersM1 and M 01 suh that (see Exerise 6.88)M 01jzjm � jP (z)j �M1jzjm for jzj � Rand M2 suh that jQ(z)j �M2jzjm+n for jzj � R (R � 1): Then����P (z)Q(z) ���� � M1jzjmM2jzjm+n = M1M2jzjn � M1M2 � 1jzj2 � Mjzj2 ; say;for jzj � R, and Theorem 9.23 applies.9.28. Example. Let us show thatZ 1�1 sin2 xx2 + 1 dx = �(1� e�2)2 :To do this, we onsider (sine sin2 x = (1� os 2x)=2)f(z) = 1� ei2z1 + z2 :This funtion has exatly two simple poles at �i andRes [f(z); i℄ = limz!i 1� ei2zz + i = � i2(1� e�2):Let C = [�R;R℄ [ �R; with �R = fz : jzj = R; 0 � arg z � �g: ThenZ R�R f(x) dx + Z�R f(z) dz = 2�i�� i2(1� e�2)� = �(1� e�2):Sine jf(z)j � (1 + e�2Im z)=(jzj2 � 1) � 2=(R2 � 1) for z 2 �R, we have����Z�R f(z) dz���� � 2R2 � 1 Z�R jdzj = 2�RR2 � 1 ! 0 as R!1:It follows thatZ 1�1 f(x) dx = Z 1�1 2 sin2 x� i sin 2x1 + x2 dx = �(1� e�2)and equating the real parts yields the desired result. �9.29. Remark. Theorem 9.23 may not apply in some ases: forexample to the well-known Gauss Error Integral R1�1 e�x2 dx = p�: Thisis beause e�z2 does not have the required limiting behavior, as z !1. Infat,
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Figure 9.5: Illustration for Gauss Error Integral.(i) je�z2 j = 1 on arg z = ��4 and arg z = � 3�4 .(ii) je�z2 j ! 0 faster than reiproal of any polynomial on the linesarg z = ��2 ; 0; �.We inlude here a lassial proof of the error integral. To do this, we letI = R R0 e�x2 dx. ThenI2 =  Z R0 e�x2 dx! Z R0 e�y2 dy! = Z R0 Z R0 e�(x2+y2) dx dy:Here we are integrating along a square S in the �rst quadrant whose sideshave length R. Let �R and �p2R denote the quarter-irles in the �rstquadrant entered at the origin having radii R and Rp2, respetively (seeFigure 9.5). Evaluating along the irles in polar oordinates, we haveZ �=20 Z R0 e�r2r dr d� < Z R0 Z R0 e�(x2+y2) dx dy < Z �=20 Z Rp20 e�r2r dr d�;and so, for eah R > 0, we have�4 (1� e�R2) < I2 =  Z R0 e�x2 dx!2 < �4 (1� e�2R2):Letting R!1, we see that I = p�=2. �9.30. Remark. One an evaluate the error integral using the residuetheorem diretly. To do this, we de�nef(z) = e�z21 + e�2az ; a = (1 + i)r�2 :Sine a2 = �i, we note that e�2a(a) = 1 and so a is a period of e�2az. Ase�a2 = e��i = �1, we also note thatf(z)� f(z + a) = e�z21 + e�2az (1� e�a2�2az) = e�z2 :(9.31)
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γ2Figure 9.6: Retangular ontour C = [�R; S℄[1[[S+ip�=2;�R+ip�=2℄[2.Note that f(z) has in�nitely many simple poles in C , namely at �a=2+ka,k 2 Z. Therefore, it is not advisable to hoose a ontour that inludes manypoles. Instead, we hoose the retangular ontour as depited in Figure 9.6.Sine f has only the point a=2 inside the ontourC = [�R;S℄ [ 1 [ [S + ip�=2;�R+ ip�=2℄ [ 2;we have Res [f(z); a=2℄ = e�z2�2ae�2az �����z=a=2 = e�a2=4�2ae�a2 = � i2p� :(9.32)Therefore, by the residue theorem, we haveZ S�R f(x) dx + Z1 f(z) dz + Z �RS f(x+ (p�=2 + ip�=2) dx+ Z2 f(z) dz = 2�iRes [f(z); a=2℄:Beause of (9.31) and (9.32) the above equation beomesZ S�R e�x2 dx + Z1 f(z) dz + Z2 f(z) dz = p�and letting R;S !1, we onlude that R1�1 e�x2 dx = p�: �9.3 Integrals of Type R1�1 g(x) osmxdxThis setion disusses some other important improper integrals. Supposethat f(z) = eiazg(z) for a 2 R and for some analyti funtion g. Then theonditions on f in Theorem 9.23 an be weakened; that is in this ase it isenough to assume that jf(Rei�)j � MR for R > R0:



386 Evaluation of ertain IntegralsObserve that in most of the examples it is suÆient that f(z)! 0 as z !1in arg z, 0 � arg z � �. Therefore, Theorem 9.23 and Corollary 9.27 takethe following form:9.33. Theorem. Suppose that g is analyti in C exept possibly for a�nite number of poles and none of them are real. If there exist two positivenumbers M and R0 suh thatjg(Rei�)j � MR� for R � R0 ;(9.34)for some � > 0, thenZ 1�1 g(x)eiax dx = 8<: 2�iXRes [g(z)eiaz; H+ ℄ if a > 0�2�iXRes [g(z)eiaz; H� ℄ if a < 0;(9.35)where H+ ; H are the upper and lower half-planes, respetively. Further, ifg(z) = P (z)=Q(z); where P , Q are polynomials suh that(i) g has no poles on the real axis,(ii) deg Q � 1+ deg P () jg(z)j �M=jzj for jzj � R0,(iii) g is real on the real axis,then Z 1�1 P (x)Q(x) osax dx = Real part of the R.H.S of (9.35)and Z 1�1 P (x)Q(x) sin ax dx = Imaginary part of the R.H.S of (9.35):In establishing our theorem, we shall make use of Jordan's Inequality(see Figure 9.7).9.36. Lemma. For � 2 [0; �=2℄, we have sin � � (2=�)�:Proof. Clearly, the inequality is true at the end points. Now,dd� � sin �� � =  (�)�2 with  (�) = � os � � sin �:We laim that �(�) = ��1 sin � is stritly dereasing on (0; �=2). To dothis, it suÆes to observe that  0(�) = �� sin � < 0 for � 2 (0; �=2) sothat  is dereasing on (0; �=2) and thus,  (�) <  (0) = 0 whih showsthat �0(�) < 0 and hene, �(�) = ��1 sin � is stritly dereasing on (0; �=2).Finally, as lim�!�=2�(�) = lim�!�=2 sin �� = 2� ;
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Figure 9.7: Geometri proof of Jordan's inequality.we dedue that �(�) > 2=� on (0; �=2), as desired.9.37. Remark. For a geometri proof of Lemma 9.36, we refer toFigure 9.7. Set f(�) = sin �. Then f 00(�) = � sin � < 0 on (0; �=2) so thaty = sin � is onave down on (0; �=2). Therefore, the graph of y = sin � liesabove the straight lines onneting the end points (0; 0) and (�=2; 1). Notethat the equation of the line passing through the point (0; 0) and (�=2; 1)is y = (2=�)�:Therefore, the inequality sin � � (2=�)� holds on [0; �=2℄. �9.38. Remark. For R > 0, it follows thatI = Z �0 e�R sin � d� < �R:Indeed, if f(�) = e�R sin � then f(�) = f(� � �) so thatI = 2 Z �=20 e�R sin � d� (see Remark 9.5)� 2 Z �=20 e�(2R=�)� d� (sine sin � � 2� � on [0; �=2℄)= 2�e�R � 1�2R=� � = �R (1� e�R) < �Rand the desired inequality follows. �Proof of Theorem 9.33. First onsider a > 0. Choose R largeenough so that all the singularities of g in H+ lie inside the upper semiirle C = [�R;R℄ [ �R (see Figure 9.2). By the residue theoremZ R�R eiaxg(x) dx + Z�R eiazg(z) dz = 2�iXRes [g(z)eiaz; H+ ℄:(9.39)
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Figure 9.8: Contour [�R;��℄ [ (��) [ [�; R℄ [ �R.Now we estimate the absolute value of the seond integral. Let z = Rei� 2�R. Then jeiaz j = e�aR sin �. In view of Remark 9.38, taking R � R0 sothat jg(z)j �M=R�, we obtain����Z�R eiazg(z) dz���� � MR��1 Z �0 e�aR sin � d� < MR��1 � �aR� = �MaR� :Sine a and � > 0, the R.H.S of the above inequality approahes zero asR!1 and the required result follows from (9.39).As for the ase a < 0, we simply onsider the ontour in the lower half-plane H� and proeed similarly. The proof of the remaining part is similarto the proof of Corollary 9.27.Using the idea desribed in Theorem 9.33, it is easy to show thatZ 10 x sin axm2 + x2 dx = �e�am2 (a; m > 0):9.4 Singularities on the Real AxisWe shall now disuss the ase where f has simple poles on the real axis.Suppose that the only singularity of f on the real axis is a simple pole atthe origin. Let C be the indented ontour shown in Figure 9.8. Thus, Consists of the line segment [�R;��℄, � < R, the semi-irle (��) from ��to �, the line segment [�; R℄, and the semi-irle �R from R to �R. Here,the small semi-irle �� is desribed to avoid the singularity of f at theorigin. Assume further that C enloses all the singularities of f in the upperhalf-plane H+ . By the residue theoremZC f(z) dz = Z ���R f(x) dx� Z� f(z) dz + Z R� f(x) dx + Z�R f(z) dz= 2�iXRes [f(z); H+ ℄:(9.40)To evaluate integrals of this type we employ9.41. Theorem. Let � = fz : jz�z0j = � and �1 � arg(z�z0) � �2g.



9.4 Singularities on the Real Axis 389If f is ontinuous on 0 < jz � z0j � � and if limz!z0(z � z0)f(z) = `, thenlim�!0 Z� f(z) dz = i`(�2 � �1);where � is positively oriented.Proof. Write (z� z0)f(z) = `+ �(z) and hoose � suÆiently small sothat, for any arbitrary � > 0, j�(z)j < � if jz � z0j = �. Now,Z� f(z) dz = ` Z� dzz � z0 +Z� �(z)z � z0 dz = ` Z �2�1 i d�+Z �2�1 i�(z0+�ei�) d�:As ���R �2�1 i�(z0 + �ei�) d���� � �(�2 � �1); the last equation implies the desiredresult. �In partiular, if �2 � �1 = 2� then � beomes a positively oriented fullirle and so, lim�!0 Z� f(z) dz = 2�i limz!z0(z � z0)f(z):9.42. Remark. If there exists a real number � > 1 suh that jf(z)j �Kjzj�� as jzj ! 1 in the upper half-plane then, as seen in the proofof Theorem 9.41, we obtain limR!1 R�R f(z) dz = 0: Therefore, (9.40)beomeslimR!1�!0 (Z ���R f(x) dx+ Z R� f(x) dx) + limR!1 Z�R f(z) dz� lim�!0Z� f(z) dz = 2�iXRes [f(z);C℄:From Theorem 9.41 (with z0 = 0), this redues toZ 1�1 f(x) dx+ 0� i(� � 0)Res [f(z); 0℄ = 2�iXRes [f(z); H+ ℄from whih we get the value of the integral when the only singularity of fon the real axis is a simple pole at the origin. �9.43. Example. Let us evaluate the integralI = Z 10 sinxx dx = 12 Z 1�1 sinxx dx:



390 Evaluation of ertain IntegralsWe have trouble if we proeed the way we did in the previous two typesof problems as we are now faed with a problem at the origin. Again, forz = iR (R large enough), we havesin zz ����z=iR = eR � e�R2R !1 as R!1:So, for evaluating the given integral, we have to onsider a suitable funtionand a suitable ontour whih avoids the origin. First we rewriteI = 12i limR!1�!0 (Z ���R eixx dx+ Z R� eixx dx)(9.44)and note that jeiz j = e�y � 1 on the upper half-plane. Thus to evaluatethe given integral we onsiderZC f(z) dz; f(z) = eizz ;where C is the ontour shown in Figure 9.8. Note that C is made up ofthe (large) upper semi irular ontour �R = fz = Rei� : 0 � � � �g, the(small) semi-irular ontour ��, where � = fz = �ei� : 0 � � � �g, andthe real axis interepted between them, namely the segments [�R;��℄ and[�; R℄. Note that f has a simple pole at the origin and there are no othersingularities. Sine z = 0 lies outside C, we have, by the Cauhy theorem,RC f(z) dz = 0; that is,Z ���R f(x) dx� Z� f(z) dz + Z R� f(x) dx+ Z�R f(z) dz = 0:(9.45)Sine limz!0 zf(z) = 1; by Theorem 9.41, we note thatlim�!0 Z� f(z) dz = i(� � 0):(9.46)Alternatively, we an provide a diret proof. As f(z) has a simple polewith Res [f(z); 0℄ = 1, we have f(z) = 1=z + g(z) for z near 0, where g(z)is analyti at z = 0. In partiular,Z� f(z) dz = Z� 1z dz + Z� g(z) dz= Z �0 i�ei��ei� d� + Z� g(z) dz= i� + Z� g(z) dz:



9.4 Singularities on the Real Axis 391The integral on the right tends to zero as � ! 0, beause g(z) is boundednear 0 and that����Z� g(z) dz���� � supz2� jg(z)j�� ! 0 as �! 0:Thus, lim�!0 R� f(z) dz = i�. We next laim that limR!1 R�R f(z) dz = 0.Note that e� sin � � e0 = 1 for � 2 [0; �℄. But then we annot laim that thelast integral approahes zero as R ! 1. Instead, by Jordan's inequality(see Remark 9.38), we observe that����Z�R f(z) dz���� � Z �0 e�R sin � d� < �R ! 0 as R!1:(9.47)So, if we allow R!1 and �! 0 in (9.45), by (9.46) and (9.47),limR!1�!0 (Z ���R f(x) dx + Z R� f(x) dx) = i�:By (9.44), we then have I = �=2: �9.48. Example. By onsidering f(z) = zeiz(z2 � 1)�1 (a > 0), andC = [�R;�1� �1℄[ (��1)[ [�1+ �1; 1� �2℄[ (��2)[ [1 + �2; R℄[ �R; itis easy to prove that Z 1�1 x sin axx2 � 1 dx = � osa:Indeed, as usual, the Cauhy theorem gives Z �1��1�R � Z�1 + Z 1��2�1+�1 � Z�2 + Z R1+�2 + Z�R! f(z) dz = 0:As Res [f(z); 1℄ = eia=2 and Res [f(z);�1℄ = e�ia=2, it an be seen thatlim�1!0 Z�1 f(z) dz = eia2 i� and lim�2!0 Z�2 f(z) dz = e�ia2 i�:Further,����Z�R f(z) dz���� � Z �0 R2R2 � 1e�aR sin � d� � R2R2 � 1 � �aR�! 0 as R!1:The desired result follows by the limiting proess.Similarly, we an easily show thatZ 10 sin axx(x2 +m2) dx = �(1� e�am)2m2 (a > 0;m > 0):(9.49)



392 Evaluation of ertain IntegralsThen, by di�erentiating both sides of (9.49) with respet to m (keeping aas onstant) and using Leibnitz's rule, we easily getZ 10 sin axx(x2 +m2)2 dx = �4m4 [2� (2 + am)e�am℄ (a;m > 0):(9.50)Similarly, it is easy to see from (9.49) that (by di�erentiating (9.49) withrespet to a and keeping m as onstant)Z 10 osaxx2 +m2 dx = �e�am2m (a;m > 0):(9.51)One an also give an independent proof for (9.50). In fat, (9.51) hasalready been proved in Setion 9.2. �9.52. Remark. (i) For 0 < R <1, integration by parts yieldsZ R0 sinxx dx = Z R=20 sin 2xx dx= 2 Z R=20 sinxx d(sin x)= 2 sin2 xx ����R=20 � 2 Z R=20 sinxd� sinxx �= 4 sin2(R=2)R � 2 Z R=20 sinxx d(sinx) + 2 Z R=20 sin2 xx2 dx= 4 sin2(R=2)R � Z R=20 sin 2xx dx+ 2 Z R=20 sin2 xx2 dx:Thus, Z R0 sinxx dx = 2 sin2(R=2)R + Z R=20 sin2 xx2 dx:Sine limR!1 R�1 sin2(R=2) = 0; it follows thatZ 10 sinxx dx = Z 10 sin2 xx2 dxand hene, we have Z 10 sin2 xx2 dx = �2 :(9.53)(ii) One an give an independent proof for (9.53) by onsidering theintegral RC f(z) dz, wheref(z) = 1� e2izz2 ; Re f(x) = 1� os 2xx2 = 2 sin2 xx2 ;



9.4 Singularities on the Real Axis 393and C is the ontour shown in Figure 9.8. Sine lim�!0 zf(z) = �2i; we havelimz!0 Z� f(z) dz = i(�2i)(� � 0) = 2�;where � is positively oriented. Further, j1� e2iz j � 1+ e�2y � 2 for y � 0and so, ����Z�R f(z) dz���� � 2�R ; i.e. limR!1 Z�R f(z) dz = 0:As in the above example, we easily dedue thatlimR!1�!0 "Z ���R f(x)dx + Z R� f(x) dx# = 2�; i.e. Z 1�1 1� e2ixx2 dx = 2�:On equating real parts and taking aount of the fat that sin2 x=x2 is aneven funtion we obtain (9.53).(iii) Sinesin3 x = �eix � e�ix2i �3 = 14 Im [(1� e3ix)� 3(1� eix)℄;we have limz!0 zf(z) = 3, wheref(z) = (1� e3iz)� 3(1� eiz)z3 :Therefore, proeeding as in the above example, it is easy to show thatZ 10 sin3 xx3 dx = 3�8 : �9.54. Example. By the error integral, we havep� = 2 Z 10 e�x2 dx(9.55)Using (9.55), we an evaluate the integralsZ 10 sinx2 dx and Z 10 osx2 dx:To do this, we onsider the entire funtion f(z) = e�z2 . The ontour Cshown in Figure 9.3 (with � = �=4) shows thatZ R0 f(x) dx+ Z�R f(z) dz + Z 0R f(xei�=4) d(xei�=4) = 0:(9.56)



394 Evaluation of ertain IntegralsNote that R 0R f(xei�=4) d(xei�=4) = �ei�=4 R R0 e�ix2 dx and����Z�R f(z) dz���� = �����Z �=40 f(Rei�)iRei� d������� R Z �=40 e�R2 os 2� d�= R2 Z �=20 e�R2 os� d�= R2 Z �=20 e�R2 sin � d� (� = �=2� �)< R2 �(1� e�R2)2R2 ! 0 as R!1:Taking the limit in (9.56), as R!1, we obtainZ 10 f(x) dx � ei�=4 Z 10 e�ix2 dx = 0:So, by (9.55), Z 10 e�ix2 dx = e�i�=4�p�2 � :(9.57)Separating the real and the imaginary parts in (9.57), we onlude thatZ 10 osx2 dx = Z 10 sinx2 dx = p�2p2 : �9.58. Remark. The above method helps us to prove a more generalresult by hoosing f(z) = e�z2 and letting C be the ontour shown inFigure 9.3. Then, proeeding as in Example 9.54, it is lear thatZ 10 f(x) dx = ei� Z 10 e�x2(os 2�+i sin 2�) dx:Using (9.55), Z 10 e�x2 os 2�e�ix2 sin 2� dx = p�e�i�2 :Equating the real and imaginary parts, we see thatZ 10 e�x2 os 2� os(x2 sin 2�) dx = p�2 os�and Z 10 e�x2 os 2� sin(x2 sin 2�) dx = p�2 sin�:



9.4 Singularities on the Real Axis 395Note that � = �=4 yields the Fresnel integrals. �9.59. Example. Finally, by integrating eaz= osh bz (�b < a < b)around the retangular ontour with verties at �R and �R + i�=b, weshow that I = Z 1�1 eaxosh bx dx = �b 1os(a�=2b) :As I = 1b R1�1 e(a=b)yosh y dy, it suÆes to prove the result for b = 1 and a 2(�1; 1). So, we let f(z) = eazosh z :Then, inside the retangular ontour with verties at �R and �R + i�, fhas only one pole, namely, at z = i�=2. Further,Res hf(z); �2 ii = eazsinh z ����z=�i=2 = �iea�i=2and therefore, by the residue theorem, we see thatZ R�R[f(x)� f(x+ i�)℄ dx+ Z �0 f(R+ iy)i dy+ Z 0� f(�R+ iy)i dy = 2�ea�i=2:(9.60)Consider the seond integral in (9.60):����Z �0 f(R+ iy)i dy���� � Z �0 jf(R+ iy)j dy = Z �0 eaRj osh(R+ iy)j dy:Sine j osh(R+ iy)j = ����e(R+iy) + e�(R+iy)2 ���� � eR � e�R2 � eR4and �1 < a < 1, the seond integral in (9.60) approahes zero as R!1.Similarly, we an show that the third integral in (9.60) approahes zeroas R ! 1. Thus, integrals along 1 and 2, i.e. the seond and thirdintegrals in (9.60), approah zero with inreasing R, so that (9.60) beomesZ 1�1[f(x)� f(x+ i�)℄ dx = (1 + eia�) Z 1�1 f(x) dx = 2�eia�=2;that is, Z 1�1 eaxoshx dx = 2�� eia�=21 + eia�� = �os(a�=2) : �



396 Evaluation of ertain Integrals9.5 Integrals Involving Branh PointsIntegrals featuring x� and logx an in some ases be evaluated using on-tour integration. We illustrate this in detail by onsidering a speial aseof the real integral Z 10 x��11 + x dx for 0 < � < 1:The proess used to evaluate suh integrals is often referred to as the inte-gral around branh point. Clearly, the integral is improper for two reasonsas it has a in�nite disontinuity at the origin and has an in�nite limit ofintegration. Moreover,x��11 + x s x��1 for x near 0, and x��11 + x s x��2 for x near 1so that the integral does onverge for 0 < � < 1. Observe that when x isreplaed by z, the integrand beomesf(z) = z��11 + zwhih is a multiple-valued funtion. The origin is a branh point of f(z).We onsider the branh of f(z) on the slit plane C n[0;1) so that thepositive real axis has been hosen as the branh ut for f(z) withz��1 = e(��1)(ln jzj+i arg z); 0 < arg z < 2�:This guarantees that f(z) is single-valued and we an integrate along anappropriate ontour. The funtion f has a simple pole at z = �1 withresidueRes [f(z);�1℄ = limz!�1(1 + z)f(z) = limz!�1 z��1 = e(��1)�i = �e�i�:Further the residue theorem is appliable only to single-valued funtionsand the origin annot be inside the simple losed ontour C along whihwe integrate. Now, we let R > 1 > � > 0 and set (see Figure 9.9)C = [�+ iÆ; R+ iÆ℄ [ �R [ [R� iÆ; �� iÆ℄ [ (��)so that the inside of C is a simply onneted domain not ontaining theorigin but ontaining the point z = �1. Thus, C onsists of(i) the horizontal line segment + from �+ iÆ to R+ iÆ(ii) the irular ar �R of radius R entered at the origin traed ounter-lokwise from R+ iÆ to R� iÆ(iii) the horizontal line segment � from R� iÆ to �� iÆ
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Figure 9.9: Contour for a multi-valued funtion.(iv) the irular ar (��) of radius � entered at the origin traed lok-wise from �� iÆ to �+ iÆ.The residue theorem yieldsI = ZC z��11 + z dz = �2�ie�i�:(9.61)The value of the integral is independent of Æ, R and �, but it depends onlyon the fat that z = �1 lies inside C. Therefore, it is natural to write (9.61)equivalently asI =  Z+ + Z�R + Z� + Z�! z��11 + z dz = �2�ie�i�:(9.62)Our method of approah will then be to let Æ ! 0, R ! 1, and � ! 0 toobtain the desired value of the given real integral. Note that, despite whatis shown in Figure 9.9, it is possible to regard the slit [0;1) as having anupper side of the positive real axis for whih arg z = 0 and a lower side ofthe positive real axis for whih arg z = 2�.For the integrals over �R and �, the standard ML-inequality gives����Z�R z��11 + z dz���� � Zjzj=R ���� z��11 + z ���� jdzj � R��1R� 12�R s R��1 ! 0as R!1 (sine 0 < � < 1), and����Z� z��11 + z dz���� � ���11� �2�� s �� ! 0 as �! 0:For the remaining two integrals, we proeed as follows. We haveZ+ z��11 + z dz = Z R� (x+ iÆ)��11 + (x+ iÆ) dx:



398 Evaluation of ertain IntegralsGiven � > 0, we an hoose Æ > 0 small enough so that�����Z+ z��11 + z dz � Z R� x��11 + x dx����� < �whih gives limÆ!0 Z+ z��11 + z dz = Z R� x��11 + x dx:As we integrate along � (as Æ ! 0),z��1 = e(��1)(ln jx+iÆj+i arg(x+iÆ)) ! e(��1)(lnx+i2�) = x��1e2�i�so thatlimÆ!0 Z� z��11 + z dz = e2�i� Z �R x��11 + x dx = �e2�i� Z R� x��11 + x dx:Therefore, limÆ!0 Z+ + Z�! z��11 + z dz = (1� e2�i�) Z R� x��11 + x dx:(9.63)Allowing R!1, �! 0 and using (9.62), we obtain(1� e2�i�) Z 10 x��11 + x dx = �2�ie�i�whih yields the required identityZ 10 x��11 + x dx = 2�ie��ie2��i � 1 = �sin�� :(9.64)This identity an also be extended to omplex values of the parameter �.To do this, we onsiderF (w) = Z 10 xw�11 + x dx and G(w) = �sin�w :Then, F and G are analyti on the strip D = fw : 0 < Rew < 1g and oin-ides on the interval (0; 1). In view of this observation and the uniquenesstheorem, (9.64) holds for all the omplex values of the parameter � with0 < Re� < 1
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)Figure 9.10: Square CN .9.6 Estimation of SumsConvergene tests for series enable us to verify whether a given series on-verges to a �nite limit, but they do not give the value of the sum. On theother hand, alulus of residues permits us to express ertain integrals asa �nite sum of the residues of the integrand. Therefore if an in�nite sum,suh as 1Xn=�1 f(n); and 1Xn=�1(�1)nf(n);an be reorganized as a sum of the residues of f , then the alulus ofresidues may help us to evaluate it, provided f is a meromorphi funtionof a fairly simple kind.Thus, for the �rst series, we must onstrut a funtion whose residuesare given by ff(n) : n 2 Zg: For this, let f be a funtion whih is analytiexept for a �nite number of poles a1; a2; : : : ; am (eah is not an integer).Suppose g is any funtion having simple poles at z = n (n 2 Z) suh thatRes [g(z);n℄ = 1 (for example, suh funtions are given by � ot�z and2�i(e2�iz � 1)�1): Then for eah n 2 Z (n 6= ak; k = 1; 2; : : : ;m), we haveRes [f(z)g(z);n℄ = f(n):Thus if CN is a losed ontour enlosing points z = 0;�1;�2; : : : ;�Nand ak (k = 1; 2; : : : ;m), we have (see Figure 9.10), by the Cauhy residuetheorem,ZCN f(z)g(z) dz = 2�iXRes [f(z)g(z);CN ℄ = 2�ifX + Y gwhere X = NXn=�Nn6=ak Res [f(z)g(z);n℄ = NXn=�Nn6=ak f(n)andY =XRes [f(z)g(z); at the poles of f in CN ℄ = mXk=1Res [f(z)g(z); ak℄:



400 Evaluation of ertain IntegralsLet us now desribe this idea by taking g(z) = � ot�z, � s�z and ineither ase show that limN !1 ZCN f(z)g(z) dz = 0:9.65. Theorem. Suppose f is meromorphi in C , with a �nite num-ber of poles a1; a2; : : : ; am. Suppose, moreover, that there exist two posi-tive numbers M and R suh that for jzj > Rjzrf(z)j �M for a �xed r > 1:(9.66)Then limN !1 NXn=�Nn6=ak f(n) = � mXk=1Res [� ot�zf(z); ak℄and limN !1 NXn=�Nn6=ak (�1)nf(n) = � mXk=1Res [� s�zf(z); ak℄:Proof. Equation (9.66) means that jf(n)j �Mn�r for jnj > R and sothe series P f(n) and P(�1)nf(n) are onvergent sine the n-th term isdominated by Mn�r for large n and r > 1. By hypothesis, for n 6= ak,k = 1; 2; : : : ;m;Res [� ot�zf(z);n℄ = f(n) and Res [� s�zf(z);n℄ = (�1)nf(n):Let CN be the square with verties at (N + 1=2)(�1 � i) enlosing allthe poles of f (see Figure 9.10), where N is a positive integer (take forinstane N > jakj for all k = 1; 2; : : : ;m). Therefore, by the Cauhyresidue theorem,12�i ZCN � ot�zf(z) dz = NXn=�Nn6=ak f(n) + mXk=1Res [� ot�zf(z); ak℄and12�i ZCN � s�zf(z) dz = NXn=�Nn6=�ak (�1)nf(n) + mXk=1Res [� s�zf(z); ak℄:The result will follow if we an show thatlimN!1 ZCN � ot�zf(z) dz = 0 = limN!1 ZCN � s�zf(z) dz:For this we require that there exist two onstants K1 and K2 suh thatj ot�zj < K1 and j s�zj < K2 for all N and for all z on CN . In fat, wewill now prove the following inequalities:



9.6 Estimation of Sums 401(i) j ot�zj < 2 for all z on CN(ii) j s�zj < 1 for all z on CN .First we set � = N + 1=2. If z is on the horizontal sides of CN , then wean write z = x � i�, where jxj � �. For z = x � i� on these horizontallines, we havej ot�zj = ����ei�z + e�i�zei�z � e�i�z ���� = ����ei�xe��� + e�i�xe���ei�xe��� � e�i�xe��� ���� :By the triangle inequality,jei�xe��� + e�i�xe���j � e��� + e��� = e�� + e���;jei�xe��� � e�i�xe���j � je��� � e���j = e�� � e���so that j ot�zj � e�� + e���e�� � e��� = oth(��) � oth(3�=2) < 2(sine the later expression is maximized at � = �=2, i.e. at N = 0).Similarly, if z lies on the vertial sides then z = �� + iy with jyj � �,and so for suh z, we havej ot�zj = j ot�(��+ iy)j= j os(���) osh�y � i sin(���) sinh �yjj sin(���) osh�y + i os(���) sinh �yj= j tanh�yj = j sinh�yjp1 + sinh2 �y < 1:Thus, j ot�zj < 2 on CN and this proves (i). To prove (ii), we �rst notethat j sin(x+ iy)j2 = sin2 x+sinh2 y:When z = x� i� lies on the horizontalsides of CN ,j s2 �zj = 1sin2 �x+ sinh2(��) � 1�1 + sinh2 �=2 < 1and when z = ��+ iy lies on the vertial sides of CN , we havej s2 �zj = 1sinh2 �y + sin2(N + 1=2)� � 11 + sinh2 �y � 1:This proves (ii). By the usual ML-estimate now it follows that����ZCN � ot�zf(z) dz���� � supz2CN j� ot�zf(z)j � length of CN� 2� MNr � f4(2N + 1)g



402 Evaluation of ertain Integrals(sine the length of CN is 4(2N + 1)), whih tends to zero as N ! 1.Similarly, we have limN!1 RCN � s�zf(z) dz = 0:9.67. Example. We easily get the following:(a) Res�ot�zz2 ; 0� = ��3 (see also Example 8.16(g)).(b) Res hs�zz2 ; 0i = �6 .() For the funtion f(z) = ot�z=(z + a)2 (a-real and not an integer),we diretly obtain thatRes [f(z);�a℄ = limz ! �a� ddz (ot�z)� = �� s2 �aand for k 2 Z we obtain thatRes [f(z); k℄ = limz!k(z � k)f(z) = os k�(k + a)2 limz!k z � ksin�z = 1�(k + a)2 :(d) When f(z) = s�z=(z2 + a2); a > 0; a diret alulation yieldsRes [f(z); ia℄ = � 12a sinh�a = Res [f(z);�ia℄and for k 2 Z,Res [f(z); k℄ = 1(k2 + a2) � 1� os�k� = (�1)k�(k2 + a2) :Thus, for a > 0, we haveRes � ot�zz2 + a2 ; ia� = �oth�a2a = Res � ot�zz2 + a2 ;�ia� :(e) Similarly if a is a non-zero real and not an integer, then, for thefuntion f(z) = 1=[(z + a)2 sin�z℄, we easily getRes [f(z);�a℄ = �� s�a ot�aand for k 2 Z, Res [f(z); k℄ = (�1)k=[�(k + a)2℄: �9.68. Example. The funtion f(z) = z�2m (m 2 N) satis�es theondition (9.66). Sine f is even and has a pole of order 2m at 0, Theorem9.65 gives 2 1Xn=1 1n2m +Res�� ot�zz2m ; 0� = 0



9.6 Estimation of Sums 403and 2 1Xn=1 (�1)nn2m +Res h� s�zz2m ; 0i = 0:For m = 1, we �nd that (see Example 9.67)Res�� ot�zz2 ; 0� = ��23 ; Res h� s�zz2 ; 0i = �26 ;and hene, we onlude that1Xn=1 1n2 = �26 and 1Xn=1 (�1)nn2 = ��212 :(9.69)More generally, sine �(z) = �z ot�z has a removable singularity at 0 andlimz!0�(0) 6= 0, we note thatRes�� ot�zz2m ; 0� = Res [�(z)z�2m�1; 0℄= 12�i Zjzj=r �(z)z2m+1 dz; r > 0 is small,= �(2m)(0)(2m)! :Proeeding as above and taking m = 2 we easily derive1Xn=1 1n4 = �490 :If we let f(z) = 1=(z2 + a2); then Theorem 9.65, for a =2 iZ, yields thatRes�� ot�zz2 + a2 ; ia�+Res �� ot�zz2 + a2 ;�ia�+ 1Xn=�1Res�� ot�zz2 + a2 ;n� = 0:Thus, by Example 9.67(d), we onlude that�� oth�aa + 1Xn=�1 1n2 + a2 = 0(9.70)whih gives2 1Xn=1 1n2 + a2 = �a oth�a� 1a2 ; i.e. 1Xn=1 1n2 + a2 = �a oth�a� 12a2 :Note that if a is real and positive then, by using uniform onvergene andmaking a ! 0, we get the �rst equation in (9.69). Di�erentiation of the



404 Evaluation of ertain Integralslast equality with respet to a immediately yields (sine the onvergeneis uniform on any ompat set disjoint from the set fia : a 2 Zg, term byterm di�erentiation is permitted),1Xn=1 1(n2 + a2)2 = 14a4 � �2a2sinh2 �a + �a oth�a� 2� :Further, from (9.70) we easily obtain that, for b =2 Z;1Xn=�1 1n2 � b2 = �ib oth(�(ib)) = �� ot b�b :Thus by grouping the terms with �n = m, m = 1; 2; : : : , we have� 1b2 + 12b 1Xm=1� 1m� b � 1m+ b� = � 1b2 + 2 1Xm=1 1m2 � b2 = �� ot�bb ;that is � ot�b = 1b + 1Xm=1 2bb2 �m2 :(9.71)Again, di�erentiation of the above result with respet to b, yields1Xm=�1 1(m� b)2 = �2 s2 �b (b =2 Z):(9.72)Similarly, by applying Theorem 9.65, we see that for a 6= 0;�i;�2i; : : :Res �� s�zz2 + a2 ; ia�+Res �� s�zz2 + a2 ;�ia�+ 1Xn=�1Res�� s�zz2 + a2 ;n� = 0:Thus, by Example 9.67(d), this implies�� s�aa + 1Xn=�1 (�1)nn2 + a2 = 0; i.e. 1Xn=�1 (�1)nn2 + a2 = �a s�a:We an also prove (9.72) by onsidering the funtion f(z) = (z�b)�2 (b notan integer). Indeed, from Theorem 9.65, it follows that (see also Example9.67()) Res�� ot�z(z � b)2 ; b�+ 1Xn=�1Res �� ot�z(z � b)2 ;n� = 0;that is 1Xn=�1 1(n� b)2 = �2 s2 �b; b =2 Z:



9.7 Exerises 405Taking b = �1=2 in the last identity, we �nd that�1Xn=�1 1(2n+ 1)2 + 1Xn=0 1(2n+ 1)2 = �24so that 1Xn=0 1(2n+ 1)2 = �28 :(9.73)From (9.73) we an easily dedue the �rst equation in (9.69), beause1Xn=1 1n2 = 1Xn=0 1(2n+ 1)2 + 1Xn=1 1(2n)2 = �28 + 14 1Xn=1 1n2 : �9.7 Exerises9.74. Prove the following integrals1. Z 2�0 d�a+ b os � = 2�pa2 � b2 (a; b 2 R; jbj < jaj).2. Z 2�0 d�(a+ b os2 �)2 = (2a+ b)�[a(a+ b)℄3=2 ; a; b > 0.3. Z 2�0 os2 3�1 + �2 � 2� os 2� d� = (1 + �2 � �)�1� � , �1 < � 6= 0 < 1.4. Z 2�0 os 2�1 + �2 � 2� os � d� = � (�4 � �2 + 1)��2(�2 � 1) , 0 < j�j < 1.5. Z 2�0 d�a+ b os � +  sin � = 2�pa2 � b2 � 2 ; a2 > b2 + 2.6. Z 2�0 d�(a+ b os � +  sin �)2 = 2�a3pa2 � b2 � 2 ; a2 > b2 + 2.9.75. If a and b are real with jaj > jbj and n is a positive integer, provethat I = Z 2�0 osn�a+ b os � d� = 2�b(a�pa2 � b2)npa2 � b2 :9.76. Show the following:1. I = Zjzj=3 3z + 1z(z + 2)(z � i)2 dz = 02. Zjzj=1 os(e�z)z2 dz = 2�i sin(1):



406 Evaluation of ertain Integrals9.77. Prove the following real integrals:1. Z 1�1 x2 � x+ 2x4 + 10x2 + 9 dx = 5�122. Z 1�1 dxa2 + 2b2x2 + 2x4 = �=(2p2)apb2 � a (a; b;  > 0 and b2 � a > 0)3. Z 10 osx(1 + x2)n+1 dx = �e�1n!22n+1 nXk=0 (2n� k)!2kk!(n� k)! , n 2 N.4. Z 10 dx(x2 +m2)(x2 + n2) = �2mn(m+ n) ; m; n > 0:5. Z 10 dx(x2 +m2)(x2 + n2)2 = �(m+ 2n)4mn3(m+ n)2 ; m; n > 0; m 6= n:6. Z 10 osax(x2 +m2)2 dx = �4m3 (1 + am)e�am; a;m > 0:7. Z 10 x sin ax(x2 +m2)2 dx = �ae�am4m ; a;m > 0:8. Z 10 dx(1 + x2)n = (2(n� 1))!22(n�1)((n� 1)!)2 � �2 ; n 2 N:9. Z 10 osax dx(x2 +m2)(x2 + n2) = �(me�an � ne�am)2(m2 � n2)mn ; m > n > 0; a > 0and hene dedue thatZ 10 x sin ax(x2 +m2)(x2 + n2) dx = �(e�an � e�am)2(m2 � n2) :9.78. Prove the following real integrals:1. Z 10 e�(1+i�)2t2 dt = � 11 + i�� p�2 for �1 � � � 1.2. Z 10 x�(1 + x)2 dx = ��sin�� for �1 < � 6= 0 < 1.3. Z 10 lnxx2 + a2 dx = � ln a2a for a > 0.



Chapter 10Analyti Continuation
Analyti ontinuation is an important idea beause it provides a method formaking the domain of de�nition of an analyti funtion as large as possible.Usually analyti funtions are de�ned by means of some mathematial ex-pressions suh as polynomials, in�nite series, integrals et. The domain ofde�nition of suh an analyti funtion is often restrited by the manner ofde�ning the funtion. For instane, the power series representation of suhanalyti funtions does not provide any diret information as to whetherwe ould have a funtion analyti in a domain larger than disk of onver-gene whih oinides with the given funtion. In Setion 10.1, we disussa general method (suh as the power series method). In Setion 10.2, wepresent a tehnique for arrying out the ontinuation proess and prove theMonodromy theorem. In Setion 10.3, we develop the Poisson integral for-mula for harmoni funtions on the open unit disk (and hene, for arbitrarydisks). We use the Poisson integral to solve the Dirihlet problem for theunit disk and, as a onsequene, we haraterize harmoni funtions by themean value property just as Morera's theorem haraterizes analyti fun-tions. Later in Setion 10.4, we use this haraterization to establish theSymmetry priniple (due to Shwarz) for harmoni funtions whih enablesone to �nd an analyti ontinuation expliitly under a speial situation.10.1 Diret Analyti ContinuationWhat do we mean by an \analyti ontinuation"? It is simply a proess ofextending the domain of analytiity to larger domains. For example, if 
 isa domain and fj 2 H(
) for j = 1; 2; suh that f1(z) = f2(z) for all pointsz in an open subset D � 
, then, by the uniqueness theorem (see Theorem4.106), one has f1 � f2 on 
. So, a natural question is the following: Is italways possible to have an extension? Clearly, not. For example,f(z) = 1z for z 2 D = C n f0g



408 Analyti Continuationdoes not have an extension to C . Similarly, if D = C n fx : x � 0g is theut plane andf1(z) = Log z; z 2 Df2(z) = z1=2 = e(1=2)Log z = jzj1=2ei(1=2)Arg z (�� < Arg z < �);f3(z) = �z1=2 = e(1=2)(Log z+2�i) = �e(1=2)Log z (�� < Arg z < �);then no extension from D to C is possible in eah ase. However, if theextension is possible then there are ways to arry out the proess of on-tinuation so that the given analyti funtion beomes analyti on a largerdomain. To make this point more preise, let us start by examining theanalyti ontinuation of the funtionf(z) =Xn�0 zn:(10.1)The series on the right de�ned by (10.1), as is well known, is onvergent forjzj < 1 and diverges for jzj � 1. On the other hand, we know that the seriesgiven by the formula (10.1) represents an analyti funtion for jzj < 1 andthe sum of the series (10.1) for jzj < 1 is 1=(1� z). However, the funtionF de�ned by the formula F (z) = 11� zis analyti for z 2 C1 nf1g = D (sine F (1=z) = (1 � z�1)�1 = z=(z � 1)is analyti at 0, F (z) is analyti at z =1). Nowf(z) = F (z) for z 2 � \Dand we all F an analyti ontinuation of f from � into the domain D, i.e.funtion f , given at �rst for jzj < 1, has been extended to the extendedomplex plane but for the point z = 1 at whih the funtion has a simplepole. Thus, it appears that F whih is analyti globally is represented bya power series only loally.Next we onsider another funtion g de�ned byg(z) = Z 10 exp[(z � 1)t℄ dt:(10.2)If Re z < 1, then the integral onverges andZ 10 exp[(z � 1)t℄ dt = e(z�1)tz � 1 ����10 = � 1z � 1 = 11� z :Thus the integral de�ned by (10.2) is onvergent in the half-plane H =fz : Re z < 1g and represents the same funtion 1=(1 � z) for z 2 H .Consequently, we have F (z) = g(z) for z 2 H \D and hene we all F the



10.1 Diret Analyti Continuation 409ontinuation of g into the half-plane Re z � 1 with the exeption of pointat z = 1. Similarly if D1 = C nfz = x : x � 1g, then �Log (1 � z) is theanalyti ontinuation of the power seriesPn�1 znn from � into D1.10.3. De�nition. Suppose that f and F are two funtions suh that(i) f is analyti on some domain D � C ,(ii) F is analyti in a domain D1 suh that D1 \ D 6= ; and D1 � D,suh that f(z) = F (z) for z 2 D \D1.Then we all F an analyti ontinuation or a holomorphi extension of ffrom D into D1. In other words, f is said to be analytially ontinuableinto D1.For a given analyti funtion f on D, if there exists an analyti on-tinuation F of f into D1, by the uniqueness theorem (see Theorem 3.75),then it is uniquely determined. Thus, we raise10.4. Problem. When does a power series represent a funtionwhih is analyti beyond the disk of onvergene of the original series?One way to provide an aÆrmative answer is by \power series method".Let us start our disussion on this method and see how one an use thepower series to go beyond the boundary of the disk of onvergene. Afundamental fat about a funtion f 2 H(
) is that for eah a 2 
, thereexists a sequene fangn�0 and a number ra 2 (0;1℄ suh thatf(z) = 1Xn=0 an(z � a)n for all z 2 �(a; ra):To extend f , we hoose a point b other than a in the disk of onvergene�(a; ra). Then jb� aj < ra and1Xn=0 an(z � a)n = 1Xn=0 an[z � b+ b� a℄n= 1Xn=0 an nXk=0�nk�(b� a)n�k(z � b)k!= 1Xk=0 1Xn=k an�nk�(b� a)n�k! (z � b)k= 1Xk=0Ak(z � b)k:



410 Analyti ContinuationThe interhange of the summation is justi�ed, sine1Xn=0 janj nXk=0�nk�jb� ajn�kjz � bjk = 1Xn=0 janj(jz � bj+ jb� aj)n <1whenever jz � bj + jb � aj < ra: Therefore, the series about b onvergesat least for jz � bj < ra � jb � aj. However, it may happen that the diskof onvergene �(b; rb) for this new series extends outside �(a; ra), i.e. itmay be possible that rb > ra � jb � aj. In this ase, the funtion an beanalytially ontinued to the union of these two disks. This proess may beontinued. For example, if f(z) = 11�z then (for z 2 � with a = 0; ra = 1)we have 11� z =Xn�0 zn; z 2 �:Take b = i. In order to get the expression for z 2 �(i; rb), we write11� z = 11� i� (z � i)= 1Xn=0 1(1� i)n+1 (z � i)n; jz � ij < j1� ij = p2;= 1Xn=0An(z � i)n; An = (1 + i)n+12n+1 ; jz � ij < rb = p2:Thus,P1n=0An(z� i)n is an analyti ontinuation ofP1n=0 zn in � to thedisk �(i;p2). Similarly, one an see thatP1n=0 12n+1 (z+1)n is an analytiontinuation of P1n=0 zn from � to the disk �(�1; 2).10.5. Remark. The onvergene or divergene of a power seriesf(z) =Pn�0 anzn at a point does not determine whether it an or annotbe extended beyond that point. For example, onsiderf1(z) =Xn�0 zn and f2(z) =Xn�1 znn2 :Reall that the �rst series diverges for jzj = 1 and its sum f1(z) = 1=(1�z)de�ned by this series is analyti in C nf1g. On the other hand, the seondseries onverges at all points on jzj = 1. However, in both ases, the seriesannot be ontinued analytially to a domain D with 1 2 D. Note thatf2(z) = � Z z0 log(1� t)t dt and f 002 (z)!1 as z ! 1� along reals. �10.6. Example. As another example of analyti ontinuation, weonsider the power series f0(z) =Xn�0(�1)nz2n:(10.7)
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−iFigure 10.1: Diret analyti ontinuation.Then (10.7) is absolutely onvergent for z 2 � and diverges outside theunit disk. Further, if we letF0(z) = 11 + z2 = i2 � 1i+ z + 1i� z� ;(10.8)then it is easy to see that F0 is analyti in the extended plane exept atz = �i and f0(z) = F0(z) for all z 2 �:We also note that F0(x) = 1=(1+x2)is well de�ned for all real values of x, whih is expandable as a real powerseries about any point on the real axis. Yet the power series (e.g. about 0)given by (1 + x2)�1 = 1� x2 + x4 � � � �has the unit interval as the interval of onvergene and so, this illustratesan interesting fat about Taylor's series on the real axis.Suppose we want to ontinue f0 on � to a disk about z0. Then, wewrite F0(z) = i2 " 1i+ z0  11 + z�z0i+z0 !+ 1i� z0  11� z�z0i�z0 !# :Thus if F1(z) = i2Xn�0� (�1)n(i+ z0)n+1 + 1(i� z0)n+1� (z � z0)n;(10.9)where R = minfji+z0j; ji�z0jg is the radius of onvergene for (10.9), thenF1(z) is analyti for jz� z0j < R. For instane if z0 = 1=2, then R = p5=2and hene, in this hoie, we see that (10.9) onverges for some values ofz for whih (10.7) diverges (see Figure 10.1). Therefore, (10.7) and (10.9)both represent parts of (10.8) whih enompasses all possible extensions.



412 Analyti ContinuationHowever, there is no extension whih is analyti at z = �i whih agreeswith F0 in a deleted neighborhood of �i, beause���� 11 + z2 ����!1 as z ! �i: �An analyti funtion f on a domain D will be alled a funtion element,written as (f;D).If (f1; D1) and (f2; D2) are two funtion elements suh that D1\D2 6= ;and f1(z) = f2(z) for all z 2 D1 \D2: Then (f;D1 [D2) is also a funtionelement, where f(z) = � f1(z) for z 2 D1f2(z) for z 2 D2:With the observation just made, (f1; D1) and (f2; D2) are alled a diretanalyti ontinuation of eah other, thereby de�ning an analyti funtionin D1 [D2. For instane, if f1(z) = a=(a� z) for z 2 C nfag; andf2(z) =Xn�0�za�n for z 2 D2 = fz : jzj < jajg;then (f1; C nfag) is a diret analyti ontinuation of (f2; D2).10.10. Example. De�nef0(z) = 12�i Zj�j=1 os �� � z d�for z 2 �: Then, by the Cauhy integral formula, we have f0(z) = os z foreah z 2 �: But, sine os z is analyti in C , (os z; C ) is a diret analytiontinuation of (f0;�). �In general, the following theorem holds:10.11. Theorem. Let C be a simple losed ontour with interior Dand g be an entire funtion. If, for n 2 N,f0(z) = n!2�i ZC g(�)(� � z)n+1 d�; z 2 D;then (g(n); C ) is a diret analyti ontinuation of (f0; D).Proof. By the Cauhy integral formula, f0(z) = g(n)(z) for all z 2 D:Sine g is entire, so is g(n); the result follows.10.12. De�nition. Let f be analyti on a domain D. If f annot beontinued analytially aross the boundary �D, then �D is alled natural



10.1 Diret Analyti Continuation 413boundary of f . A point z0 2 �D is said to be a regular point of f(z) if fan be ontinued analytially to a region D1 with z0 2 D1: Otherwise, f(z)is said to have a singular point at z0.For instane, onsider the power seriesf(z) =Xk�0 z2k :(10.13)A diret onsequene of the Root test is that the radius of onvergeneof (10.13) is 1 and so, f de�ned by (10.13) is analyti for jzj < 1. If jzj � 1,then limn!1 jz2n j 6= 0 and therefore, the series diverges for jzj � 1.Let � = e2�im=2n , m = 0; 1; : : : ; 2n � 1 (n 2 N), be the 2n-th root ofunity. If z = re2�im=2n 2 �, thenf(z) = n�1Xk=0 z2k + 1Xk=n z2kand so for r ! 1�, we havef(�r)j � 1Xk=n r2k � �����n�1Xk=0 z2k ����� � 1Xk=n r2k � n;and hene, for every 2n-th root of unity �, we have limr!1� jf(�r)j = 1.Therefore if D is a domain ontaining points of � and of its omplement,then D ontains the points � = e2�im=2n and so any funtion F in D whihoinides with f in D\� annot be ontinued analytially through �2n = 1for eah n 2 N. In other words any root of the equationz2 = 1; z4 = 1; : : : ; z2n = 1 (n 2 N)is a singular point of f and hene any ar, however small it may be, of�� ontains an in�nite number of singularities. Thus, f on � annot beontinued analytially aross the boundary �� of �. This observationshows that the unit irle jzj = 1 is a natural boundary for the power seriesde�ned by (10.13).Similarly if f(z) =Xk�0 zk!(10.14)then, f 2 H(�). Upon taking � = e2�im=n; m = 0; 1; 2; : : : ; n� 1; z = r�;(wherem=n is the irreduible fration), and hoosing r lose to 1 from belowalong a radius of the unit irle it an be seen that limr!1� jf(�r)j = 1.Hene, f is singular at every n-th root of unity for any n 2 N.Sine every point on jzj = 1 is a singular point, f annot be ontinuedanalytially through the n-th root of unity for any natural number n. In



414 Analyti Continuation
∂1(ζ ; Rζ )

y

ζ

O R x

∂1RFigure 10.2: Illustration for singularity on irle jzj = R.other words, there an be no ontinuation anywhere aross jzj = 1 andhene, jzj = 1 is a natural boundary for the power series de�ned by (10.14).10.15. Theorem. If f(z) =Pn�0 anzn has a radius of onvergeneR > 0, then f must have at least one singularity on jzj = R.Proof. Suppose, on the ontrary that f has no singularity on jzj = R.Then f must be analyti at all points of jzj = R. This, together withTheorem 3.71, implies that f is analyti for jzj � R. It follows, from thede�nition of analytiity at a point, that for eah � 2 ��R there exists someR� > 0 and a funtion f� whih is analyti in �(�;R�) (see Figure 10.2)and f = f� on �(�;R�) \�R:In this way, if �k and �l 2 ��R (k 6= l) with G = �(�k;R�k )\�(�l;R�l) 6= ;then we have two funtions f�k and f�l whih are respetively analyti in�(�k ;R�k) and �(�l;R�l) suh thatf = f�k = f�l on G \�R:Sine G is onneted and G\�R is an open subset of G, by the uniquenesstheorem, f�k = f�l onG. Sine j�j = R is ompat, by the Heine-Borel theo-rem, we may selet a �nite number of �(�1;R�1), �(�2;R�2); : : : ;�(�n;R�n)from the olletion f�(�;R�) : � 2 ��Rg suh that it overs the irle ��R.Let 
 = [nk=1�(�k;R�k ) and Æ = dist (��R;
):Then, as R�k > 0 for eah k, we have Æ > 0. Moreover,fz : R� Æ < jzj < R+ Æg � 
 and �R+Æ � D = �R [ 
:Then g de�ned byg(z) = � f(z) for jzj < Rf�k (z) for jz � �kj < R�k ; k = 1; 2; : : : ; n;
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Figure 10.3: Existene of a singularity on the irle of onvergene.is well de�ned, single-valued and analyti on D and has same power seriesrepresentation as f for jzj < R. Thus there exists an analyti funtion, say�, in �R+Æ , whih oinides with f on �R. But then by Taylor's Theoremwe have the power series expansion�(z) =Xn�0 bnzn for z 2 �R+Æ :Sine f = g on �R, by the uniqueness theorem (see Theorem 3.75), wehave an = bn for eah n. This shows that the radius of onvergene of f isR+ Æ, whih is a ontradition.10.16. Theorem. If an � 0 and f(z) =Pn�0 anzn has the radius ofonvergene 1, then (f;�) has no diret analyti ontinuation to a funtionelement (F;D) with 1 2 D.Proof. For eah z = rei� 2 � (0 < r < 1, � 2 [0; 2�)), we havef (k)(z) =Xn�k n(n� 1) � � � (n� (k � 1))anzn�k(10.17)so that (sine an � 0)jf (k)(rei�)j �Xn�k n(n� 1) � � � (n� (k � 1))anrn�k = f (k)(r):(10.18)We have to show that 1 is a singular point of f . Suppose, on the ontrary,that 1 is a regular point of f . Then, f an be analytially ontinued in aneighborhood of z = 1 and so there is a Æ with 0 < Æ < 1 (see Figure 10.3)for whih the Taylor's series expansion of f about Æ, namely the seriesXk�0 f (k)(Æ)k! (z � Æ)k;(10.19)



416 Analyti Continuationwould be onvergent for jz � Æj < r with Æ + r > 1. Now, by (10.18), we�nd that jf (k)(Æei�)jk! � f (k)(Æ)k! :From this, the Root test and the omparison test with (10.19), it followsthat the radius of onvergene of the Taylor series about Æei� is at least r.This observation implies that the Taylor seriesXk�0 f (k)(Æei�)k! (z � Æei�)kwould be onvergent in the disk jz � Æei�j < r for eah �, with Æ + r > 1.In other words, the Taylors seriesXk�0 f (k)(z0)k! (z � z0)kabout eah z0 with jz0j = Æ would have radius of onvergene � r > 1� Æ.Sine this ontradits Theorem 10.15, 1 must be a singular point of f . Thisompletes the proof.Notie that the last series is atually a rearrangement of Pn�0 anzn.Indeed, by (10.17),Xk�00�Xn�k�nk�anzn�k0 1A (z � z0)k = Xn�0 nXk=0�nk�anzn�k0 (z � z0)k= Xn�0 an(z � z0 + z0)n= Xn�0 anzn:10.20. Corollary. If an � 0 and f(z) =Pn�0 anzn has the radiusof onvergene R > 0, then z = R is a singularity of f(z).Finally, we state the following result whose proof may be found in stan-dard advaned texts (e.g. [24℄).10.21. Theorem. Let f(z) =Pk�0 akznk and lim infk!1 nk+1nk > 1.Then the irle of onvergene of the power series is the natural boundaryfor f .By this theorem, it is easy to see that the unit irle jzj = 1 is thenatural boundary forf1(z) = 1Xk=0 z3k3k and f2(z) = 1Xk=0 z2k2k2 :



10.2 Monodromy Theorem 41710.2 Monodromy TheoremWe start with a power series P1n=0 an(z � z0)n that represents a funtionf with �(z0;R) as its disk of onvergene. A funtion element of the type(f;�(z0;R)) is alled \an analyti germ of f at z0", or briey a \germ atz0". Obviously, an arbitrary funtion element (f;D) determines a germ ateah point of D.If  : [0; 1℄! C is a urve with z0 = (0) as its initial point and f(z) isa germ at z0, then we say that f(z) is ontinued analytially along  if forevery t 2 [0; 1℄ there is an (analyti) germ at (t), i.e. there is a onvergentpower series ft(z) = 1Xn=0 an(t)(z � (t))n(10.22)for z 2 Dt = fz : jz � (t)j < R(t)g, suh that(i) f0(z) is the power series representing the funtion f(z) at z0(ii) for eah t 2 [0; 1℄, Dt is the disk of onvergene with enter at (t)(iii) whenever s and t in [0; 1℄ are near to eah other, then fs(z) = ft(z)for all z 2 Ds \Dt, where Ds and Dt are the disks of onvergene offs and ft, respetively (Note that Ds \Dt 6= ;); i.e. when s is near t,(fs; Ds) and (ft; Dt) are diret analyti ontinuations of eah other.In this way, we obtain a one parameter family of germs fftg and referto f1(z) as the analyti ontinuation of f0(z) = f(z) along , where weregard ft(z) either as a series or as an analyti funtion de�ned near (t):Clearly, for s near t, the ondition (i) implies thatan(s) = f (n)t ((s))n!and so the Taylor oeÆients in (10.22) depends ontinuously on the param-eter t. Further, in the domain Dt of the germ ft, the radius of onvergenedepends ontinuously on the enter of the expansion of the power series.More preisely, we have10.23. Lemma. Let  : [0; 1℄ ! C be a urve and f be a germ atz0 = (0). Assume that f(z) an be ontinued analytially along  witha onvergent power series given by (10:22). Then either R(t) = 1 for allt 2 [0; 1℄, or jR(s)�R(t)j � j(s)� (t)j =: jzs � ztjwhenever s and t are suh that js� tj < Æ for some Æ > 0, i.e. the radius ofonvergene of ft is a ontinuous funtion of t.Proof. Fix t so thatft(z) = 1Xn=0 an(t)(z � zt)n; jz � ztj < R(t);



418 Analyti Continuationwhere R(t) is the radius of onvergene for the series about zt := (t) towhih ft extends analytially. Thus, ft does not extend analytially to alarger disk ontaining Dt. If we onsider the power series1Xn=0 an(s)(z � zs)nand hoose zs 2 Dt so that jzs� ztj < R(t), then the radius of onvergeneR(s) of this new series is at least R(t)� jzs � ztj. Consequently,R(s) � R(t)� jzs � ztj; i.e. R(t)�R(s) � jzs � ztj:Interhanging the roles of zs and zt, we see thatR(s)�R(t) � jzs � ztj:From the last two inequalities, we obtain that either R(t) = 1 for allt 2 [0; 1℄, or jR(s)�R(t)j � jzs � ztjholds for all s and t nearby. In partiular, the ontinuity of  implies thatR(t) is a ontinuous funtion of t.Suppose that f is analyti at z0, and  : [0; 1℄ ! C is a urve withz0 = (0) and z1 = (1), along whih f has an analyti ontinuation ft.Then the message of Lemma 10.23 is that the radius of onvergene R(t)of the power series about (t) that represents ft given by (10.22), is aontinuous funtion of t on [0; 1℄. In fat, R(t) is uniformly ontinuous on[0; 1℄. As R(t) > 0 for eah t 2 [0; 1℄, we onlude thatR = minfR(t) : t 2 [0; 1℄g > 0and so, R(t) � R for all t 2 [0; 1℄.10.24. Example. Consider the prinipal branh of log z, where itsTaylor series expansion about z = 1 is given byf(z) = Log z = 1Xn=1 (�1)n�1n (z � 1)n; z 2 D = fz : jz � 1j < 1g:Note that Log z is analyti in C nfz : Re z � 0; Im z = 0g. Let  : [0; 1℄!C be the urve given by (t) = e2�it, starting from z0 = (0) = 1. Thenf(z) atually has an analyti ontinuation along . In fat, for eah t 2[0; 1℄, there is a olletion of funtion elements fft; Dtg suh that(i) (f0; D0) = (f;D)(ii) for eah t 2 [0; 1℄, Dt is the disk of onvergene with enter (t)



10.2 Monodromy Theorem 419(iii) for eah t 2 [0; 1℄, and s near t, we have Ds\Dt 6= ; and fs(z) = ft(z)for all z 2 Ds \ Dt; i.e. (fs; Ds) is a diret analyti ontinuation of(ft; Dt).More preisely, we haveft(z) = 2�it+ 1Xn=1 (�1)n�1e�2�intn (z � e2�it)nvalid for z 2 Dt = fz : jz � e2�itj < 1g: In partiular, for t = 0, we havef0(z) = f(z) and for t = 1f1(z) = 2�i+ Log z for z 2 D = D1;whih is atually another branh of log z. Thus, we an see that Log z hasan analyti ontinuation along any urve in the puntured plane C nf0g.Note that ( Log z;D0) and ( Log z + 2�i;D0) are the initial and the �nalfuntion elements, respetively. �10.25. Theorem. Let (f;D0), D0 = �(z0;R(0)), be a germ at z0and  be a urve with initial point (0) = z0: Then any two analytiontinuations of f along  oinide in the following sense: if (ft; Dt) and(gt; Ut), t 2 [0; 1℄, are two analyti ontinuations of (f;D0) with (f1; D1)and (g1; U1) as the terminal elements of (ft; Dt) and (gt; Ut), respetively,then f1 = g1 on D1 \ U1. Here Dt = �((t);R(t)) and Ut = �((t); r(t))are the disks of de�nition for the germs (ft; Dt) and (gt; Ut), respetively.Proof. Set E = ft0 2 [0; 1℄ : ft = gt in Dt \ Ut for all t 2 [0; t0℄g. Bythe de�nition, f0 = g0 in D0 \U0 and so 0 2 E. Thus, E 6= ;. To ompletethe proof, we need to show that E is both open (in [0; 1℄) and losed. Thenthe onnetedness of [0; 1℄ will imply E = [0; 1℄.First we show that E is losed. Take an arbitrary t0 2 E and an in-reasing sequene ftng of elements of E suh that tn ! t0. Choose n solarge that jtn � t0j < minfR(t0); r(t0)g: Then(tn) 2 Dtn \ Utn \Dt0 \ Ut0 :Also sine tn 2 E, ftn = gtn on Dtn \ Utn . Therefore,ft0 = ftn = gtn = gt0 on Dtn \ Utn \Dt0 \ Ut0whih gives ft0 = gt0 on Dt0 \ Ut0 showing that t0 2 E: Hene E is losed.To see that E is open in [0; 1℄, we onsider the omplement E = [0; 1℄nEand show that E is losed. As before it suÆes to show that if ftng is aonvergent sequene in E with tn ! t0; then t0 2 E. To see this we notethat tn =2 E and so by de�nition of E, there exists sn 2 [0; 1℄ suh thattn � sn for all n and fsn 6� gsn on Dsn \ Usn :(10.26)



420 Analyti ContinuationPassing to the subsequene if neessary, we may assume that sn onvergesto some s0: Clearly t0 � s0: Now we easily see that t0 2 E: To on�rm thisit suÆes to show that fs0 6� gs0 on Ds0 \ Us0 :But if fs0 = gs0 on Ds0 \ Us0 , then the previous reasoning shows thatfsn = gsn on Dsn \ Usn for n large enough. This ontradits (10.26) andso E is open. We have that E = [0; 1℄.Theorem 10.25 asserts that the analyti ontinuation of a given funtionelement along a given urve is unique if it exists.10.27. Theorem. (Monodromy Theorem) Let z0 and z1 be twopoints in a domain D. Let f be an analyti germ at z0 suh that f an beontinued analytially along every urve in D that begins at z0 and endsat z1: Assume that(i) 0 and 1 are two urves with initial point z0 and terminal point z1.(ii) 0 and 1 are homotopi in D.Let f0 and f1 be the analyti ontinuations of f along 0 and 1, respe-tively. Then f0 and f1 agree in a neighborhood of z1, i.e. the analytiontinuations of f along 0 and 1 produe the same terminal germ at z1.Proof. Let the homotopy onneting 0 and 1 be F : [0; 1℄�[0; 1℄! C ,and �xes the end points of 0 and 1 (i.e. F (0; u) = z1 and F (1; u) = z2for all u 2 [0; 1℄). We denote by u, the intermediate path assoiated withF : u(t) = F (t; u), whereF (t; 0) = 0(t) and F (t; 1) = 1(t) for all t 2 [0; 1℄:Note that z0 = 0(0) = 1(0) and z1 = 0(1) = 1(1):Thus, for eah �xed u 2 [0; 1℄, let ft;u denote an analyti ontinuationof f(z) along the urve u = F (:; u): Then the onlusion of the theo-rem is that f1;0 = f1;1 (see Figure 10.4): Set E = fu 2 [0; 1℄ : f1;� =f1;0 for all � 2 [0; u℄g. Sine 0 2 E, E 6= ;: If we an show that E is bothopen (in [0; 1℄) and losed, then the onnetedness of E would imply thatE = [0; 1℄: In partiular, 1 2 E so that f1;1 = f1;0 whih ompletes theproof.To prove that E is open, take an arbitrary u0 2 E: Then, by Lemma10.23, there exists an R > 0 suh that for eah t 2 [0; 1℄, the radius ofonvergene of the power series expansion of fu0;t about u0(t) is at leastR: By the uniform ontinuity of F on the ompat set [0; 1℄� [0; 1℄; thereis a Æ > 0 suh that for every t 2 [0; 1℄,ju(t)� u0(t)j = jF (t; u)� F (t; u0)j < R = �
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Figure 10.4: Illustration for Monodromy theorem.
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Figure 10.5: Illustration for Monodromy theorem.whenever ju�u0j < Æ and u 2 [0; 1℄:We �x u1 2 (u0� Æ; u0+ Æ)\ [0; 1℄ andset T = ft 2 [0; 1℄ : ft;u1 = ft;u0 on Dt;u1 \Dt;u0gwhere Dt;u1 and Dt;u0 are the disks of de�nition of ft;u1 and ft;u0 , respe-tively. Sine 0 2 T , T 6= ;: By Theorem 10.25, T = [0; 1℄ and so (see Figure10.5) f1;u1 = f1;u0 = f1;0:Thus, every u1 2 (u0 � Æ; u0 + Æ) \ [0; 1℄ belongs to E. It follows that E isopen in [0; 1℄: To show that E is losed, let fung be a sequene in E suhthat un ! u0. A similar argument shows that there exists a Æ > 0 suhthat if u 2 (u0 � Æ; u0 + Æ) \ [0; 1℄ thenf1;u = f1;u0 on D1;u \D1;u0 :For large n, un 2 (u0 � Æ; u0 + Æ) \ [0; 1℄, so it follows thatf1;un = f1;u1 = f1;0:So u0 2 E and hene E is losed. We have that E = [0; 1℄:



422 Analyti Continuation10.3 Poisson Integral FormulaFor f 2 H(�), the Cauhy integral formula givesf(0) = 12�i Zj�j=� f(�)� d� = 12� Z 2�0 f(�ei�) d� (0 < � < 1):If, in addition, f is ontinuous on � then f(z) is uniformly ontinuous on� so that, allowing �! 1�,f(0) = 12� Z 2�0 f(ei�) d�:(10.28)That is, the value of f at the enter of the unit irle jzj = 1 is the meanvalue of f on jzj = 1. Our proedure for omputing f(a) for an arbitrarya 2 � will be as follows: onsider�a(z) = a� z1� az :We know that �a 2 H(�) and maps the unit irle jzj = 1 onto itself. Also,�a(a) = 0, �a(�) = �, ��1a = �a,�0a(z) = �� 1� jaj2(1� az)2� ; and �0a(z)�a(z) = 1� jaj2(1� az)(z � a) :Clearly, F = f Æ ��1a 2 H(�), F (0) = f(a) and F is ontinuous on � (as fis ontinuous on � and �a 2 H(�)). Therefore, by (10.28), we getf(a) = F (0) = 12� Z 2�0 F (eiT ) dT = 12� Z 2�0 f ���1a (eiT )� dT:(10.29)If we let  (T ) = f ���1a (eiT )�, then  (T ) is 2�-periodi and so, we mayhange the variable of integration by setting��1a (eiT ) = ei�; i.e. eiT = �a(ei�);so that ieiT dT = i�0a(ei�)ei� d�. Thus,dT = �0a(ei�)ei��a(ei�) d� = (1� jaj2)ei�(1� aei�)(ei� � a) d� = 1� jaj2jei� � aj2 d�:Substituting this into (10.29), we obtain10.30. Theorem. Suppose that f 2 H(�) and ontinuous on �.Then we have f(a) = 12� Z 2�0 f(ei�) 1� jaj2jei� � aj2 d� (a 2 �):



10.3 Poisson Integral Formula 423The fator appearing after f(ei�) under the integral sign has a speialnotation: with a = reit,Re �ei� + aei� � a� = 1� jaj2jei� � aj2 =: Pr(� � t)where Pr(�) is known as the Poisson kernel:Pr(�) = 1� r21� 2r os � + r2 :The extension of Theorem 10.30 for jzj < R follows.10.31. Theorem. Suppose that f 2 H(�R) and ontinuous on �R.Then we havef(a) = 12� Z 2�0 f(Rei�) R2 � jaj2jRei� � aj2 d� (a 2 �R):Proof. De�ne g(z) = f(Rz) with a = bR so that jaj < R () jbj < 1and f(a) = f(bR) = g(b). Further, g 2 H(�) and ontinuous on �. ByTheorem 10.30,g(b) = 12� Z 2�0 g(ei�) 1� jbj2jei� � bj2 d� (b 2 �)whih is equivalent to the desired formula.10.32. Example. If we let f(z) � 1 in Theorem 10.31, it followsthat 1 = 12� Zj�j=R R2 � jaj2jRei� � aj2 d� (� = Rei�; d� = i�d�; jaj < R);or equivalently (sine jd�j = ji�d�j = Rd�)Zj�j=R jd�jj� � aj2 = 2�RR2 � jaj2 if jaj < R:How does one handle the problem if jaj > R? (see Example 8.31). �Theorem 10.31 is alled the Poisson integral formula for analyti fun-tions in disks, rather than just the unit disk. The integral in Theorem10.31 is alled Poisson integral for analyti funtions in �R and an beequivalently written asf(z) = 12� Z 2�0 f(Rei�)Pr(R; � � t) d� (z = reit 2 �R);(10.33)



424 Analyti Continuationwhere Pr(R; �) is the Poisson kernel given byPr(R; �) = R2 � r2R2 � 2Rr os � + r2 :Set f(z) = f(reit) = u(z) + iv(z) := u(r; t) + iv(r; t): Sine Pr(R; � � t)is real-valued, we may equate the real parts of both sides of (10.33) andobtain the Poisson integral formula for harmoni funtions in the irulardomain jzj < R and ontinuous on jzj � R. The Poisson integral formulathen reads (with z = reit 2 �R)u(z) = 12� Z 2�0 u(Rei�) R2 � jzj2jRei� � zj2 d� = 12� Z 2�0 u(Rei�)Pr(R; � � t) d�and a similar expression holds for v(z). Equivalently, we may writeu(r; t) = 12� Z 2�0 u(R; �)Pr(R; � � t) d� (0 � r < R):This formula implies that if u is harmoni in �R and ontinuous on �R,then its value u(z) (= u(r; t); r < R) at an interior point z = reit isompletely determined by its boundary values u(Rei�) (= u(R; �)) on theirle j�j = R. Several extensions of this formula are immediate. Forexample if u(z) is harmoni in �(z0;R) and ontinuous on �(z0;R), thenfor eah z 2 �(z0;R) one hasu(z) = 12� Z 2�0 u(z0 +Rei�) R2 � jz � z0j2jRei� � (z � z0)j2 d�:It means that the value of a harmoni funtion at a point z an be expressedas 1=2� times the integration of the Poisson kernel with the values of theharmoni funtion on the boundary of the disk.10.34. Theorem. Suppose that f = u+ iv 2 H(�R) and is ontin-uous on �R. Then for eah z 2 �R we havef(z) = 12� Z 2�0 u(Rei�)Rei� + zRei� � z d� + iv(0):Proof. Set � = Rei�, z = reit (r < R) so that d� = i� d�, and letg(z) = 12� Z 2�0 u(�)� + z� � z d� = 12�i Zj�j=R u(�)� + z� � z d�� :It is easy to see that g(z) is analyti withg0(z) = limh!0 g(z + h)� g(z)h = 12� Z 2�0 u(�) 2�(� � z)2 d�:



10.3 Poisson Integral Formula 425Indeed, as (�+ z)=(�� z) = 1+2P1n=1(z=�)n for jzj < j�j, we an performthe term by term integration by the uniform onvergene of the series (withz 2 �R �xed) and obtaing(z) = b0 + 2 1Xn=1 bnzn; bn = 12�i Zj�j=R u(�)�n+1 d�:Now, with M = supj�j=R ju(�)j;jbnj � 12� Zj�j=R ju(�)jj�jn+1 jd�j � MRnand so, lim supn!1 j2bnj1=n � 1R limn!1(2M)1=n = 1Rshowing that g is analyti in �R. Now, sineRe g(z) = Re � 12� Z 2�0 u(�)� + z� � z d�� = 12� Z 2�0 u(�)Re � + z� � z d�;a omparison (see Equation (10.33)) shows that f and g have the same realpartsRe f(z) = Re g(z) = 12� Z 2�0 u(Rei�) R2 � r2R2 � 2rR os(� � t) + r2 d�:Hene, an appliation of the Cauhy-Riemann equations givesf(z) = g(z) + i�; or f(z) = 12� Z 2�0 u(Rei�)Rei� + zRei� � z d� + i�:Setting z = 0, we have � = v(0) (sine, by the Mean value theorem, theintegral on the right equals u(0)), and the result follows.Equating the imaginary part on both sides of the last integral showsthat v(reit) = 12� Z 2�0 u(Rei�) 2rR sin(t� �)R2 � 2rR os(t� �) + r2 d� + v(0)or equivalentlyv(z) = 12� Z 2�0 u(�)2Im (z�)j� � zj2 d� + v(0) (� = Rei�; jzj < R)whih is of ourse another representation for harmoni funtions. The quan-tity Q(�; z) de�ned by Q(�; z) = 2Im (z�)j� � zj2



426 Analyti Continuationis known as the onjugate Poisson kernel.10.35. Example. . We wish to provide an alternate proof of Exerise6.89. For jzj = R=2 < R, where R is large enough, Theorem 10.34 givesthat f(z) = 12� Zj�j=RRe f(�)� � + z� � z� d�i� + iIm f(0)and therefore,jf(z)j � 12� (�R�)�R+R=2R�R=2� 2� + jIm f(0)j = 3�R� + jIm f(0)jso that there exist onstants A and B suh that jf(z)j � Ajzj� + B for alljzj suÆiently large. The desired onlusion follows from the generalizedLiouville's theorem (see Theorem 6.60). �We have shown that a harmoni funtion on � whih is ontinuous on� has the property that its values at any point in � an be ahieved byits values on the boundary ��. We wish to work the other way around.First we remark that, the Cauhy integral formula not only reproduesanalyti funtions but also reates them. Indeed, let us suppose that f(�)is ontinuous on j�j = 1. Then there exists an M > 0 suh that jf(�)j �Mon j�j = 1. Now de�ne g(z) on � byg(z) = 12� Z 2�0 �f(�)� � z d� and let bn = 12�i Zj�j=1 f(�)�n+1 d�:Theng(z) = 12�i Zj�j=1 f(�)� � z d� = 12�i Zj�j=1 1Xn=0 f(�)�n+1! zn d� = 1Xn=0 bnzn:Note that jbnj �M and lim supn!1 jbnj1=n � limn!1M1=n = 1. So, g hasa power series representation with radius of onvergene not smaller than1 and therefore, g is analyti for z 2 �. Also, the fat that g is analytiin � is a onsequene of Morera's theorem, sine 1=(� � z) (jzj < 1) is ananalyti funtion of z for eah � with j�j = 1 and g is ontinuous on j�j = 1.This observation shows that the Cauhy integral formula reates analytifuntions. But, in general, there exists no diret onnetion between f andg. Is it then possible to reover f as the boundary limit of g? The funtionf(�) = � = 1� for j�j = 1 says `no' as g(z) = 0. On the other hand, forharmoni funtions the situation di�ers. The Poisson integral formula bothreprodues and reates harmoni funtions. Suppose that f(�) := f(ei�) isa real-valued ontinuous funtion of �, � 2 (0; 2�℄ and de�ne a new funtion



10.3 Poisson Integral Formula 427u(z) aording to the Poisson integral formula for a harmoni funtion on�, namely, u(z) = 12� Z 2�0 f(ei�) 1� jzj2jei� � zj2 d� if jzj < 1:What property will the funtion u have? In ontrast to the analyti ase,there is a simple onnetion between f and the reated funtion u, whihwe shall soon see is harmoni in �. This onnetion is preisely given bythe next theorem whih is often referred to as the \solution to the Dirihletproblem for disks." What is a Dirihlet problem? Given a bounded domainD and a ontinuous (more generally pieewise ontinuous) funtion f :�D ! R, the simplest version of the Dirihlet problem is to �nd a funtionu : D ! R suh that u is harmoni on D, ontinuous on D, and equalto f on �D. An important onsequene of the maximum and minimumpriniples is that the solution u to the Dirihlet problem is unique. Indeed,if U is another suh funtion, then u�U is harmoni on D, ontinuous onD, and vanishes on the boundary �D, but it takes its maximum and itsminimum on the boundary, so it is identially zero, i.e. u � U on D. Ourspeial emphasize here on the Dirihlet problem is when D is the unit disk�. 10.36. Theorem. (Solution to a Dirihlet Problem) Suppose thatf : ��! R is ontinuous. For 0 � r < 1, let z = reit andu(reit) = 12� Z 2�0 f(ei�)Pr(� � t) d� = 12� Z 2�0 f(ei�)Re �ei� + zei� � z� d�:Then u is the unique funtion that is ontinuous on � suh that(a) u(z) is harmoni for jzj < 1 and u(z) = f(z) for jzj = 1(b) u(reit)! f(eit) uniformly as r ! 1�.Proof. Set � = ei�, z = reit (r < 1) so that d� = i� d�, and letg(z) = 12� Z 2�0 f(ei�)ei� + zei� � z d�:Then (for example as in the proof of Theorem 10.34), g is analyti in �and so u(z) = Re g(z), being the real part of an analyti funtion in �, isharmoni in �. For a proof of (b), we shall use only the following basiproperties of the Poisson kernel Pr(�):Pr(�) = 1� r21� 2r os � + r2 :(i) Pr(�) > 0 for � 2 R and 0 � r < 1. Moreover, Pr(�) = Pr(��) andPr(�) is a 2�-periodi funtion.



428 Analyti Continuation(ii) The Poisson integral in Theorem 10.30 for the onstant funtion 1shows that 12� Z 2�0 Pr(�) d� = 1 for 0 � r < 1.(iii) If 0 < Æ < �, then limr!1� Pr(�) = 0 uniformly in � for Æ � j�j � �.This property follows from the following observation. For eah �xedÆ, 0 < Æ < �, we see thatP 0r(�) = � 2r(1� r2) sin �(1� 2r os � + r2)2 �� 0 for Æ � � � �� 0 for �� � � � �Æand so Pr(�) is inreasing for �� � � � �Æ and dereasing for Æ �� � �. This implies that0 < Pr(�) � Pr(Æ) = 1� r21� 2r os Æ + r2 whenever Æ � j�j � �and the assertion follows.Next, aording to (ii), we an writeu(reit)� f(eit) = 12� Z 2�0 Pr(� � t)[f(ei�)� f(eit)℄ d�= 12� Z 2��t�t Pr(�)[f(ei(�+t))� f(eit)℄ d�= 12� Z ��� Pr(�)[f(ei(�+t))� f(eit)℄ d�;beause the integrand is a periodi funtion of period 2�. It remains toshow that limz2�z!eit u(z) = limr!1� u(reit) = f(eit):Sine f is ontinuous on [��; �℄, it is bounded. So, we may let M =max� jf(ei�)j. By the uniform ontinuity of f , given � > 0 there exists aÆ > 0 suh thatjf(ei(�+t))� f(eit)j < � for all t, whenever j�j < Æ.Now, hoose Æ > 0 suÆiently small to satisfy this ondition and split theinterval of integration asf� : j�j � �g = I1 [ I2 := f� : 0 � j�j � Æg [ f� : Æ � j�j � �gso thatu(reit)� f(eit) = 12� Z Æ�Æ Pr(�)[f(ei(�+t))� f(eit)℄ d�+ 12� ZÆ�j�j�� Pr(�)[f(ei(�+t))� f(eit)℄ d�=: J1 + J2:



10.3 Poisson Integral Formula 429On the set I1,jJ1j � 12� ZI1 �Pr(�) d� � �2� Z 2�0 Pr(�) d� = �:On the set I2, we have Æ � j�j � � and Pr(�) � Pr(Æ) so thatjJ2j � 2M2� Pr(Æ)2� = 2MPr(Æ):We get the estimate ju(reit)� f(eit)j � 2MPr(Æ) + �and, as r is suÆiently lose to 1,lim supr!1� ju(reit)� f(eit)j � �:Hene, limr!1� ju(reit) � f(eit)j = 0 and the uniqueness is a onsequeneof the maximum modulus priniple for harmoni funtions.10.37. Corollary. Suppose that a 2 C , R > 0 and h : ��(a;R)!R is ontinuous. Then there is a unique ontinuous funtion w(z) on�(a;R)suh that w(z) = h(z) on ��(a;R) and w(z) is harmoni on �(a;R).Proof. Consider f(ei�) = h(a + Rei�). By the previous theorem, thefuntion w with the desired properties is given by w(z) = u((z � a)=R),where u is de�ned as in Theorem 10.36.The proof of a general ase for pieewise ontinuous funtions f usessimilar ideas but is slightly tehnial whih we avoid in this text. So westate the result without proof.10.38. Theorem. Theorem 10:36 ontinues to hold under a weakerondition that f : ��! R is a pieewise ontinuous (i.e. ontinuous exeptfor �nitely many points) bounded funtion.As an appliation of Poisson's integral formula, we prove10.39. Theorem. (Harnak's Inequality for the unit disk) Letu = u(z) be harmoni on � and ontinuous on �. If u(ei�) � 0 for all �,then for z = rei� 2 � we haveu(0)1� r1 + r � u(rei�) � u(0)1 + r1� r (r < 1):The estimate is sharp.



430 Analyti ContinuationProof. Sine u(ei�) � 0, by the Poisson integral formula for u, it followsthat u(z) � 0 for all z 2 �. The proof depends on the estimate1� r1 + r � 1� r21� 2r os(� � t) + r2 = Pr(� � t) � 1 + r1� r for 0 � r < 1:Multiplying this by 12�u(ei�) (� 0) and integrating, we obtain1� r1 + r � 12� Z 2�0 u(ei�) d�� � u(rei�) � 1 + r1� r � 12� Z 2�0 u(ei�) d�� :The desired inequality is a onsequene of the mean value property, namely,12� R 2�0 u(ei�) d� = u(0). The above inequalities beome an equality for thefuntion u(z) = Re ((1 + z)=(1� z)) at z = �r.A suitable saling and translation of Harnak's inequality immediatelyimplies the following:10.40. Corollary. Let u = u(z) be harmoni on �(a;R) and on-tinuous on �(a;R). If u(a + Rei�) � 0 for all �, then for z 2 �(a;R) wehave u(a)R� rR+ r � u(z) � u(a)R+ rR� r (0 � r < R):The estimates in this orollary is referred to as Harnak's inequality forarbitrary disks. In partiular, if u is harmoni and non-negative on �(a;R)then u(z) 2 [u(a)=3; 3u(a)℄ on �(a;R=2).We know that if u is a harmoni funtion in a domain D and �(a; r) isontained in D, then u satis�es the Mean value propertyu(a) = 12� Z 2�0 u(a+ rei�) d�:(10.41)Conversely, it is easy to show that a ontinuous funtion with the Meanvalue property is neessarily harmoni.10.42. Theorem. Let u : D ! R be ontinuous on a domain D suhthat for eah point a 2 D, (10:41) holds whenever �(a; r) � D. Then u(z)is harmoni on D.Proof. The funtion u is obviously ontinuous on �(a; r). Also, if�(a; r) � D, by Corollary 10.37, there exists a funtion U(z) harmoni on�(a; r), ontinuous on �(a; r), and equal to u(z) on the irle ��(a; r).Sine U(z) � u(z) is ontinuous on �(a; r) and satis�es the Mean valueproperty, by Theorem 6.16, U(z) � u(z) attains both its maximum andminimum on the boundary ��(a; r). As U(z) � u(z) � 0 on jz � aj =



10.3 Poisson Integral Formula 431r, it follows that U(z) � u(z) on �(a; r). Hene, u(z) is harmoni in aneighborhood of a. Sine a is arbitrary, the result follows.10.43. Corollary. A ontinuous funtion in a domainD is harmoniin D i� it satis�es the Mean value property at eah point of D.As an appliation, we prove the following analog to Weierstrass' theoremfor sequenes (see Theorem 4.84) of harmoni funtions.10.44. Theorem. If fun(z)g is a sequene of real-valued harmonifuntions that onverges uniformly on all ompat subsets of a domain Dto a funtion u : D ! R, then u(z) is harmoni in D.Proof. Sine the limit of a uniformly onvergent sequene of ontinuousfuntions is ontinuous (see Theorem 2.57), u(z) is ontinuous on D. Also,if �(a; r) � D, then un(a) = 12� Z 2�0 un(a+ rei�) d�for eah n. By the uniform onvergene (see the proof of Theorem 4.84),u(a) = limn!1un(a) = limn!1 12� Z 2�0 un(a+ rei�) d� = 12� Z 2�0 u(a+ rei�) d�:So, by Theorem 10.42, u is harmoni on �(a; r) (and hene on D).The Harnak inequality allows us to draw some striking onlusion, forexample, the following `onvergene theorem' for sequenes of harmonifuntions.10.45. Theorem. (Harnak's Priniple/Theorem) Let fun(z)gn�1be an inreasing (i.e. un+1 � un on D and for eah n � 1) sequene ofharmoni funtions de�ned on a domain D. Then either un(z) ! +1 foreah z 2 D (and uniformly on ompat subsets of D) or un(z) onverges toa harmoni funtion u on D, uniformly on ompat subsets.Proof. We may assume that u1(z) � 0 (for otherwise, replae un(z)by the nonnegative sequene fun(z)� u1(z)g). By the monotoniity prop-erty, for eah z in D either the pointwise limit limn!1 un(z) exists orlimn!1 un(z) = +1. The funtion u(z) an be de�ned by this limit as amap u : D ! R. De�neA = fz 2 D : un(z)!1g and B = fz 2 D : fun(z)g onvergesg:Given a 2 D, hoose a disk �(a;R) � D. Then, for all z 2 �(a;R=2),Harnak's inequality gives(1=3)un(a) � un(z) � 3un(a):(10.46)



432 Analyti ContinuationIf a is suh that un(a)!1, then the left hand inequality of (10.46) showsthat un(z)!1 for jz � aj � R=2, and that the onvergene is uniform inthis disk.If a is suh that fun(a)g onverges to a �nite limit, then the right handinequality shows that fun(z)g onverges for jz � aj � R=2. Hene, A andB are both open sets with A [B = D. Sine D is onneted, either A = ;or B = ;. If A = ;, then B = D, and so fun(z)g onverges for all z in D.Next we must show that fun(z)g onverges uniformly on ompat subsetsof D. By using the right hand part of Harnak's inequality (10.46), we �ndthat un+p(z)� un(z) � 3[un+p(a)� un(a)℄(10.47)for jz�aj � R=2 and p = 1; 2; : : : . By the Cauhy riterion, this inequalityin turn implies that the onvergene at a point a implies the uniform on-vergene in a neighborhood of a. Sine every ompat subset of D an beovered by �nitely many suh neighborhoods, fun(z)g is uniformly Cauhyand so it onverges uniformly on every ompat subset of D to u(z). Fi-nally, it follows from Theorem 10.44 that the limit funtion is harmonithroughout D.The funtion un(z) = x + n, or y + n2, eah of whih is harmoni inevery domain, satis�es the onditions of the theorem.10.4 Analyti Continuation via ReetionA domain 
 is said to be symmetri with respet to the origin if for everyz 2 
, the point �z 2 
. For example, disks entered at the origin. Now,we onsider the following two sets of funtionsF = f1+ z2; os z; sin z; exp zg; and G = fi+ z2; os(iz); i sin z; i exp zg:For eah f 2 F , we have f(z) = f(z) and f(x) 2 R for all x 2 R. Forexample, if we allow the three steps for os z we �nd thatz 7! z 7! eiz + e�iz2 7! e�iz + eiz2 = os z:On the other hand, for eah g 2 G, we haveg(z) 6= g(z); and g(x) =2 R if x 2 R:Note that the domain of analytiity for eah f 2 F and eah g 2 G is thewhole omplex plane. Further, the reetion of z with respet to the realaxis of z-plane does not orrespond to the reetion of g(z) with respet tothe real axis of the w-plane. We are interested in the following problem:10.48. Problem. Under what onditions, does an analyti funtionf on some domain 
 possess the following property: f(z) = f(z), i.e. the



10.4 Analyti Continuation via Reetion 433reetion of z with respet to the real axis of z-plane equals the reetionof w = f(z) with respet to the real axis of the w-plane.Our �rst result atually desribes how it is possible to use two reetionsto onstrut a new analyti funtion from an old one.10.49. Theorem. Let 
 be a domain whih is symmetri with respetto the real axis. Then, f(z) 2 H(
) i� f(z) 2 H(
).Proof. De�ne f(z) = u(x; y) + iv(x; y) and F (z) = f(z). Then,F (z) = u(x;�y)� iv(x;�y) =: U(x; y) + iV (x; y):Note that u and v belong to C2(
) i� U and V belong to C2(
). Further,Ux(x; y) = ux(x;�y); Uy(x; y) = �uy(x;�y);Vy(x; y) = vy(x;�y); Vx(x; y) = �vx(x;�y);whih, in partiular, give that u and v satisfy the C-R equations on 
 i�U and V satisfy the same property on 
. Now, the desired onlusion isa onsequene of Theorem 3.26 and the fat that the real and imaginaryparts of analyti funtions in 
 are C1-funtions on 
.Theorem 10.49 leads to a general symmetri priniple for analyti fun-tions.10.50. Theorem. Let 
 be a domain suh that it ontains a segment(a; b) of the real axis, and is symmetri with respet to the real axis. Sup-pose that f(z) 2 H(
). Then, f(z) is real on (a; b) i� f(z) = f(z) for allz 2 
.Proof. Suppose that f(z) is real on (a; b). Consider the di�ereneh(z) = f(z)� f(z):Then, by Theorem 10.49, h 2 H(
). Moreover, h(z) = 0 for all z 2 (a; b).By the uniqueness theorem, h(z) � 0 on 
.Conversely, if f(z) = u(x; y) + iv(x; y) and f(z) = f(z) on 
 then itfollows that u(x; y) + iv(x; y) = u(x;�y)� iv(x;�y):In partiular, when z = x+ iy 2 
 is real, this equation givesu(x; 0) + iv(x; 0) = u(x; 0)� iv(x; 0)so that v(x; 0) = 0. Therefore, f(z) is real when z is real.
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Figure 10.6: Reetion Priniple10.51. Lemma. (Reetion Priniple for Harmoni Funtions)Let 
 be a domain whih is symmetri with respet to the real axis andde�ne 
+, 
�, and � as the intersetion of 
 with the upper half-planefz : Im z > 0g, the lower half-plane fz : Im z < 0g, and the real axis,respetively (see Figure 10.6). Let v(z) be a real-valued ontinuous funtionon 
+ [ �, harmoni on 
+, and zero on �. Then v admits a uniqueharmoni extension V on all of 
 and the extension satis�es the symmetryrelation V (z) = �V (z) for z 2 
:(10.52)Proof. First we note that if suh an extension exists it is ertainlyunique, so it suÆes to show that the stated extension de�nes a harmonifuntion in 
. Seondly, we note that 
 is a disjoint union of 
+, 
� and�. We extend v(z) to 
 by settingV (z) = 8<: v(z) for z 2 
+0 for z 2 ��v(z) for z 2 
�:Then, V is ontinuous on 
, harmoni on 
+ [
�, and (10.52) holds. Welaim that V has the mean value property. Fix a 2 
. If a 2 
+ or 
�,then V (z) has the mean value property for small disks entered at a, sineV (z) is harmoni near a. For a 2 �, we haveZ ��� V (a+ rei�) d� = � Z 0�� v(a+ re�i�) d� + Z �0 v(a+ rei�) d�= � Z �0 v(a+ rei�) d� + Z �0 v(a+ rei�) d� = 0Thus, V satis�es the mean value property on 
 and hene, it is harmonion 
.Lemma 10.51 not only provides a method of extending a harmoni fun-tion from a given open set to a larger open set but also gives a proof of astronger Shwarz's reetion/symmetry priniple for analyti funtions.



10.5 Exerises 43510.53. Theorem. (Shwarz's Reetion Priniple for AnalytiFuntions) Let 
, 
+, 
�, and � be as above. Suppose that f 2 H(
+),ontinuous on � and f(z) is real on �. Then f extends to be analyti on 
and the extension satis�es the symmetry relation f(z) = f(z), z 2 D.Proof. Set f(z) = u(z)+ iv(z), z 2 
+. By the previous result appliedto v(z) = Im f(z), v(z) extends to be harmoni on 
 with v(z) = �v(z),z 2 
. Again, we �x a 2 � and let �(a; Æ) be a disk that is ontained in
. Sine v(z) is harmoni in this disk, whih is simply onneted, it hasa harmoni onjugate u1 in �(a; Æ) suh that f1 = u1 + iv is analyti in�(a; Æ). Thus, Im (f(z)� f1(z)) = 0 on 
+ \�(a; Æ):We onlude that f(z) = f1(z)+ ,  a real onstant, on 
+ \�(a; Æ). Butf1 is analyti in 
+ \ �(a; Æ) and therefore, f is also analyti in �(a; Æ).Consequently, the original funtion f(z) extends to be analyti in �(a; Æ).By Theorem 10.49, f(z) is also analyti in �(a; Æ). Moreover, f(z) = f(z)on the interval (a�Æ; a+Æ), and hene on �(a; Æ) by the uniqueness theorem.Extend f(z) to 
� by setting f(z) = f(z) for z 2 
�. Then the extendedfuntion f is analyti on 
� and oinides with the analyti ontinuation off(z) aross � from 
+. Hene, f is analyti on 
 and satis�es f(z) = f(z)on 
.We observe that the line of reetion ould be an arbitrary line, notjust the real axis. Thus if 
 is a domain symmetri with respet to a lineand f is de�ned and analyti on one side of the line, and real on the line,then f an be extended to be analyti on the whole domain. The proof anbe obtained by translating and rotating the domain to the standard ase.Similarly, we an also translate and rotate the image, so it is not neessarythat f(z) be real on the symmetry line, it is suÆient that it maps the lineinto some other line.10.5 Exerises10.54. Determine whether eah of the following statements is trueor false. Justify your answer with a proof or a ounterexample.(a) If f is analyti for jzj < R and satis�es the relation f(2z) = 2f(z)f 0(z)for jzj < R=2, then f an be ontinued analytially into the wholeplane.(b) For 0 6= � 2 R, the funtions de�ned by the series1Xn=0(�z)n and 1Xn=0(�1)n (1� �)nzn(1� z)n+1are analyti ontinuations of eah other.



436 Analyti Continuation() The series 1Xn=1 znn and i� + 1Xn=1(�1)n (z � 2)nnhave no ommon region of onvergene, but they represent the samefuntion �Log (1� z) in their respetive disks of onvergene.(d) The funtion f de�ned by the series P1n=1(�1)n�1zn=n on �, andthe funtion F de�ned by the seriesln 2� 1� z2 � (1� z)22 � 22 � (1� z)33 � 23 � � � �on �(1; 2) are analyti ontinuations of eah other.(e) The imaginary axis is a natural boundary for Pn�0 exp(�n!z):(f) The unit irle jzj = 1 is the natural boundary for the seriesP1k=0 z3k .(g) If f(z) = Pn�0 anzn is analyti for jzj � R, then R annot be theradius of onvergene of this series de�ned by the sum f(z).(h) The funtion element (1=(z(1 + z)); C nf0; 1g) is the analyti ontin-uation off(z) = 1Xn=0(1� z)n � 1Xn=0 (1� z)n2n+1 ; for j1� zj < 1 :10.55. Show that the funtion f(z) = Pn�1 z2nn2 is ontinuous forjzj � 1, but every point on jzj = 1 is a singular point.10.56. Let f be analyti in the ut plane D = C n (�1; 0℄ suh thatf(x) = xx for all x > 0. Show that f(z) = f(z) for all z 2 D.10.57. Suppose that f(z) is analyti for jzj < 1 and jf (n)(0)j � 3n forall n 2 N: Show that f an be extended to an entire funtion g suh thatf(z) = g(z) for jzj < 1:10.58. Find a funtion u(x; y) that is harmoni in the region of theright half-plane between the urves xy = 1 and xy = 2 and takes the value3 when xy = 1, and the value 7 when xy = 2.10.59. Use Shwarz's reetion priniple to show that every funtionwhih is bounded and analyti in the upper half-plane Im (z) � 0, and realon the real axis is onstant.10.60. Use Shwarz's reetion priniple to show that(i) sin z = sin z for z 2 C(ii) z4 � 2z + 2 os z = z4 � 2z + 2 os z for z 2 C .



Chapter 11Representations for Meromorphi andEntire Funtions
The entral importane of this hapter is to study representations of mero-morphi funtions by an in�nite deomposition into partial frations as wellas representations of analyti funtions by in�nite produts. These will bedone in many di�erent ways and we shall also see several appliations.In Setion 11.1, we disuss the Mittag-Le�er expansion whih gives aformula for representing a meromorphi funtion f as a series involving theprinipal parts of f at eah of the poles of f . We begin Setion 11.2 bypresenting a brief introdution and basi properties of in�nite produts ofsequenes of omplex numbers and show that their onvergene propertiesare similar to those of in�nite series. In partiular, we prove several im-portant tests for the onvergene of in�nite produts In Setion 11.3, weonsider the onvergene of in�nite produts of analyti funtions whihwill be useful in expressing a non-onstant entire funtion f as a produtof the form f(z) = P (z)H(z), z 2 C ; where� P and H are entire funtions� P and f have exatly the same zeros with presribed multipliities� H(z) has no zeros in C .In Setion 11.4, we present an interesting and useful result alled the Weier-strass produt formula whih gives a way of fatoring ertain entire fun-tions into an in�nite produt. Clearly, some entire funtions (suh as poly-nomials p(z) and the transendental entire funtion p(z)ez) have only a�nite produt representation. A omparison of produts and series expan-sions provides us a number of interesting identities. In the Weierstrassprodut expansion the prinipal part of f has no role to play whereas theMittag-Le�er expansion emphasizes the prinipal parts at the poles of f ,but gives no information about its zeros. In Setion 11.5, we study the



438 Representation for Entire and Meromorphi Funtionsgamma funtion as a meromorphi funtion in C having simple poles atz = 0;�1;�2; : : : . Setion 11.6 disusses the zeta funtion and its variousproperties. In Setion 11.7 we prove Jensen's formula. In Setion 11.8,we ontinue our disussion on entire and meromorphi funtions, and in-trodue the onept of order and the genus of entire funtions. Also, westudy ertain basi properties of entire funtions of �nite order and of �nitegenus in order to prove the muh waited Hadamard fatorization theoremwhih provides an interesting relationship between the order and the genusof entire funtions.11.1 In�nite Sums and Meromorphi FuntionsIn this setion we are interested in the onstrution of meromorphi fun-tions by their poles. Conerning poles there are two possibilities:� meromorphi funtions with a �nite number of poles� meromorphi funtions with in�nite number of poles.A meromorphi funtion whih has a pole of order m at a is (z�a)�m anda slightly di�erent meromorphi funtion may be obtained by taking linearombinations of �nitely many suh simpler ones. For example,1(z � 1)2 + 4(z � 3)3 � 2(z � 2)8 :Let us now disuss the onstrution of meromorphi funtions in the �nitease. Suppose that f is a meromorphi funtion whih has a �nite numberof poles at aj (1 � j � n) of order mj (1 � j � n). Then, by Laurent'sexpansion of f around eah aj , there is an assoiated prinipal partPj � 1z � aj� = mjXk=1 A(j)�k(z � aj)kwhih may be thought of as a polynomial in the variable 1=(z�aj). De�neg(z) = nXj=1 Pj � 1z � aj� :Clearly, g is analyti in C nfa1 ; a2; : : : ; ang. Sine, for s 6= r, Ps(1=(z�as))is analyti at ar, the prinipal part of g about ar is Pr(1=(z�ar)). Thus, fand g are meromorphi funtions in C with poles at aj and have the sameprinipal parts at aj , 1 � j � n. In partiular, if we let �(z) = f(z)� g(z)then � is analyti in C n fa1; a2; : : : ; ang and has removable singularitiesat a1; a2; : : : ; an. Consequently, � an be extended to an entire funtion.Thus, f(z) = g(z) + �(z) where � is entire. Finally, beause g(z) ! 0 as



11.1 In�nite Sums and Meromorphi Funtions 439z !1, g has a removable singularity at1 whih shows that � and f havethe same prinipal part at 1. The above disussion gives11.1. Theorem. Let f be a meromorphi funtion with only polesat aj (1 � j � n). If Pj(1=(z � aj)) denotes the prinipal part of f(z) ataj (1 � j � n), then there exists an entire funtion �(z) suh thatf(z) = nXj=1 Pj � 1z � aj�+ �(z):In addition, � and f have the same prinipal part at 1.11.2. Corollary. Every proper rational funtion of the formR(z) = p(z)q(z) := p(z)(z � a1)m1(z � a2)m2 � � � (z � an)mn ;(11.3)where p and q are polynomials with deg p(z) < deg q(z), an be expandedas a sum of polynomials in 1=(z � ak). Here ak's denote the poles of R(z)with order mk � 1 (k = 1; 2; : : : ; n).Proof. By Theorem 11.1, R(z) �Pnj=1 Pj(1=(z � aj)) = �(z) is anentire funtion. Furthermore, � is bounded sine R(z) and eah of itsprinipal part about eah aj approahes 0 as z !1. As a onsequene ofLiouville's theorem, �(z) is equal to a onstant, in fat, �(z) � 0 so thatR(z) =Pnj=1 Pj(1=(z � aj)) as asserted.Suppose that R(z) is a proper rational funtion of the form (11.3). Thenthe partial fration expansion of R(z) may be written uniquely in the formR(z) = nXj=1 mjXk=1 A(j)�k(z � aj)k! :(11.4)In general, a meromorphi funtion f in C may have an in�nite number ofpoles at ak, k 2 N. In that ase the series (whose terms are the prinipalparts of these poles of f), Pk Pk( 1z�ak ), need not onverge. It is thenneessary to modify the terms to produe a onvergent series. For example,suppose we wish to �nd a meromorphi funtion in C having a simple poleat k (k 2 N) with residue 1 at eah k. From the presription, our funtionorresponding to the prinipal part at z = k isPk � 1z � k� = 1z � k = � 1k(1� z=k)but the sum P1k=1 1z�k does not onverge in C nN. We need to modify theseries suitably so that it beomes onvergent. The onstant term in the



440 Representation for Entire and Meromorphi Funtionsseries expansion of 1=(z � k) about 0 is �1=k. So we an try with1Xk=1�Pk � 1z � k����1k�� = 1Xk=1� 1z � k + 1k� = 1Xk=1 zk(z � k) :This series does onverge uniformly on every ompat subset of C exept atk, k 2 N (by a omparison with the onvergent seriesPk�1 k�2). Indeed,���� 1z � k ���� � 1k � jzj < 2k whenever jzj < k=2so that, for jzj � R and R < k=2, we have1Xk=1 ���� 1k(z � k) ���� � 2 1Xk=1 1k2and hene, by the WeierstrassM -test, the seriesP1k=1 zk(z�k) represents ananalyti funtion on C nfk : k 2 Ng.Given a meromorphi funtion f in C with an in�nite number of polesat ak, we may always assume that the poles of f are indexed so that fjakjgis non-dereasing. Let us now state and prove a general theorem of Mittag-Le�er although its simple form (namely, Theorem 11.7) suÆes for ourpurposes.11.5. Theorem. (Mittag-Le�er) Let fangn�1 be a sequene of dis-tint non-zero omplex numbers suh that janj < jan+1j for n 2 N andjanj ! 1 as n ! 1. Then, for a given sequene of polynomials fPn(z)gwithout onstant term, there exists a meromorphi funtion f in C havingpoles at an with prinipal part Pn(1=(z�an)). Moreover, any other generalmeromorphi funtion F having the stated property will be of the formF (z) =Xn �Pn� 1z � an��Qn(z)�+ h(z)for some polynomial Qn(z) and for some entire funtion h(z). The seriesonverges absolutely and uniformly on any ompat subset of C not on-taining the poles (This series is usually alled a Mittag-Le�er expansion ofF ).Proof. As Pn(z) is a polynomial, we see that  n(z) de�ned by n(z) := Pn� 1z � an� = Pn�� 1an(1� z=an)�is analyti for jzj < janj and hene, we may expand it as a Taylor series n(z) = 1Xk=0A(n)k zk for jzj < janj:



11.1 In�nite Sums and Meromorphi Funtions 441By elementary fats about omplex power series, the series on the rightonverges absolutely and uniformly to  n(z) for jzj � 12 janj. LetQn(z) = �nXk=0A(n)k zkbe the partial sum of the series up to the degree �n, where �n has beenhosen large enough to satisfyj n(z)�Qn(z)j < 2�n for jzj � 12 janj:Sine limn!1 janj ! 1 and janj < jan+1j, given any ompat subsetK = �R of C , there exists an N = N(K) suh that K � �janj=2 forn � N , i.e. janj > 2R for n � N . It follows that the series1Xn=N( n(z)�Qn(z))onverges absolutely and uniformly on K, and therefore represents an an-alyti funtion on K. Sine K is arbitrary, the full series1Xn=1( n(z)�Qn(z)) =  N�1Xn=1 + 1Xn=N! ( n(z)�Qn(z))(11.6)represents a meromorphi funtion in C whih has an as its pole with prin-ipal part equal to  n(z) = Pn(1=(z � an)). Note that the �nite sum in(11.6) is a rational funtion with presribed behavior of poles exatly at anwith janj < R. The rest of the theorem is trivial.For simpli�ation purposes, we prove the following simple version thathas wider appliations and falls under the general theorem of the Mittag-Le�er (see Theorem 11.5).11.7. Theorem. Let f be meromorphi with only simple poles ata1; a2; : : : suh that0 < ja1j � ja2j � � � � � jakj � � � � ; and bk = Res [f(z); ak℄:Let fCkg be a nested sequene of positively oriented simple losed ontours(whih avoid these poles) suh that eah Ck inludes only a �nite numberof poles. Suppose thatRk = dist (0; Ck)!1 as k !1;Lk = length of Ck = O(Rk);jf(z)j � M for eah k for z 2 Ck



442 Representation for Entire and Meromorphi Funtions( e.g. Ck is a square with verties Rk(�1 � i) suh that Rk ! 1 ask !1 ). Then, for all z exept at these poles, we have the Mittag-Le�erseries expansion of ff(z) = f(0) + 1Xk=1 bk � 1z � ak + 1ak� :Proof. If � is not a pole of f and � =2 Ck, theng(z) = f(z)z � �has simple poles at �, and at eah ak with Res [g(z);�℄ = f(�) andRes [g(z); ak℄ = limz!ak(z � ak) f(z)z � � = bkak � �:Then Fk(�) := 12�i ZCk f(z)z � � dz= XRes [g(z);Ck℄= f(�) +Xk bkak � �;(11.8)where Pk is taken over all the poles of f inside Ck and k is hosen largeenough so that � lies inside Ck. Letting � = 0 givesFk(0) = 12�i ZCk f(z)z dz = f(0) +Xk bkak :(11.9)Subtrating (11.8) from (11.9) givesFk(0)� Fk(�) = � 12�i ZCk f(z)z(z � �) dz= f(0) +Xk bk � 1�� ak + 1ak�� f(�):(11.10)Now, for z 2 Ck, jzj � Rk = dist (0; Ck) and jz��j � jzj�j�j � Rk�j�j > 0so thatjFk(�)�Fk(0)j = �����12�i ZCk f(z)z(z � �) dz���� � 12� ML(Ck)Rk(Rk � j�j) ! 0 as k !1and therefore, the sequene fFk(�) � Fk(0)g onverges to zero uniformlyon the ompat set Ck. Allowing k !1 in (11.10) gives



11.1 In�nite Sums and Meromorphi Funtions 443f(�) = f(0) + 1Xk=1 bk � 1�� ak + 1ak� :Most often Ck is taken to be a irle or the boundary of a retangle. Inpratie, verifying the boundedness ondition, namely jf(z)j � M on Ck,is often a diÆult job. Suppose we wish to expand a meromorphi funtionf whih has a simple pole at the origin, then the theorem is not diretlyappliable. However, we an apply Theorem 11.5 or 11.7 by onsideringthe funtion f(z)� p0(z), where p0(z) is the prinipal part of the Laurentseries expansion of f about z = 0.The partial fration expansions of funtions suh ass z; se z; tan z; ot z; osaz; se z osaz; s z sin az; se z sin az;(jaj < 1) and of their orresponding hyperboli funtions are well-knownand may be found in some standard texts either as examples or as exerises.For example, in order to apply Theorem 11.7 for the funtions � s�zand � ot�z; we need to onsider� s�z � 1=z; and � ot�z � 1=z;respetively. Let us now disuss the situation in detail.11.11. Example. Let us derive the Mittag-Le�er expansion ofg(z) = � ot�z:The poles of g(z) are at n, n 2 Z, eah pole being simple. As g has a simplepole at the origin, we need to omputeRes [g(z); 0℄ = limz!0 � �zsin�z� os�z = 1and onsider the modi�ed funtionf(z) = (� ot�z � 1z for z 6= 00 for z = 0whih is now analyti at the origin and has simple poles only at n, n 2Znf0g. It follows that, for eah n 2 Znf0g,Res [f(z);n℄ = limz!n(z � n) �� os�zsin�z � 1z� = os�nos�n = 1:Choose Ck = fRk(�1� i) : k 2 Ng with Rk = k + 1=2 so thatL(Ck) = 8(k + 1=2) = 8 dist (0;Ck)!1 as k !1



444 Representation for Entire and Meromorphi Funtionsand all the other required onditions of Theorem 11.7 are satis�ed. Reallthat (see the proof of Theorem 9.65) j ot�zj < 2 for all z on Ck. Clearly,for z 2 Ck, we havejzj � dist (0;Ck) = Rk = k + 1=2 > 1and therefore,jf(z)j � �j ot�zj+ 1jzj < 2� + 1 for all z on Ck:Finally, it now follows from Theorem 11.7 that� ot�z � 1z = limn!1 nXk=�nk 6=0 � 1z � k + 1k� = limn!1 nXk=1� 1z � k + 1z + k�whih shows that� ot�z = 1z + 1Xk=1 2zz2 � k2 ; z 2 C nZ:(11.12)From this equation, the partial fration deomposition of �2= sin2 �z anbe obtained by di�erentiating (11.12):�2sin2 �z � 1z2 = 1Xk=�1k 6=0 1(z � k)2 ; z 2 C nZ:Allowing z ! 0 gives that�23 = 1Xk=�1k 6=0 1k2 ; i.e. �26 = 1Xk=1 1k2 :Similarly, if we onsider g(z) = � s�z then it is easy to see that g hasa simple pole at n (n 2 Z) with Res [g(z);n℄ = (�1)n for n 2 Z. Now, wede�ne f(z) = � s�z�z�1: Then, applying Theorem 11.7 (sine f is againuniformly bounded on Ck), it follows easily that� s�z = 1z + 1Xk=1 2(�1)kzz2 � k2 ; z 2 C nZ: �11.13. Example. We onsider f(z) = � tan�z: Then we see that(i) f has simple poles at (n+ 1=2); n 2 Z with Res [f(z);n+ 1=2℄ = �1(ii) f is analyti at z = 0 with f(0) = 0



11.1 In�nite Sums and Meromorphi Funtions 445(iii) jf(z)j � 2 for eah z in the square Ck with verties k(�1� i), k 2 Nand f is analyti on Ck, k 2 N:By Theorem 11.7, we see thatf(z) = limk!1 k�1Xn=�k(�1)� 1z � (n+ 1=2) + 1n+ 1=2�= � limk!1 k�1Xn=0 z(z � (n+ 1=2))(n+ 1=2)+ �1Xn=�k z(z � (n+ 1=2))(n+ 1=2)!= � limk!1 k�1Xn=0 z(z � (n+ 1=2))(n+ 1=2)+ k�1Xn=0 zz � (�n� 1=2))(�n� 1=2)!= � limk!1 k�1Xn=0 zn+ 1=2 � 1z � (n+ 1=2) � 1z + (n+ 1=2)�= � limk!1 k�1Xn=0 2zz2 � (n+ 1=2)2 :Thus, exept at the simple poles of tan�z, we have� tan�z = 1Xn=0 2z(n+ 1=2)2 � z2 ; z 2 C n f(n+ 1=2)� : n 2 Zg:Letting z ! 0 gives�2 limz!0 tan�z�z = 1Xn=0 2(n+ 1=2)2 ; i.e. 1Xn=0 1(2n+ 1)2 = �28 :Choosing z = �4 shows that�8 = 1Xn=0 14(2n+ 1)2 � 1 :One an also obtain the partial fration deomposition of � tan�z just byusing the identity tanw = otw � 2 ot(2w). �



446 Representation for Entire and Meromorphi Funtions11.2 In�nite Produt of Complex NumbersLet us start by introduing the de�nition of in�nite produts. Let fzng1n=1be a sequene of non-zero omplex numbers. We want to disuss the on-vergene of produts of the form Q1k=1 zk: To do this, we de�ne the partialprodut Pn (or n-th partial produt) to be Pn =Qnk=1 zk: The in�nite prod-ut is said to onverge if the sequene fPng1n=1 of partial produts onvergesto a non-zero (�nite) limit P as n!1. We symbolize the onvergene ofthe produt by writing P = Q1k=1 zk; where P 6= 0. If limn!1 Pn fails toexist or if limn!1 Pn = 0, then we say that the in�nite produt diverges.Clearly, some tehnialities are involved if zk = 0 for a �nite numberof k's. But we would like to allow the in�nite produt to be zero yet ableto disuss the onvergene of suh produts by imposing some onditions.Suppose that zk = 0 for �nitely many values of k and let zk 6= 0 for k > m.Then, for k > m, we an writePn = (z1z2 � � � zm)[zm+1zm+2 � � � zn℄ := (z1z2 � � � zm)Pm;nwhere Pm;n = zm+1zm+2 � � � zn: In this ase, we say that the in�nite produtPn onverges to zero provided Pm;n onverges to a non-zero limit Q asn!1. Indeed, if limn!1 Pm;n = Q (Q 6= 0;1) thenlimn!1Pn = (z1z2 � � � zm)Q = 0:If Q = 0 or Q = 1 or if fPm;ng has no limit in C as n ! 1, then thein�nite produt Q1k=1 zk is said to be divergent.More generally, we say that the in�nite produt onverges to zero ifzk = 0 for a ountable number of k's and that Q1k=1;zk 6=0 zk onvergesaording to the earlier de�nition. For instane, ifk = 8<: 1 + 12k if k = 2m0 if k = 2m� 1 ; m 2 N;then Q1k=1 k onverges to 0. For instane, the produt Q1k=1 �1 + (�1)k�diverges beause in�nitely many fators are zero, and that1Yk=1k22N�1 + (�1)k� = limk!1 2k =1:Sequenes of this type do not our in pratie and hene, no importaneis given for suh sequenes in the disussion of the onvergene of the or-responding produts. In onlusion, we formulate11.14. De�nition. The in�nite produt Q1k=1 zk is said to onvergei�



11.2 In�nite Produt of Complex Numbers 447(i) zk = 0 for \at most" �nitely many values of k, k 2 N(ii) Qnk=m zk = zmzm+1 � � � zn (when zk 6= 0 for k � m) onverges to anon-zero (�nite) limit as n!1.11.15. Examples of onvergene and divergene of produts.(i) Consider the in�nite produt Q1k=1 �1 + 1k� : Set zk = 1+1=k 6= 0 fork 2 N. ThenPn = 21 32 43 � � � nn� 1 n+ 1n = n+ 1!1 as n!1showing that the in�nite produt diverges.(ii) The in�nite produt Q1k=2 �1� 1k � has no zero fator but it doesdiverge beausePn = 12 23 34 � � � n� 1n nn+ 1 = 1n+ 1 ! 0 as n!1:Note that for the in�nite produt to be onvergent we need the limitto be a non-zero number, whih is not the ase here. Even if weallow the produt from k = 1, the produt would still diverge. Thisexample shows that just the existene oflimn!1Pn = limn!1 nYk=1(1 + ak)does not guarantee the onvergene ofQ1k=1(1+ak) even if 1+ak 6= 0for eah k 2 N. Another simple example may be given by the asewhen all ak's are equal to �1=2 (or �1=3 or �1=4).(iii) Consider Q1k=2 �1� 1k2 � : Writing1� 1k2 = �1� 1k��1 + 1k� = k � 1k � k + 1kthe n-th partial produt Pn is given byPn = �12 32��23 43� � � � � nn+ 1 � n+ 2n+ 1�= 12 �32 23� �43 34� � � � �n+ 1n nn+ 1� n+ 2n+ 1= 12 �n+ 2n+ 1� ! 12 as n!1:Thus, the in�nite produt onverges to 1=2. If we had started theprodut with k = 1 to 1 (instead of k = 2 to 1), then the prod-ut would have onverged to zero beause Q1k=2 zk, zk = 1 � 1=k2,onverges.



448 Representation for Entire and Meromorphi Funtions(iv) Consider Q1k=1 �1 + (�1)k�1k � : It follows that1 + (�1)k�1k = 8><>: 1� 12m = 2m� 12m if k = 2m1 + 12m� 1 = 2m2m� 1 if k = 2m� 1 ; m 2 N;and so, the in�nite produt onverges to 1 beausePn = 21 12 43 34 � � ��1 + (�1)n�1n �= 8<: 1 if n = 2m1 + 1n if n = 2m� 1 ; m 2 N:In disussing the \onvergene tests", without loss of generality, we mayonly onsider the in�nite produt Q1k=1 zk with zk 6= 0, k 2 N. Supposethat the in�nite produt Q1k=1 zk onverges. Then, there exists P 6= 0 suhthat limn!1Pn = P = limn!1Pn�1:Further, as Pn�1 6= 0, we havezn = Pn=Pn�1and therefore by the \Quotient Theorem" for limit, zn ! 1; i.e. zn�1! 0:In view of this observation, it is ustomary to write zn := 1 + an so thatan ! 0. Thus, we express the in�nite produt Q1k=1 zk as Q1k=1(1 + ak).Using this notation, we formulate the following simple result whih gives aneessary ondition for the onvergene of an in�nite produt.11.16. Proposition. If the in�nite produtQ1k=1(1+ak) onverges,then ak ! 0 as k !1.Clearly, Proposition 11.16 implies the following: if ak 6! 0 as k ! 1,then the in�nite produt diverges. For instane, eah of the produts1Yk=1�1 + (�1)k1 + i � and 1Yk=1�1 + (�1)k3 �diverges. The onverse of this proposition is false as Examples 11.15(i) and(ii) illustrate. Thus, there exists a divergent in�nite produt Q1k=1(1 + ak)with ak ! 0 as k !1.Also, we observe that the neessary ondition for the onvergene of thein�nite produt Q1k=1(1 + ak) is similar to the neessary ondition for theonvergene of P1k=1 ak. It is then natural to investigate the onnetion



11.2 In�nite Produt of Complex Numbers 449between series and produts. Before we present this onnetion in variousgeneral forms, sine no fator 1 + ak is zero, it is natural to relate theonvergene of the produt Q1k=1(1 + ak) with the onvergene of the se-ries P1k=1 Log (1 + ak), where Log z denotes the prinipal branh of thelogarithm, �� < Arg z = Im Log z � �.11.17. Theorem. Suppose that zk 6= 0 for k 2 N. Then the seriesP1k=1 Log zk onverges i� the produt Q1k=1 zk onverges, in whih aseQ1k=1 zk = exp (P1k=1 Log zk). Equivalently, the series P1k=1 Log zk andthe produt Q1k=1 zk either onverge or diverge together.Proof. Let Pn = Qnk=1 zk and Sn = Pnk=1 Log zk: Then, beauseez+w = ezew for z; w 2 C , we haveeSn = eLog z1eLog z2 � � � eLog zn = z1z2 � � � zn = Pn:=): As ez is ontinuous on C , we getSn ! S ) Pn = eSn ! eS 6= 0:Hene, if the seriesP1k=1 Log zk onverges to S then the produt Q1k=1 zkonverges to eS .(=: Conversely, suppose that Pn ! P 6= 0. For eah k 2 N, we writeLog zk = ln jzkj+ iArg zk:Without loss of generality, we may assume that P =2 (�1; 0℄. For, ifP 2 (�1; 0℄ then we may simply onsider in plae of fzkg a new sequenefwkg with w1 = �z1 and wk = zk for k � 2. Then,1Yk=1wk = � 1Yk=1 zk = �P =2 (�1; 0℄;so that the two seriesP1k=1 Log zk andP1k=1 Logwk di�ering only in their�rst term, either onverge or diverge together. As Pn ! P =2 (�1; 0℄, wehave Pn 2 C n(�1; 0℄ for large n and, sine Log z is ontinuous at P ,LogPn ! LogP as n ! 1. Sine eSn = Pn, we an write Sn as alogarithm of Pn. Indeed (see Theorem 3.103) we haveSn = LogPn + 2�kni(11.18)so that Log zn+1 = Sn+1 � Sn = LogPn+1 � LogPn +2�i(kn+1 � kn); forsome kn+1 and kn 2 Z. Equating the imaginary parts on both sides of thisequation givesArg zn+1 = ArgPn+1 �ArgPn + 2�(kn+1 � kn):(11.19)Now, we observe the following



450 Representation for Entire and Meromorphi Funtions� as the produtQ1n=1 zn onverges, we have zn ! 1 and, beause Arg zis ontinuous at 1, we obtain that Arg zn ! Arg1 = 0 as n!1:� sine Pn ! P and Log z is ontinuous at P , we have LogPn ! LogPas n!1:Now, allowing n!1 in (11.19), it follows that kn+1 � kn ! 0 as n!1;but then, sine kn is an integer, there exists an N suh thatkn+1 = kn = m for n � N;m being an integer, independent of n. By (11.18), we onlude thatSn ! LogP + 2�mi as n!1for some integer m, and we omplete the proof.11.20. Theorem. The series P1k=1 ak onverges absolutely i� theseries P1k=1 Log (1 + ak) onverges absolutely.Proof. As limz!0 z�1 Log (1 + z) = 1, for � = 1=2 (in fat any � with0 < � < 1 would work), it follows that���� Log (1 + z)z � 1���� < � whenever z ! 0:The triangle inequality shows that(1� �)jzj < jLog (1 + z)j < (1 + �)jzj whenever z ! 0:(11.21)Similarly, lim t!00<t�1 t�1 Log (1 + t) = 1, we have(1� �)t < Log (1 + t) < (1 + �)t whenever t! 0:Now, assume ak ! 0 as k !1. Consequently, we have(1� �)jakj < jLog (1 + ak)j < (1 + �)jakj as k !1and (1� �)jakj < Log (1 + jakj)j < (1 + �)jakj as k !1:By the omparison test, for any omplex sequene fakg onvergent to 0,the three series1Xk=1 jLog (1 + ak)j; 1Xk=1 Log (1 + jakj); 1Xk=1 jakjeither onverge or diverge together.



11.2 In�nite Produt of Complex Numbers 451In analogy with series we introdue the following notion of absoluteonvergene of a produt. The in�nite produt Q1k=1(1 + ak) is said toonverge absolutely i� the produt Q1k=1(1+ jakj) onverges. For instane,Q1k=1 exp(ik=k2) onverges, sine1Xk=1 ��Log �exp(ik=k2)��� = 1Xk=1 1k2 <1:Our next result, whih is a reformulation of Theorem 11.20, gives theonnetion between the absolute onvergene of produts and the absoluteonvergene of series. Here we present an alternate proof of this result.11.22. Corollary. Suppose that ak � 0 for all k 2 N. Then theprodut Q1k=1(1 + ak) onverges i� the series P1k=1 ak onverges i� theseries P1k=1 Log (1 + ak) onverges.Proof. As 1 + x � ex for all x � 0,Sn = nXk=1 ak � Pn = nYk=1(1 + ak) � exp nXk=1 ak! = eSn :First we observe that fPngn�1 is an inreasing sequene, sine ak � 0 forall k 2 N.If Pn ! P 6= 0, as Pn is inreasing, then it is bounded above by P . Thisobservation shows that fSngn�1 is a sequene (inreasing) bounded aboveby P . Therefore, by the monotoni-bounded priniple, fSngn�1 onverges,i.e. P1n=1 ak onverges. Conversely, if Sn onverges to S, as fSngn�1 is aninreasing sequene bounded above by S, the inreasing sequene fPngn�1is bounded above by eS (as eSn ! eS by the ontinuity of the exponentialfuntion) and hene onverges to a non-zero limit.The hypothesis that ak � 0 in Corollary 11.22 is ruial as the Example11.25 shows. If ak = 1=k, then the orresponding produt Q1k=2 (1� 1=k)diverges and P1k=2 1k =1. Moreover, if ak = O(1=kp) as k !1 then theseriesP1k=1 ak is onvergent if p > 1 and divergent if p � 1. From this, wean easily see that Q1k=1(1 + 1=kp) is onvergent if p > 1 and divergent ifp � 1.Here is a simple result whih is almost our \standard onvergene test"for in�nite produts.11.23. Corollary. Let ak 2 C with 1 + ak 6= 0 for all k 2 N. IfP1k=1 jakj onverges, then Q1k=1(1 + ak) onverges.Proof. IfP1k=1 jakj onverges, thenP1k=1 Log (1+ak) onverges abso-lutely (and hene onverges). By Theorem 11.17, the produtQ1k=1(1+ak)onverges.



452 Representation for Entire and Meromorphi FuntionsCorollary 11.22 shows that if Q1k=1(1 + jakj) onverges then P1k=1 jakjonverges whih, in turn, by Corollary 11.23, implies that Q1k=1(1 + ak)onverges. Thus, as in the ase of series where \absolute onvergene impliesonvergene ", we also have11.24. Theorem. If an in�nite produt onverges absolutely, then itonverges but not onversely.11.25. Example. Next we show by an example that the onvergeneof the produt Q1k=1(1 + ak) is neither suÆient nor neessary for theonvergene of the seriesP1k=1 ak unless ak � 0. To do this, we de�nea2k = 1pk + 1 and a2k�1 = � 1pk + 1 for k 2 N :Then the produt Q1k=1(1 + ak) will be of the form�1� 1p2��1 + 1p2��1� 1p3��1 + 1p3� � � �so that P2n = Qnk=1 �1� 1k+1� : Therefore, P2n diverges. On the otherhand, by the alternating series test, the orresponding series1Xk=1 ak = � 1p2 + 1p2 � 1p3 + 1p3 � 1p4 + � � �onverges (but not absolutely). In fatSn = nXk=1 ak =8<: 0 if n = 2m� 1pm+ 1 if n = 2m� 1 ; m 2 Nand therefore, Sn ! 0 as n!1. Also,2nXk=1 jakj = 2 nXk=1 1pk + 1 and 2n+1Xk=1 jakj = 2 nXk=1 1pk + 1 + 1pn+ 2so that the seriesP1k=1 jakj is divergent.Next, we de�nea2k = � 1pk + 1 ; a2k�1 = 1pk + 1 + 1k + 1 (k 2 N)and show that the series P1k=1 ak diverges but the produt Q1k=1(1 + ak)onverges (but not absolutely). NowS2k = a1 + a2 + � � �+ a2k



11.3 In�nite Produt of Analyti Funtions 453= � 1p2 + 12�� 1p2 +� 1p3 + 13�� 1p3 + � � �+� 1pk + 1 + 1k + 1�� 1pk + 1= 12 + 13 + � � �+ 1k + 1and S2k�1 = 12 + 13 + � � �+ 1k + 1 + 1pk + 1 � S2kso that P1k=1 ak is divergent. On the other hand, we �nd that(1 + a2k�1)(1 + a2k) = �1 + 1pk + 1 + 1k + 1��1� 1pk + 1�= 1� 1(k + 1)3=2so that P2n =Qnk=1 �1� 1(k+1)3=2�! P 6= 0 as n!1 andP2n+1 = P2n�1 + 1pn+ 2 + 1n+ 2�! P as n!1:Thus, the produt onverges. By Corollary 11.22, the produt does notonverge absolutely sineP1k=0 jakj diverges (in fatP1k=0 ak diverges). �11.3 In�nite Produts of Analyti FuntionsUntil now we have disussed in�nite produts of omplex numbers. Justas transferring from series of omplex numbers to series of funtions, wean disuss onvergene of in�nite produts whose fators are funtions ofz rather than just omplex numbers. Then the following problem ours.11.26. Problem. Given a sequene ffk(z)gk�1 of funtions de�nedon some set 
 � C , determine whether the in�nite produt1Yk=1(1 + fk(z))(11.27)(i) onverges for all z 2 
(ii) onverges absolutely for all z 2 
(iii) diverges for z 2 
(iv) onverges for a partiular z 2 
.



454 Representation for Entire and Meromorphi FuntionsWe say that the in�nite produt (11.27) onverges in 
 if, for eaha 2 
, limn!1Pn(a) = limn!1 nYk=1(1 + fk(a))exists and is non-zero. The in�nite produt (11.27) is said to onverge uni-formly to a funtion P (z) in 
 if the sequene fPn(z)g of partial produts,de�ned by Pn(z) =Qnk=1(1+fk(z)); is uniformly onvergent to the funtionP (z) in 
, with P (z) 6= 0 in 
.11.28. Example. Consider the produt Q1k=0(1 + z2k): We have1Xk=0 ���z2k ��� � 1Xk=0 jzkj = 11� jzj for jzj < 1,so that the seriesP1k=0 z2k onverges absolutely for jzj < 1. It follows thatthe produt onverges absolutely (and hene onverges by Theorem 11.24)for jzj < 1. Note also that 1 + z2k 6= 0 for jzj < 1. Further,P0(z) = 1 + z; P1(z) = (1 + z)(1 + z2) = 22�1Xk=0 zkand, by indution, it an be shown that for jzj < 1Pn(z) = 2n+1�1Xk=0 zk = 1� z2n+11� z ! 11� z as n!1so that Q1k=0(1 + z2k) = 1=(1� z) for jzj < 1: �11.29. Lemma. De�ne Pn =Qnk=1(1+ak) and ~Pn =Qnk=1(1+ jakj):Then(i) jPnj � ~Pn(ii) jPn � 1j � ~Pn � 1(iii) jPn � Pmj � ~Pn � ~Pm for n > m.Proof. Part (i) is learly a onsequene of the triangle inequality. Forthe proof of (ii), we writePn � 1 = X1�ij�n; 1�k�n ai1ai2 � � � aik= monomial terms onsisting of produts of ak'sso that jPn � 1j � X1�ij�n; 1�k�n jai1 j jai2 j � � � jaik j = ~Pn � 1:



11.3 In�nite Produt of Analyti Funtions 455(iii) For n > m, we havejPn � Pmj = jPm nYk=m+1(1 + ak)� Pmj� jPmj nYk=m+1(1 + jakj)� 1! ; by (ii),� mYk=1(1 + jakj) nYk=m+1(1 + jakj)� 1! ; by (i),= ~Pn � ~Pmand we are done.11.30. Theorem. Let ffk(z)g be a sequene of analyti funtions inan open set 
 � C suh thatP1k=1 jfk(z)j onverges uniformly on ompata( i.e. on ompat subsets of 
 ). Then the sequene of partial produtsPn(z) = Qnk=1(1 + fk(z)) onverges uniformly on ompata to an analytifuntion f(z) in 
, f(z) = 1Yk=1(1 + fk(z)):The order of the fators does not alter the limit funtion f(z).14 Further-more, f(a) = 0 at a point a 2 
 i� the fator 1 + fk(z) vanishes at a forsome k. The order of the zero of f at a is the sum of the multipliities ofthe zeros at those fators having a zero at a.Proof. By virtue of Corollary 11.22, Q1k=1(1 + fk(z)) onverges ab-solutely (therefore onverges) for eah point in 
 and hene the produtrepresents a well de�ned funtion. In view of this, it suÆes to show thatthe sequene fPn(z)g forms a uniformly Cauhy sequene on every ompatsubset of 
. To do this, we �x a ompat subset K � 
. By hypothesis,P1k=1 jfk(z)j onverges uniformly on K and therefore, the partial sumsSn(z) = nXk=1 jfk(z)jof the series are uniformly bounded on K by a onstant . Sine 1+x � exfor x � 0, it follows thatjPn(z)j � ~Pn(z) = nYk=1(1 + jfk(z)j) � exp(Sn(z)) � e for eah n:14We say that an absolutely onvergent produt (series) is unonditionally onvergenti� the order of fators (the terms of the summation) does not alter the limit funtion.



456 Representation for Entire and Meromorphi FuntionsLet 0 < � < ln 2. Choose N so large that if n > m � N = N(�), then theCauhy-riterion for onvergene givesSn � Sm = nXk=m+1 jfk(z)j < � for z 2 K:For n > m � N and z 2 K, by Lemma 11.29(iii), we havejPn(z)� Pm(z)j � jPm(z)j nYk=m+1(1 + jfk(z)j)� 1!� jPm(z)j(e� � 1)(Note that for 0 < � < ln 2, we have e� < eln 2 = 2, i.e. 0 < e� � 1 < 1).Sine e�� 1! 0+ as �! 0+ and jPm(z)j � ~Pm(z) � e, it follows that thesequene of partial produts fPn(z)g forms a uniformly Cauhy sequeneand hene, onverges uniformly on K. Letting n!1, we obtainjf(z)� Pm(z)j � jPm(z)j(e� � 1)(11.31)so that �jf(z)j+ jPm(z)j � jf(z)� Pm(z)j � jPm(z)j(e� � 1):If 0 < � < ln 2 (i.e. 2� e� > 0), then, for any m � N(�), and for z 2 Kjf(z)j � jPm(z)j � jPm(z)j(e� � 1) � jPm(z)j(2� e�):(11.32)Therefore, if Pm(z) = 0 at z = a, that is, if one of the fators 1 + fk(z)vanishes at z = a when 1 � k � m, then, by (11.31), we have f(a) = 0.Conversely if f(z) = 0 at some point z = a, then, by (11.32), Pm(a) = 0and therefore, 1 + fk(a) = 0 for some k.As in the ase of the absolute onvergene of the series, it is easy to seethat the order of the fators in an in�nite produt is immaterial whenever itonverges absolutely. Indeed if Q1k=1(1+ fk(z)) onverges absolutely then,for every permutation � = (�(1); �(2); : : :) of the list of positive integers(1; 2; : : :), Theorem 11.17 shows that1Yk=1(1 + fk(z)) = exp 1Xk=1 Log (1 + fk(z))!= exp 1Xk=1 Log (1 + f�(k)(z))!= 1Yk=1(1 + f�(k)(z)):



11.4 Fatorization of Entire Funtions 457Thus, the sum of an absolutely onvergent produt is not a�eted by rear-ranging the order of the terms of the produt.Some quik examples follow. For jzj � Æ < 1, we have1Xk=1 jzjk � 1Xk=1 Æk = Æ1� Æshowing that P1k=1 jzjk onverges uniformly on every ompat subset of�. Consequently, eah of the produts Q1k=1(1 + zk) and Q1k=1(1 � zk)onverges uniformly on every ompat subset of � and hene eah of themrepresents an analyti funtion in the unit disk �.It follows that if P1k=1 jakj onverges (for instane for ak = k�p withp > 1), then eah of the produtsQ1k=1(1+akz) andQ1k=1(1+akzj) (j 2 N�xed) onverges uniformly on every ompat subsets of C . Consequently,eah of these produts represents an entire funtion.11.33. Example. Let fk(z) = ezk � 1, k 2 N. Then ffk(z)gk�1 is asequene of entire funtions andLog (1 + fk(z)) = zk for all z:Also, for jzj � r < 1, the series P1k=1 Log (1 + fk(z)) onverges uniformlyto z=(1� z) for jzj � r (r < 1). Therefore, Q1k=1 ezk onverges uniformlyto exp(z=(1� z)) for every ompat subset of jzj < 1. Note that this anbe veri�ed diretly. �11.4 Fatorization of Entire FuntionsEvery polynomial p(z) of degree n � 1 an be fatored as a produt oflinear fators. More preisely, if p(z) = zn+an�1zn�1+ � � �+a1z+a0 thenp(z) an be written in the form p(z) =Qnk=1(z � �k), or equivalentlyp(z) = zm n�mYk=1 (z � �k)whenever p(z) has a zero of order m � 0 at the origin with �k 6= 0 fork = 1; 2; : : : ; n �m, ounting multipliities (take m = 0 when p(z) has nozero at the origin). Then this expression takes the formp(z) = �zm n�mYk=1 �1� z�k�with � = �1 � � � �n�m 6= 0. Note that if �k = 0 for all k, then p(z) = znwhih is a trivial ase. Sine eah polynomial of degree n has n roots and



458 Representation for Entire and Meromorphi Funtionsan be written as a produt of the above form, it is therefore natural toknow its generalization whih we enounter for ertain entire transendentalfuntions. Thus, our �rst task in this setion is to undertake a solution tothe following problem.11.34. Problem. Find an in�nite produt representation of tran-sendental entire funtions admitting an in�nite number of zeros.We reall that there are analyti funtions having an in�nite numberof zeros (e.g. z�1 sin z, os z) and therefore we wish to know whether eahsuh funtion an be represented as an in�nite produt at least in someases. So, the �rst thing that we should know is about the onvergene ofsuh a produt representation.We have already shown in Theorem 4.40 that an entire funtion f hasno zeros i� f(z) = eh(z) for some entire funtion h. For example, ez, ez2 ,ez+z2 , esin z are all entire funtions with no zeros in C . So we need to dealwith the following two sets of entire funtions:� entire funtions whih have a �nite number of zeros in C� entire funtions whih have an in�nite number of zeros in C .As a �rst step, we have the following result whih onerns the �rst asewhile the seond ase will be done in the form of the Weierstrass fatoriza-tion theorem.11.35. Theorem. Let f be an entire funtion with n zeros, say,a1; a2; : : : ; an (multiple zeros being repeated aording to their orders).Then there exists an entire funtion h suh that f(z) = p(z) exp(h(z))where p(z) is a polynomial of degree n with the same zeros as f(z) (withthe same multipliities).Proof. De�neF (z) = 8>><>>: f(z)Qnk=1(z � ak) for z 6= aklimz!ak f(z)Qnk=1(z � ak) for z = ak ; k 2 f1; 2; : : : ; ng:Then, F is a zero free entire funtion. By Theorem 4.40, there exists anentire funtion h(z) suh that F (z) = eh(z); i.e. f(z) = eh(z) Qnk=1(z�ak);as desired.11.36. Remark. Observe that if the funtion f onsidered in Theo-rem 11.35 is a polynomial, then h(z) would be a onstant funtion. Further,by Theorem 11.35, it follows that if f is an entire funtion with (m + 1)



11.4 Fatorization of Entire Funtions 459distint zeros, say, 0 = a0; a1; a2; : : : ; am (ak 6= 0 for k = 1; 2; : : : ;m) oforder p0; p1; p2; : : : ; pm (pk � 0), then we an express f(z) asf(z) = zp0eh(z) mYk=1�1� zak�pk(11.37)for some entire funtion h(z). That is, f(z) an be expressed as the produtof a polynomial and a zero free entire funtion. The zeros of the polynomialare exatly the same as the zeros of f(z). �Our next step is to onsider entire funtions whih have in�nitely manyzeros in C . In priniple, allowing m ! 1 in (11.37), we get a statementabout the in�nite produt provided the orresponding right hand side of(11.37) makes sense. Clearly, suh a representation is valid if the in�niteprodut of funtions onverges uniformly on every ompat subset. Let usnow start our disussion by raising some simple questions. Are there entirefuntions with a limit point of a set of zeros in C ? Notie that if f is entirewith zeros at the points ak, with ak ! a 2 C as k ! 1, then, by theuniqueness theorem, f is identially zero in C . Next we ask: Is there anon-trivial entire funtion having a zero at 1? Again the answer is no,beause, otherwise this would imply that the funtion is analyti at 1,and so is a onstant (sine every analyti funtion in the extended omplexplane is onstant, by Liouville's theorem)-hene, identially zero in C1 .Consequently, the set of zeros of an entire funtion whih has in�nitelymany zeros in C must have 1 as its only limit point. For example, eahof the familiar entire funtions os z, sin z and ez � 1, has in�nitely manyzeros in every neighborhood of 1, and the limit point of these zeros, ineah ase, is 1.Now, we are in a position to disuss in detail those entire funtionswhih have in�nitely many zeros in C . Suppose that fakgk�1 is a sequeneof omplex numbers suh that ak !1 as k !1. We wish to onstrut anentire funtion with zeros preisely at eah ak (with desired multipliity)and nowhere else. To do this, let us make an attempt to onsider theprodut of the form 1Yk=1(z � ak):Does this produt then onverge? We note that, as ak ! 1 as k ! 1,for no �xed z 2 C would we get z � ak ! 1 as k !1, whih is a requiredneessary ondition for the onvergene of the produt. Thus, the produtof the above form diverges. In view of this observation, it is natural tomodify the present form to a new form1Yk=1�1� zak�(11.38)



460 Representation for Entire and Meromorphi Funtionsassuming for the moment that ak 6= 0 for eah k 2 N. Although thisnew form is similar to the polynomial ase above, the produt unfortu-nately may diverge. For instane, if ak = k then the orresponding produtQ1k=1 (1� z=k) does not represent an entire funtion (e.g. set z = �1 andreall that Q1k=1 (1 + 1=k) is divergent). On the other hand, if the seriesP1k=1 1=jakj onverges (e.g. ak = (k+1) ln(1+ k), (k+1)(ln(1+ k))2, k2),then the series 1Xk=1 ���� zak ���� = jzj 1Xk=1 1jakjonverges uniformly on every ompat subset of C and so, by Theorem11.30, the produt given by (11.38) represents an entire funtion f(z) withzeros at the same points ak (k 2 N) with the same multipliities as f(z), andat no other points. Therefore, if the produt (11.38) is not onvergent thenwe must somehow modify the produt form to ensure the onvergene of theprodut whih will enable us to onstrut an entire funtion whih vanishesat ak, k 2 N, and at no other points. This is exatly what Weierstrassdemonstrated by means of `primary fators' whih ensure the onvergeneof the in�nite produt.To arry out further disussion on this topi, we let E0(z) = 1�z. Then0 =2 E0(�). Moreover, for z 2 �,Z z0 E00(�)E0(�) d� = � Z z0 11� � d� = � 1Xk=1 zkk = Log (1� z)and exponentiating the last equality gives1� z = exp � 1Xk=1 zkk ! ; i.e. (1� z) exp 1Xk=1 zkk ! = 1:This suggests to de�neEp(z) =8><>: 1� z if p = 0(1� z) exp pXk=1 zkk ! if p 2 N :We all Ep(z), the Weierstrass primary fators. We note thatlimp!1Ep(z) = (1� z) exp(�Log (1� z)) = 1and we have the following result whih serves to estimate the error term inthe above approximation.11.39. Lemma. For p 2 N [ f0g, we have j1�Ep(z)j � jzjp+1 for alljzj � 1.



11.4 Fatorization of Entire Funtions 461Proof. For p = 0, the inequality is trivial. For p � 1, eah Ep is analytiin C and is in fat an entire transendental funtion admitting z = 1 as itsonly zero. Now, for p � 1, Ep(0) = 1 and a simple alulation givesE0p(z) =  �1 + (1� z) pXk=1 zk�1! exp pXk=1 zkk != �zp exp pXk=1 zkk != �zp 1Xk=0 akzk (say):It follows that E0p(z) has a zero of order p at z = 0, a0 = 1 and ak > 0 forall k � 1 (using Cauhy's rule on multipliation of series). Moreover,Ep(z)� 1 = Z z0 E0p(�) d� = � 1Xk=0 ak zk+p+1k + p+ 1whih, for z = 1, gives 1 =P1k=0 akk+p+1 : Using this, one obtainsjEp(z)� 1j � 1Xk=0 ak jzjk+p+1k + p+ 1 � jzjp+1 1Xk=0 akk + p+ 1 = jzjp+1and we are done.With the help of Ep(z), we are now prepared to onstrut entire fun-tions with presribed zeros. We onsider an arbitrary sequene of non-zeroomplex numbers fangn�1 suh that janj ! 1 as n ! 1 and show theexistene of a sequene of nonnegative integers pn � 0 suh that1Xn=1� rjanj�pn+1 <1(11.40)for eah r > 0: Suh a sequene fpngn�1 exists, for example, any pn withpn � n � 1 will always work (implying the ondition that is neessary forthe uniform onvergene of the series1Xn=1� zjanj�pn+1in every disk jzj � r). This fat is lear beause, if janj ! 1 as n ! 1then for eah given R > 0 only a �nite number of an's lies in jzj < R.Further, as janj ! 1, for the given R = 2r > 0, there exists an N = N(r)suh that janj > 2r for n � N . (In partiular, if pn � n� 1 then� rjanj�pn+1 � � rjanj�n < 12n for n � N



462 Representation for Entire and Meromorphi Funtionsso that for eah r > 01Xn=N � rjanj�pn+1 < 1Xn=N 12n = 12N�1 <1 ):Note that for jzj � R = 2r,����1� zan ���� � 1� ���� zan ���� � 1� Rjanj > 0 for n � Nand therefore, in the disk jzj � R, only a �nite number of fators (1�z=an)vanish. In partiular, for all n � N = N(r) and jzj � r, Lemma 11.39yields that ����1�Epn � zan����� � � jzjjanj�pn+1 � � rjanj�pn+1whih, by (11.40), assures that the series P1n=1 j1� Epn(z=an)j onvergesuniformly for jzj � r (see Weierstrass M -test for the uniform onvergeneof the series for ompat subset of C ). Sine r is arbitrary, this seriesonverges uniformly on every ompat subsets of C . Thus, by Theorem11.30, the in�nite produtP (z) = 1Yn=1Epn � zan� = 1Yn=1 �1 +�Epn � zan�� 1��onverges absolutely and uniformly on every ompat subset of C . LettingPn(z) denote the n-th partial produt for P (z), we have for jzj < rPn(z) = 12�i Zj�j=r Pn(�)� � z d�;by the Cauhy integral formula. Sine Pn ! P uniformly on ompatsubsets of C and eah Pn is entire, P is entire (e.g. see Theorem 12.4 andreall that analytiity is preserved under uniform limits). Therefore, thein�nite produt de�nes an entire funtion. Moreover, P (z) has zeros onlyat the points an with presribed multipliities. Indeed, by Theorem 11.30,the zeros of P (z) our exatly at the points z, where Epn(z=an) = 0: Thus,we need Epn(z=an) = 0 for some n. From the de�nition of Ep(z), we knowthat this happens exatly at z=an = 1 so that the zeros of P are the pointsfan : n 2 Ng. In onlusion, the desired entire funtion whih vanishes atan (n 2 N), and at no other points is given by1Yn=1Epn � zan�and therefore, we have the following result due to Weierstrass.



11.4 Fatorization of Entire Funtions 46311.41. Theorem. Let fangn�1 be a sequene of non-zero omplexnumbers (not neessarily distint) suh that janj ! 1 as n!1. Supposethat there exists a sequene of non-negative integers fpng suh that1Xn=1� rjanj�pn+1 <1for every r > 0 (Reall that any pn � n � 1 will always work). Then thein�nite produt Q1n=1Epn(z=an) represents an entire funtion P (z) andhas zeros at eah point an and not elsewhere. If a zero aj ours mj times,then P has a zero of order mj at aj .First, we should make it a point that it is possible that the seriesP1n=1 1=janj may diverge but P1n=1 1=janj2 onverges. Moreover, thereare sequenes fang (e.g. an = ln(n + 1)) suh that janj ! 1 and yetP1n=1 1=janjp diverges for eah p. Seondly, the Weierstrass fatorizationtheorem atually onstruts entire funtions with presribed zeros. In thisontext, the Weierstrass fatorization theorem may be onsidered to be\nier than" the Riemann mapping theorem whih demonstrates existeneof onformal maps between ertain simply onneted domains.11.42. Corollary. Let fangn�1 be a sequene of non-zero omplexnumbers suh that P1n=1 janj�2 <1; and m 2 N. Then the produtzm 1Yn=1E1� zan� = zm 1Yn=1�1� zan� ez=ande�nes an entire funtion, and it has zeros preisely at an (n 2 N) withpresribed multipliities and has a zero of order m at z = 0, but has noother zeros.Theorem 11.41 is often stated in the following simpli�ed form.11.43. Theorem. (Weierstrass Fatorization Theorem) Let f bean entire funtion satisfying the following onditions:(i) f has a zero of order m at z = 0 (by onvention take m = 0 iff(0) 6= 0)(ii) the remaining zeros of f are fangn�1 listed with multipliities.Then there is an entire funtion h suh thatf(z) = zmeh(z) 1Yn=1Epn � zan�(11.44)for some sequene of non-negative integers fpngn�1.



464 Representation for Entire and Meromorphi FuntionsProof. As mentioned already, we may onstrut an entire funtion g(z)by de�ning g(z) = zm 1Yn=1Epn � zan� :Then, g and f have exatly the same zeros with the same multipliities andtherefore, the quotient f(z)=g(z) is a nowhere vanishing entire funtion.Consequently (see Theorem 4.40), there exists an entire funtion h(z) suhthat f(z) = g(z) exp(h(z)) as desired.Note that the in�nite produt representation given by (11.44) is notunique sine the sequene fpng an be hosen in various ways. We knowthat pn = n � 1 always works but we do not know whether this is theonly hoie that might work. In Examples 11.45, we deal with two aseswhere pn = 0 and pn = 1, respetively. The formula (11.44) onstitutes theWeierstrass in�nite produt representation of an entire funtion in terms ofits zeros.11.45. Examples. Suppose that we wish to onstrut an entire fun-tion f with simple zeros at the points a0 = 0 and an = np (n 2 N); wherep > 1 is �xed. We may hoose pn = 0, sine the series1Xn=1 ��� znp ���pn+1 = jzj 1Xn=1 1npis onvergent for eah z, and the desired entire funtion is then given byf(z) = z 1Yn=1�1� znp� :Similarly, if we want to onstrut an entire funtion f with simple zerosat a0 = 0 and at an = n; n 2 Z (note that these are preisely the zeros ofsin�z). We may therefore hoose pn = 1, sine the seriesXn2Znf0g ���� zan ����pn+1 = Xn2Znf0g ���� zan ����2 = 2jzj2 1Xn=1 1n2onverges for eah z. Again, Weierstrass's theorem givesf(z) = z 1Yn=1E1 �1� zn� 1Yn=1E1 �1 + zn�= z 1Yn=1�1� z2n2�



11.4 Fatorization of Entire Funtions 465whih is an entire funtion with the desired properties. Note that the rear-rangement of the fators in the last expression is justi�ed by the absoluteonvergene of the in�nite produt. �As in Examples 11.45, for ertain sequenes fangn�1 of points, the non-negative integers in fpngn�1 an be hosen independent of n, say pn = pfor all n and for some p � 0. In this situation, the produt in Theorem11.43 takes the form Q1n=1Ep (z=an) for some non-negative integer p, andthe produt onverges uniformly on every ompat subset of C , see Setion11.8 for further disussion. The Weierstrass fatorization theorem has thefollowing important orollary.11.46. Corollary. Every meromorphi funtion in C an be repre-sented as a quotient of two entire funtions.Proof. Assume that f is analyti on C exept for poles say at the pointsa1; a2; : : :. Let g be an entire funtion with zeros preisely at an suh thatthe order of the zero of g at an equals the order of the pole of f at an(suh a funtion g exists by Theorem 11.41). Then, fg has only removablesingularities at the points a1; a2; : : : and thus an be extended to an entirefuntion G with no zeros in C . HeneG(z) = f(z)g(z) or f(z) = G(z)g(z) ;where g and G are entire.We have the following interpolation result for analyti funtions.11.47. Corollary. Suppose fangn�1 is a sequene of distint om-plex numbers having no �nite limit point. Then for a given sequenefbngn�1 of omplex numbers, there exists an entire funtion G suh thatG(an) = bn for every n.Proof. Assume that f is analyti on C exept for simple poles at z = anwith Res [f(z); an℄ = bn=g0(an), where g is an entire funtion with simplezeros preisely at an. Note that suh funtions exist by Mittag-Le�er'stheorem and Weierstrass's theorem (In ase bn is zero for some n, thenassume that f is analyti at an). Then fg has only removable singularitiesat the points a1; a2; : : : and thus an be extended to an entire funtion G.Further, we have the expansions for g and fg(z) = 1Xk=1 g(k)(an)k! (z � an)k and f(z) = bn=g0(an)z � an + f1(z);where f1(z) is analyti in some neighborhood of an. Finally,G(an) = limz!an f(z)g(z) = bn



466 Representation for Entire and Meromorphi Funtionsand we omplete the proof.11.48. Example. We know that sin�z has simple zeros at n 2 Z.Arrange the non-zero zeros of sin�z in a suh a way that they form a se-quene with non-dereasing moduli, and observe that the seriesP1n=1 1=n2onverges whereasP1n=1 1=n diverges. Therefore, it is onvenient to hoosethe number pn �guring in Theorem 11.43 equal to 1. Choosing pn = 1, byTheorem 11.43, it follows thatsin�z = eh(z)z Yn2Znf0g�1� zn� ez=n= zeh(z) 1Yn=1�1� zn� ez=n �1 + zn� e�z=n= zeh(z) 1Yn=1�1� z2n2�(11.49)where h(z) is some entire funtion. Next we need to show that h(z) is aonstant suh that eh(z) = �. One this is done, then we get the produtrepresentation for sin�z in the formsin�z�z = 1Yn=1�1� z2n2� :(11.50)Now, to �nd h(z), we proeed as follows: LetPn(z) = eh(z)z nYk=1�1� z2k2� :(11.51)Then we know that Pn ! sin�z (uniformly on diss) as n ! 1 so thatP 0n(z)! � os�z as n!1. Thus, as n!1,P 0n(z)Pn(z) ! � ot�z for z 2 C n fm : m 2 Zg:Using the loal uniform onvergene ofP1k=1 jz=kj2 in C , we may form thelogarithmi derivative on both sides of (11.51) and �nd thatP 0n(z)Pn(z) = h0(z) + 1z + nXk=1 2zz2 � k2 ! � ot�z as n!1:A omparison of this with (11.12) shows that h0(z) = 0, so h(z) is a on-stant, say, . Therefore, (11.49) beomessin�zz = e 1Yk=1�1� z2k2� :



11.4 Fatorization of Entire Funtions 467Sine limz!0(sin�z)=z = � and the right hand side approahes e as z ! 0,we have e = � and we obtain the desired formula (11.50). �11.52. Example. Using Example 11.11, we an provide an alter-nate proof of (11.50). To do this, we start by observing that the seriesP1k=1 zk=k2 onverges uniformly on every ompat subset of C . Thus,g(z) = z 1Yk=1�1� z2k2�represents an entire funtion. Observe that for x 2 (0; 1), g(x) > 0 andln g(x) = lnx+ 1Xk=1 ln�1� x2k2� ;by the uniform onvergene of the derived series. Finally, for x 2 (0; 1),ddx (ln g(x)) = 1x + 1Xk=1 2xx2 � k2= � ot�x; by Example 11.12,= ddx (ln sin�x) ;whih shows thatddx �ln� g(x)sin�x�� = 0; i.e. ln� g(x)sin�x� = onstant:Therefore, there exists a real onstant  suh thatg(x) =  sin�x; i.e. sin�x�x = 1� 1Yk=1�1� x2k2� ; x 2 (0; 1):Taking the limit x ! 0, we get � = 1. Thus, the formula (11.50) followsfrom the uniqueness theorem. Now, some speial ases follow.(i) Substituting z = i in (11.50) gives1Yn=1�1 + 1n2� = e� � e��2� = sinh�� :(ii) The produt representation for the osine funtion may be obtaineddiretly from (11.50). Indeed, by (11.50), we see thatsin 2�z2�z = 1Yn=1�1� 4z2n2 �



468 Representation for Entire and Meromorphi Funtionswhih, by the identity 2 sin�z os�z = sin 2�z; gives� sin�z�z � os�z = 1Yn=1�1� 4z2n2 �= 1Yn=1 1�� 2z2n�2! 1�� 2z2n� 1�2!= 1Yn=1�1� z2n2� 1Yn=1�1� 4z2(2n� 1)2�so that os�z = 1Yn=1�1� 4z2(2n� 1)2� ; z 2 C :Using the formulaeeiz + 1 = 2eiz=2 os(z=2) and eiz � 1 = 2ieiz=2 sin(z=2);the produt representation for the entire funtions eiz +1 and eiz � 1an be ahieved with the help of the orresponding representationsfor os z and sin z. Consequently, if we replae z by �iz then we anquikly establish the formulaez � 1 = zez=2 1Yn=1�1 + z24�2n2� ; z 2 C :(11.53)(iii) A omparison of the produt expansion of an entire funtion withits power series expansion often leads to interesting onlusions. Forexample, by equating the produt expansion (11.50) of sin�z with itsTaylor's series expansion about 0, we see that�z 1Yn=1�1� z2n2� = �z � (�z)33! + (�z)55! � � � � :(11.54)Beause of the uniqueness of the Taylor oeÆients, a omparison ofthe oeÆients of z3 on both sides shows that���1 + 122 + 132 + � � �� = ��33! ; i.e. 1Xn=1 1n2 = �26 :(iv) If z = 1=2, then (11.50) gives the `Wallis produt formula'1 = �2 1Yk=1�1� 14k2� = �2 1Yk=1�4k2 � 14k2 � :



11.5 The Gamma Funtion 469Consequently,�2 = 1Yk=1 2k2k � 1 � 2k2k + 1 = �2 � 21 � 3��4 � 43 � 5��6 � 65 � 7� � � �= limn!1��2 � 21 � 1��4 � 43 � 3� � � � � 2n � 2n(2n� 1) � (2n� 1)� 12n+ 1�or equivalentlyr�2 = limn!1� 2 � 4 � 6 � � � 2n1 � 3 � 5 � � � (2n� 1) 1p2n+ 1�whih is often alled the \Wallis identity". This formula an be writ-ten in the formr�2 = limn!1( (2 � 4 � 6 � � � 2n)2(1 � 3 � � � (2n� 1))(2 � 4 � � � 2n) 1p2np1 + 1=2n)whih gives p� = limn!1 22n(n!)2(2n)!n1=2 : �11.5 The Gamma FuntionThe study of the �-funtion that involves the integral form�(x) := Z 10 �log 1t�x�1 dt = Z 10 e�ttx�1 dt (x > 0)(11.55)was �rst introdued by Euler in 1729. Di�erentiating the integral (11.55)gives �(n)(x) = Z 10 e�ttx�1(log t)n dt; n 2 N:Clearly �(1) = 1 and for x > 0, integration by parts yields the funtionalequation �(x+ 1) = x�(x)(11.56)beause�(x+ 1) = Z 10 tx d(�e�t) = �txe�tj10 + x Z 10 e�ttx�1 dt = x�(x):For x = n 2 N, the funtional equation beomes �(n + 1) = n! and there-fore, the �-funtion is seen as an extension of the fatorial funtion for xbelonging to R nf0;�1;�2; : : : g: Indeed, in view of the funtional equation(11.56), we have�(x) = �(x+ 1)x = �(x+ 2)x(x + 1) = � � � = �(x+ n)x(x + 1) � � � (x+ n� 1) :



470 Analyti ContinuationThis observation suggests that it is possible to extend the �-funtion onthe whole real axis exept on the negative integers f0;�1;�2; : : : g. Weare interested in disussing the following questions:� Does there exist an analog of (11.55) for Re z > 0?� Is it possible to extend �(x) de�ned by (11.55) to C nf0;�1;�2; : : : g?� What an we say about the points in f0;�1;�2; : : : g?� What is the ounterpart of (11.56) when x takes omplex values?� What are the basi onsequenes of the extended gamma funtion?There are two simple approahes through whih one an answer these ques-tions. Let us �rst allow the integral (11.55) to extend the \fatorial fun-tion" to the omplex plane. Now,jtzj = jez log tj = eRe z ln t = tRe z for t > 0so that if we replae x in (11.55) by the omplex variable z, the resultingfuntion (alled the lassial gamma funtion) given by�(z) = Z 10 e�ttz�1 dt(11.57)is uniformly onvergent for Re z > 0. For this funtion, the point z = 0 isa singularity beause�(�) = Z 10 e�tt��1 dt = Z 10 e�tt1�� dt!1 as �! 0:11.58. Gamma funtion via produt representation. We reallthat zG(z)G(�z) = sin�z� ; G(z) = 1Yn=1 h�1 + zn� e�z=ni :(11.59)Here G(z) is entire and it has simple zeros at all negative integers. Clearly,the zeros of G and G(z � 1) are the same, exept that G(z � 1) has a zeroat z = 0. It follows from the Weierstrass fatorization theorem thatG(z � 1) = ze(z)G(z)or equivalently,1Yn=1�z + n� 1n � e�(z�1)=n = ze(z) 1Yn=1�z + nn � e�z=n;for some entire funtion (z) whih is to be determined. In order to �nd(z), we take the logarithmi derivative of the last equation and obtain1Xn=1� 1z + n� 1 � 1n� = 1z + 0(z) + 1Xn=1� 1z + n � 1n� :



11.5 The Gamma Funtion 471Replae n by n + 1 on the L.H.S and note that P1n=1 � 1n+1 � 1n� = �1.This gives that 0(z) = 0 so that (z) is a onstant whih we denote by .Therefore, G(z � 1) = zeG(z):To �nd the value of the onstant , we observe that G(0) = 1 and so wemay let z = 1. This gives1 = eG(1); i.e. e� = 1Yn=1�1 + 1n� e�1=n:Taking the logarithm on both sides� = 1Xn=1�ln�1 + 1n�� 1n�= limn!1 nXk=1�ln�1 + 1k�� 1k�= limn!1�ln�21 � 32 � � � nn� 1�+ ln�1 + 1n���1 + 12 + � � � + 1n��= limn!1�lnn��1 + 12 + � � � + 1n�� ; sine limn!1 ln�1 + 1n� = 0:Thus,  = limn!1�1 + 12 + � � � + 1n � lnn� = 0:5772 � � � :(11.60)The onstant  is alled Euler's onstant. The question of whether  isrational or irrational seems to be still open. In onlusion, the produtrepresentation of the gamma funtion is de�ned by�(z) = 1zezG(z) = e�zz 1Yn=1 ��1 + zn��1 ez=n� :(11.61)We have the following onsequenes of the de�nition:� In view of (11.61) and taking into aount (11.60), we dedue theformula of Gauss�(z) = limn!1 e�zz nYk=1 ��1 + zk��1 ez=k�= limn!1 ez lnnz nYk=1� kz + k�= limn!1 n!nzz(z + 1) � � � (z + n)whih is valid for all z 6= 0;�1;�2; : : : .



472 Analyti Continuation� In view of (11.61), we have �(z+1) = z�(z), whih is alled Riemann'sFuntional Relation for the gamma funtion.� By (11.59), we have the identity�(1� z)�(z) = �z�(�z)�(z) = 1zG(z)G(�z) = �sin�z :In partiular, �(1=2) = p�.� Repeated appliation of �(z + 1) = z�(z) gives �(n+ 1) = n!.� �(z) never vanishes in C as, for z 62 f0;�1;�2; � � � g, the gammafuntion is given by a onvergent in�nite produt of non-zero fators.Moreover, the representation1�(z) = zezG(z) = zez 1Yn=1 h�1 + zn� e�z=ni ; z 2 C ;makes expliit that the gamma funtion never vanishes and that ithas simple poles preisely at 0;�1;�2; : : : . The funtional equation�(z) = �(z + 1)z = � � � = �(z + n+ 1)z(z + 1) � � � (z + n)shows that Res [�(z); 0℄ = limz!0 z�(z) = limz!0 �(z+1) = �(1) = 1and for n 2 N, we haveRes [�(z);�n℄ = limz!�n(z + n)�(z)= limz!�n �(z + n+ 1)z(z + 1)(z + 2) � � � (z + n� 1)= �(1)(�n)(�n+ 1) � � � (�1) = (�1)nn! :So, �(z) is meromorphi in C .� Take the logarithmi derivative of (11.61) to get�0(z)�(z) = � � 1z + 1Xn=1�� 1z + n + 1n�so that ddz ��0(z)�(z) � = 1Xn=0 1(z + n)2 :(11.62)As �(z)�(z+1=2) and �(2z) have the same set of poles, we an write�(z)�(z + 1=2) = e�(z)�(2z)



11.6 The Zeta Funtion 473for some entire funtion �(z). In fat, by (11.62), we see thatddz ��0(z)�(z) + �0(z + 1=2)�(z + 1=2) � = 1Xn=0 4(2z + 2n)2 + 1Xn=0 4(2z + 2n+ 1)2= 4 1Xn=0 1(2z + n)2= 2 ddz ��0(2z)�(2z) �whih, upon integration, shows that�(z)�(z + 1=2) = eaz+b�(2z)for some onstants a and b. To �nd the values of a and b, we substitutez = 1=2; 1 and obtain (note that �(1=2) = p�, �(3=2) = p�=2)p� = e(a=2)+b; p�2 = ea+bwhih, by dividing one by the other, gives ea=2 = 1=2 and eb = 2p�:It follows that a = �2 ln 2 and thus, we obtain the so alled Legendre'sdupliation formulap��(2z) = 22z�1�(z)�(z + 1=2):(11.63)11.6 The Zeta FuntionThe zeta funtion was �rst introdued by Euler. There are two importantformulas whih de�ne the zeta funtion in two di�erent ways either asseries form or as an Euler produt. By the series formula of Riemann, thisis expressed as �(s) = 1Xn=1 1ns ; s = � + it;(11.64)where we use the traditional notation to denote the omplex variable bys = � + it. The funtion � represented by the series (11.64) is alled theRiemann zeta funtion or simply the zeta funtion. This funtion, whihis of speial interest, provides a link between number theory and funtiontheory. Also, it is of entral importane in number theory partiularly inthe study of the distribution of prime numbers. First we shall show thatthe series (11.64) onverges for � > 1. To do this we let � � �0 > 1. Then,by the de�nition of ns,jnsj = je(�+it) log nj = e� lnn = n� � n�0 ; i.e. ���� 1n�+it ���� � 1n�0 :



474 Analyti ContinuationFurther, sine 1x�0 is dereasing for x > 0,Z n+1n dxx�0 < 1n�0 < Z nn�1 dxx�0where the inequality on the left holds for n � 1 and that on the right holdsfor n � 2. Hene, for any natural number N � 2, we haveNXn=2 1n�0 < Z N1 dxx�0 = 1��0 + 1 � 1N�0�1 � 1�! � 11� �0 as N !1and so, as the partial sum is an inreasing sequene bounded above, theseries onverges. Indeed,j�(s)j � 1Xn=1 ���� 1n�+it ���� � 1Xn=1 1n�0 < 1 + Z 11 dxx�0 = 1 + 1�0 � 1 = �0�0 � 1 :Therefore, the series on the right of (11.64) onverges uniformly and abso-lutely for � � �0 > 1. As f(s) = n�s = e�s lnn, eah term in the series(11.64) is an analyti funtion of s and therefore, f 0(s) = � lnnns : Moreover,the Weierstrass M -test shows that the � funtion is analyti for Re s > 1with derivatives� 0(s) = � 1Xn=1 lnnns and �(k)(s) = (�1)k 1Xn=1 (lnn)kns ; k 2 N:The � funtion so de�ned is related to the study of prime numbers by thefollowing11.65. Theorem. (Euler's Produt Formula) For s = �+ it, � > 1,we have �(s) =Y�1� 1ps��1 or 1�(s) =Y�1� 1ps� ;(11.66)where the produt is taken over all prime numbers p. In partiular, � 6= 0for Re s > 1.Proof. By Corollary 11.22, the in�nite produtQp;prime (1� p�s) on-verges uniformly for � � �0 > 1 as the series Pp�prime p�s is obtained byomitting terms of P1n=1 n�s whih onverges uniformly for � � �0 > 1.Now onsider the series (11.64) for � > 1, and�(s) 12s = 12s + 14s + 16s + � � � :



11.6 The Zeta Funtion 475Subtrating this equation from (11.64), we obtain that�(s)�1� 12s� = 1 + 13s + 15s + � � � :Similarly, one an �nd that�(s)�1� 12s��1� 13s� = 1 + 15s + 17s + 111s + � � � :More generally,�(s) �1� 2�s� �1� 3�s� � � � �1� p�sN � =Xm�s = 1 + p�sN+1 + � � �where the sum on the right being over all positive integers that ontainnone of the prime fators 2; 3; : : : ; pN . Therefore, allowing N ! 1, itfollows that �(s)Qp;prime (1� p�s) = 1 and the onlusion follows.The two de�nitions of the Riemann zeta funtion, namely the seriesform (11:64) and the produt form (11.66), are equivalent. Either of themmay be taken as a de�nition of �(s) for Re s > 1. The following relationshipbetween the �-funtion and the �-funtion may be studied in several forms.11.67. Theorem. (Integral representation of zeta funtion) ForRe s > 1, we have �(s) = 1�(s) Z 10 xs�1ex � 1 dx:(11.68)Proof. The integral de�nition of the �-funtion given by (11.57) to-gether with the hange of variable t = nx imply that for Re s > 1�(s)ns = Z 10 e�nxxs�1 dx:Summation over all positive integer n in the equation gives�(s)�(s) = Z 10 xs�1 1Xn=1(e�x)n dx = Z 10 xs�1ex � 1 dxwhere we have used the fat that the partial sums of the geometri se-ries P1n=1(e�x)n form an inreasing sequene of funtions that onvergesuniformly on eah interval [�;1), � > 0. This observation justi�es theinterhange of the summation and the integration.11.69. Global representation of �(s). The de�nition of the � fun-tion given by (11.64) and (11.66) are valid only for Re s > 1. We wish toextend the � funtion to C n f1g and show that � is meromorphi in C and



476 Analyti Continuation
O

−2πi

C = Cǫ

2πi

x

y

−2(n + 1)πi

−2nπi

n−n

2nπi

2(n + 1)πi

x

y

Figure 11.1: Contour for the ontinuation of � funtion.has a simple pole only at s = 1 with residue 1. Aording to (11.68), ifwe an show that the integral in (11.68) is a meromorphi funtion of sin C then the �-representation given by this integral an be used as thede�nition of the � funtion on C . Unfortunately, in the present form, theintegral in (11.68) is improper and is divergent for Re s < 0, beause as xnears zero, ���� xs�1ex � 1 ���� � xRe s�2:Riemann overame this diÆulty, through a trik. To disuss this, we needto represent �(s) as a ontour integral by hoosing a suitable ontour thatavoids the origin so that the resultant form beomes entire. For s 2 C �xed,onsider f(z) = (�z)s�1ez � 1 = e(s�1)Log (�z)ez � 1 :This funtion is analyti in C n [fx 2 R : x � 0g [ f2k�i : k 2 Zg℄: De�ne�(s) = 12�i ZC f(z) dz;(11.70)where C = C� = C�(Æ) is the \Hankel ontour" shown in Figure 11.1 with0 < � < 2�. This integral onverges, and it represents an entire funtionof s. Indeed, the integrand is an entire funtion of s implying that �(s) isentire. Sine the region bounded by the ontours C� and C� ontains nopoles of f(z) for 0 < � < � < 2�, by Cauhy's theorem, we see that thevalue of the integral in (11.70) is independent of �.11.71. Theorem. For Re s > 1,�(s) = ��(1� s)2�i ZC (�z)s�1ez � 1 dz:(11.72)



11.6 The Zeta Funtion 477Proof. Sine the integral in (11.70) is independent of the shape of C aslong as C does not enlose any integer multiple of 2�i, we are free to allow�! 0. We also note that, for z = x+ iÆ := �ei� with x > 0,Log (�z) = Log (�x� iÆ)! ln x� i� as 0 < Æ ! 0and, for z = x� iÆ,Log (�z) = Log (�x+ iÆ)! ln x+ i� as 0 > Æ ! 0:First, as Æ ! 0, we express the integral (11.70) as2�i�(s) = �Z1 + Z2 + Z3� f(z) dz; f(z) = (�z)s�1ez � 1 ;= Z �1 e(s�1)(lnx�i�)ex � 1 dx+ Zjzj=� f(z) dz + Z 1� e(s�1)(lnx+i�)ex � 1 dx= �2i sin(�s) Z 1� xs�1ex � 1 dx+ Zjzj=� f(z) dzbeausee(s�1)(lnx+i�) � e(s�1)(lnx�i�) = xs�1 he(s�1)i� � e�(s�1)i�i= �xs�12i sin(�s):Suppose, for the moment, that Re s > 1. As ez � 1 has a simple zero atthe origin, by the ontinuity of ez � 1, we see that for jzj suÆiently small,jez � 1j � jzj=2 and so there exists an M > 0 suh that�����Zjzj=� (�z)s�1ez � 1 dz����� �M Zjzj=� 2�Re s�1� jdzj = 4�M�Re s�1:Consequently, the integral tends to zero as � ! 0 and beause Re s > 1.Finally, we may evaluate �(s) by letting � ! 0 in the last equation. Thisgives �(s) = � sin�s� Z 10 xs�1ex � 1 dx= � sin�s� �(s)�(s); by Lemma 11.67;= � �(s)�(1� s) ; sine �(1� s)�(s) = �sin�s :Thus, (11.72) follows.Note that �(s) is an entire funtion of s and the fator �(1 � s) hassimple poles at s = 1; 2; : : : . The left hand side of (11.72), on the other



478 Analyti Continuationhand, is de�ned at all suh points exept for s = 1. Thus, the equation(11.72) de�nes an analyti funtion exept possibly with a simple pole ats = 1. Now, �(s) has a simple pole at s = 0 with residue 1 and so,�(1� s) � 11� s = � 1s� 1 for s near 1:Thus, lims!1(s� 1)�(s) = � lims!1(s� 1)�(1� s)� 12�i Z (�z)s�1ez � 1 dz�= �(�1) � 12�i Z dzez � 1�= Res � 1ez � 1 ; 0� = 1and we have established the following11.73. Theorem. The � funtion is analyti in C nf1g and has asimple pole at s = 1 with residue 1.Riemann used the de�nition of the � funtion de�ned by (11.72) toderive many interesting relations (suh as the funtional equation of the� funtion and the funtion �(s), below) whih atually help to verify theso-alled Riemann hypothesis. Let us �rst prove the funtional equationwhih provides more expliit information about the analyti ontinuationof � to C n f1g.11.74. Theorem. For all s 2 C , the �-funtion satis�es Riemann'sfuntional equation�(s) = 2s�s�1 sin(�s=2)�(1� s)�(1� s):(11.75)In partiular (as �(1� s) 6= 0 for Re s < 0), �(�2k) = 0 for k 2 N.Proof. It suÆes to prove this theorem for s < 0. De�ne�n(s) = 12�i ZCn f(z) dz; f(z) = (�z)s�1ez � 1 ;where Cn is as shown in Figure 11.1. Note that the retangle has vertiesat �n� (2n+1=2)�i. The idea is to relate �(s) to �n(s) using the alulusof residues and then to let n!1.For z on the sides of the retangle, we have jez � 1j > 1=2 and so fors < 0, jf(z)j = �����e(s�1)Log (�z)ez � 1 ����� � 2ns�1:



11.6 The Zeta Funtion 479By the ML-inequality (see Theorem 4.9(iii)), j�n(s)j � Kns ! 0 as n!1.Consequently,�n(s)� �(s) = 2�i� (sum of the residues of f(z) inside the retangle):The poles of f(z) are simple and they our at zk = �2k�i, 1 � k � n,with residue limz!zk(z � zk) (�z)s�1ez � 1 = limz!zk 1ez limz!zk(�z)s�1= (�2�ki)s�1= e(s�1)[ln j2�kj�i�=2℄= (2�k)s�1e�(s�1)i�=2:It follows that12�i ZCnnC (�z)s�1ez � 1 dz = nXk=1(2�k)s�1 �e�(s�1)i�=2 + e(s�1)i�=2�= 2 nXk=1(2�k)s�1 os[(s� 1)�=2℄= 2s�s�1 sin(�s=2) nXk=1 1k1�s :Allowing n!1, it follows that (sine �n(s)! 0 as n!1)� 12�i ZC (�z)s�1ez � 1 dz = 2s�s�1 sin(�s=2)�(1� s):If we ombine this with (11.72) and follow the disussion presented afterits proof, we obtain the funtional equation for s < 0. Sine both sides ofthe funtional equation are meromorphi and agree on a non-empty openset, it holds for all s by the uniqueness theorem.There are equivalent forms of the funtional equation (see for example,Exerise 11.125). If we replae z by (1� s)=2, then Legendre's dupliationformula for the gamma funtion (11.63) beomes�1=2�(1� s) = 2�s�((1� s)=2)�(1� s=2) = 2�s��((1� s)=2)�(s=2) sin(�s=2)so that �(1� s) sin(�s=2) = 2�s�1=2�((1� s)=2)�(s=2) :In view of this equation, (11.75) is equivalent to��s=2�(s=2)�(s) = ��(1�s)=2�((1� s)=2)�(1� s):



480 Representation for Entire and Meromorphi FuntionsThus, the funtional equation takes the form�(s) = �(1� s); �(s) = ��s=2�(s=2)�(s):Clearly, � has simple poles at s = 0; 1. If we multiply it by s(1� s)=2, wesee that the funtion�(s) = s(1� s)2 �(s) = s(1� s)2 ��s=2�(s=2)�(s)is entire and satis�es the relation �(s) = �(1� s).11.76. Riemann Hypothesis. The funtional equation of the � fun-tion enables us to loate the zeros of �(s). Beause of the produt repre-sentation (11.66), the � funtion has no zeros if Re s > 1. We know that�(s) never vanishes in C and is analyti exept at s = 0;�1;�2; : : : . Con-sequently, both �(1�s) and �(1�s) are analyti and non-zero for Re s < 0.The funtional equation then says that the only zeros of �(s) for Re s < 0are the zeros of sin(�s=2), that is only at s = �2;�4; : : : : These are knownas the trivial zeros of the � funtion. It is not diÆult to show that thereare no zeros on Re s = 0 and Re s = 1. We onlude that all the non-trivialzeros of the � funtion lies in the strip fs : 0 < Re s < 1g, whih is alledthe ritial strip. It is known that there are in�nitely many zeros on theline s = 1=2 + it; t 2 R. This line in the s-plane is alled the ritial line.Again, sine (1� 21�s)�(s) = 1� 12s + 13s � � � � > 0for 0 < s < 1 and �(0) 6= 0, �(s) has no zeros on the real interval (0; 1). Thisobservation implies that all possible zeros of �(s) in the ritial strip areomplex numbers. The Riemann hypothesis asserts that \All the nontrivialzeros of � funtion lie on the ritial line Re s = 1=2".Although this has been shown to be true for more than one billionnon-trivial zeros, the onjeture remains open, despite the e�orts of someof the greatest analysts sine Riemann's time. It is the most famous un-solved problem onfronting 21-th entury mathematiians, espeially afterthe proof of Fermat's last theorem. No alulation had ever ontradited thehypothesis. The Clay Mathematis Institute of Cambridge, Massahusetts,o�ers one million US dollars for a proof of the Riemann hypothesis.11.7 Jensen's FormulaSuppose that g 2 H(�) and that it is zero-free on �. Then g is a nowherevanishing analyti funtion on �R for some R > 1, and so there existsan h 2 H(�) suh that g(z) = eh(z). In partiular, g admits an analytilogarithm on �R. The Cauhy integral formula applied to log g(z) yieldsthat log g(0) = 12� Z 2�0 log g(ei�) d�:



11.7 Jensen's Formula 481Equating the real parts givesln jg(0)j = 12� Z 2�0 ln jg(ei�)j d�(11.77)(we observe that the right hand side of (11.77) is an improper integral if ghas a zero on the irle jzj = 1). For example, if jaj < 1 and one onsidersg(z) = 1� az then g 2 H(�) and is zero-free there so that (11.77) gives0 = ln 1 = 12� Z 2�0 ln j1� aei�j d� = 12� Z 2�0 ln j1� ae�i�j d�:(11.78)More generally, we prove11.79. Lemma. For a 2 C with jaj < r, we have12� Z 2�0 ln jr � ae�i�j d� = ln r:(11.80)(Note that r = 1 gives (11:78)).Proof. We may rewrite jr�ae�i�j as rj1� (a=r)e�i�j = rj1� (a=r)ei�jso that ln jr � ae�i�j = ln r + ln j1� (a=r)ei�j and12� Z 2�0 ln jr � ae�i�j d� = ln r + 12� Z 2�0 ln j1� (a=r)ei�j d�:Note that the integral on the right vanishes with the same reasoning asabove (by onsidering g(z) = 1� (a=r)z). Therefore, (11.80) follows.Alternatively, for jbj < 1, we obtain that12� Z 2�0 ln j1� bei�j d� = Re � 12� Z 2�0 Log (1� bei�) d��= Re " 12�i Zjzj=b Log (1� z)z dz#= ln 1 = 0; by the Cauhy integral formula,and therefore, (11.80) holds.11.81. Lemma. If I = 12� R 2�0 ln j1� ei�j d�; then I = 0.Proof. Sine sin' � 0 on [0; �℄, we writej1� ei�j = je�i�=2 � ei�=2j = 2 sin(�=2)



482 Representation for Entire and Meromorphi Funtionsfor � 2 [0; 2�℄. Therefore, ln j1� ei�j = ln 2 + ln sin(�=2) so thatI = Z 2�0 ln j1� ei�j d� = 2� ln 2 + Z 2�0 ln sin(�=2) d�= 2� ln 2 + 2 Z �0 ln sin t dt (� = 2t):To omplete the proof it suÆes to show that R �0 ln sin t dt = �� ln 2. Notiethat this integral is improper, but its onvergene is obvious. Now, we �ndthat J = Z �0 ln sin t dt = 2 Z �=20 ln sin t dt = 2 Z �=20 ln os s ds(use the hange of variable t = �=2� s in the seond integral) and we alsosee that J = Z �0 ln[2 sin(t=2) os(t=2)℄ dt= Z �0 ln 2 dt+ Z �0 ln sin(t=2) dt+ Z �0 ln os(t=2) dt= � ln 2 + 2 Z �=20 ln sin(t) dt+ 2 Z �=20 ln os(t) dt= � ln 2 + 2J:Thus, J = �� ln 2 and so, I = 0.We will now investigate what happens to (11.77) in the presene of zerosas well as poles in �. Also, we remark that there is a similar generalizationof the Poisson integral formula (see Exerise 11.119).11.82. Theorem. (Jensen's Formula for the losed unit disk) Letf be meromorphi in �. Suppose that(i) 0 is neither a zero nor a pole of f(ii) ai (1 � i � m) and bj (1 � j � n) denote the zeros and poles of f in� (ounted as many times as its order of multipliities), respetively.Then we have12� Z 2�0 ln jf(ei�)j d� = ln jf(0)j+ ln Qnj=1 jbj jQmi=1 jaij! :(11.83)11.84. Observations. There are a number of interesting observa-tions we an make from (11.83).



11.7 Jensen's Formula 483(i) Equation (11.83) is alled the Jensen formula for meromorphi fun-tion in the losed unit disk �. First we shall obtain a general result(see Corollary 11.85) as a onsequene of this result.(ii) The seond sum on the right hand side of (11.83) will not appear whenf has neither zeros nor poles on jzj � 1 (in this ase, f is atually inH(�) with f(0) 6= 0; ompare with (11.77)). This fat will be learin the proof.(iii) Equation (11.83) yields Jensen's inequality:ln"jf(0)j Qnj=1 jbj jQmi=1 jaij!# � sup0��<2� ln jf(ei�)j:(iv) Jensen's formula (11.83) may be equivalently written asjf(0)j Qnj=1 jbj jQmi=1 jaij! = exp� 12� Z 2�0 ln jf(ei�)j d�� :(v) Formula (11.83) shows that the integral on the right exists even if thefuntion f has a zero or pole on the unit irle jzj = 1. In ase f inTheorem 11.82 has a zero of order p � 1 at z = 0 but has no poles atz = 0, then onsider the funtionG(z) = ( z�pf(z) if z 6= 0limz!0 z�pf(z) if z = 0whih guarantees that G(0) = f (p)(0)=p! 6= 0. Now, apply Theorem11.82 to G(z) and obtain12� Z 2�0 ln jf(ei�)j d� = ln ����f (p)(0)p! ����+ ln Qnj=1 jbj jQmi=1 jaij! :Do the same trik if f has a pole of order q at 0. This means thatone has to multiply by zq and apply Theorem 11.82 for zqf(z).Proof. Case (i): Suppose that none of the zeros or poles of f(z) aresituated on jzj = 1. We need to de�ne a funtion F (z) whih is free fromall the zeros and the poles of f(z) in � and suh that F 2 H(�) withjf(z)j = jF (z)j on jzj = 1. By realling�a(z) = a� z1� az (�a 2 H(�); �a(0) = a; �a(�) = �; �a(��) = ��);suh a funtion is learly given byF (z) = f(z) mYi=1 1�ai(z)!0� nYj=1 �bj (z)1A :



484 Representation for Entire and Meromorphi FuntionsSine F 2 H(�) and F (z) 6= 0 for jzj � 1, there exists a g 2 H(�) suh thatF (z) = eg(z). In partiular, g(z) = logF (z) and its real part is ln jF (z)j sothat 12� Z 2�0 ln jF (ei�)j d� = ln jF (0)jwhih is same as (11.83), sine jf(ei�)j = jF (ei�)j andF (0) = f(0) mYi=1 1ai!0� nYj=1 bj1A :Case (ii): Suppose that f does have zeros on jzj = 1. Then these zerosmay be enumerated so thatja1j � � � � � japj < 1; jap+1j = � � � = jamj = 1:In this ase F (z) de�ned in Case (i) should be replaed byF (z) = f(z) pYi=1 1�ai(z)!0� mYi=p+1 aiai � z1A0� nYj=1 �bj (z)1Aprovided none of the poles lies on jzj = 1. In ase some of the poles also lieon jzj = 1, then enumerate these poles as above, sayjb1j � � � � � jbqj < 1; jbq+1j = � � � = jbmj = 1;and set F (z) byF (z) = f(z) pYi=1 1�ai(z)!0� mYi=p+1 aiai � z1A0� qYj=1�bj (z)1A0� nYj=q+1 bj � zbj 1A :Note that (as j�a(ei�)j = 1 for eah a 2 �)jF (ei�)j = ������f(ei�)0� mYi=p+1 aiai � ei�1A0� nYj=q+1 bj � ei�bj 1A������and F (0) = f(0) pYi=1 1ai!0� qYj=1 bj1A :In either situation, F 2 H(�) and F (z) 6= 0 for jzj � 1. Thus,12� Z 2�0 ln jF (ei�)j d� = ln jF (0)j



11.7 Jensen's Formula 485and it follows that12� Z 2�0 ln jf(ei�)j d� � 12� Z 2�0 0� mXi=p+1 ln jai � ei�j � nXi=q+1 ln jbj � ei�j1A d�= ln ������f(0) pYi=1 1ai!0� qYj=1 bj1A������ :Reall that if jaj = 1 then ln ja � ei�j = ln j1 � aei�j and so, by Lemma11.81, R 2�0 ln ja� ei�j d� = 0 whenever jaj = 1. In view of this observation,the last equation beomes12� Z 2�0 ln jf(ei�)j d� = ln ������f(0) pYi=1 1ai!0� qYj=1 bj1A������whih is learly equivalent to (11.83).11.85. Corollary. Let f be meromorphi in �R. Suppose that(i) 0 is neither a zero nor a pole of f(ii) ai (1 � i � m) and bj (1 � j � n) denote the zeros and poles of f in�R (ounted as many times as its order of multipliities), respetively.Then we have12� Z 2�0 ln jf(Rei�)j d� = ln jf(0)j+ mXi=1 ln� Rjaij�� nXj=1 ln� Rjbj j� :Proof. It is suÆient to note that f(z) is meromorphi in �R if andonly if g(z) de�ned by g(z) = f(Rz) is meromorphi in �. Note alsothat g(ei�) = f(Rei�) and a 2 �R i� a=R 2 �. The result follows if weapply Theorem 11.82 for g(z) and replae ai and bj by ai=R and bj=R,respetively. This gives12� Z 2�0 ln jf(Rei�)j d� = ln jf(0)j+ ln Qnj=1 jbj=RjQmi=1 jai=Rj!whih is the desired formula.Atually, rather than Theorem 11.82, Corollary 11.85 is often referredto as the Jensen formula for meromorphi funtions. We may need toremember that ln(jaij=R) = 0 if jaij = R for some i. The same applieswhen jbj j = R for some j. Moreover, if f is analyti in �R then f is free



486 Representation for Entire and Meromorphi Funtionsfrom poles so that the Jensen formula in Corollary 11.85 takes a simpleform 12� Z 2�0 ln jf(Rei�)j d� = ln jf(0)j+ mXi=1 ln� Rjaij� :There are several types of interesting funtions in the theory of entirefuntions. The simplest of these is the funtion (t), denoting the numberof zeros of an analyti funtion f(z) in jzj � t. Now we draw an importantorollary dealing with (t).11.86. Corollary. Let f 2 H(�2�) and f(0) 6= 0. Then(�) ln 2 � 12� Z 2�0 ln jf(2�ei�)j d� � ln jf(0)j � ln�M(2�)jf(0)j � ;(11.87)where (t) denotes the number of zeros of f(z) in the losed disk jzj � t.Proof. Jensen's formula applied to f 2 H(�R) tells us that12� Z 2�0 ln jf(Rei�)j d� � ln jf(0)j = Xjaij<R ln� Rjaij� ;where a1; : : : ; a(R) are the zeros of f in jzj � R, arranged in the non-dereasing order, ja1j � ja2j � � � � so that eah zero being ounted withmultipliity. If we onsider only these zeros on the losed disk jzj � r(r < R), then the sum on the right is noninreasing, beause we omit thosezeros (if there is any) ai with r < jaij � R. Thus,Xjaij<R ln� Rjaij� � Xjaij�r ln� Rjaij�� Xjaij�r ln(R=r) (* jaij � r < R ! R=jaij � R=r)= (r) ln(R=r):The �rst inequality in (11.87) follows if we replae R by 2� and r by �. Theseond inequality is lear beause jf(2�ei�)j �M(2�).Suppose that we know a bound for the maximum modulus of f(z) onsome irle jzj = R, and the value of the f(z) at the origin. Then usingCorollary 11.86, one an �nd an upper bound for (r). From the proof ofthis orollary, it is also lear that if r < R, then one has(r) � 1ln(R=r) ln�M(R)jf(0)j� :(11.88)



11.8 The Order and the Genus of Entire Funtions 48711.89. Example. Suppose that f 2 H(�R), f(0) = 1 + ip3 andM(R) � 256. Then, for r < R, (11.88) implies thatln�Rr � � (r) � ln�M(R)jf(0)j� � ln�2562 � = ln(27) = 7 ln 2:In partiular, if r = R=2, then the last inequality gives that (R=2) � 7and so f annot have more than 7 zeros inside and on the irle of radiusR=2. �11.8 The Order and the Genus of Entire FuntionsThe maximum modulus theorem plays an important role in the theory ofentire funtions. It asserts that if f is a non-onstant entire funtion, thenM(r; f) de�ned by M(r; f) :=M(r) = maxjzj=r jf(z)jis an inreasing funtion of r (0 � r < 1). Also, by Liouville's theorem,f is unbounded. Moreover, limr!1M(r) = 1. Otherwise, there exists asequene frng with rn !1 suh that fM(rn)g is bounded, say by M , forall large rn. But then by the Cauhy integral formula applied to f for allpoints on jzj � rn=2 givesjf(z)j = ����� 12�i Zj�j=rn f(�)� � z d������ � M2� � 1rn � rn=2� 2�rn = 2Mfor large rn, so that f is bounded for jzj � rn=2. Taking rn suÆientlylarge, it follows that f(z) is bounded on C , a ontradition. Reall that iff1(z) = ez, f2(z) = os z and f3(z) = sin z, then we haveM(r; f1) = er; M(r; f2) = er + e�r2 ; M(r; f3) = er � e�r2and, for eah k = 1; 2; 3, we see that M(r; fk) ! 1 as r ! 1. In view ofthis, it is interesting to know how fast M(r) approahes in�nity. Thus, themodulus of every transendental entire funtion f grows faster than any�xed positive power of r.The rate of growth of an entire funtion is of great importane and isharaterized by omparingM(r) with usual funtions tending to in�nity asr !1. Therefore, it is natural to utilize exponential funtions to measurethe rate of growth of f , i.e. the growth of M(r).11.90. Theorem. Let f be a non-onstant entire funtion. De�ne�1(f) = lim supr!1 ln lnM(r)ln r(11.91)



488 Representation for Entire and Meromorphi Funtionsand �2(f) = inffA � 0 : jf(z)j � ejzjA for suÆiently large jzjg:(11.92)Then �1(f) = �2(f).Proof. Let 0 � �1; �2 < 1. Aording to (11.92), for every � > 0,there exists an r0 suh thatjf(z)j � exp �jzj�2+�� for jzj � r0 :This implies thatM(r) = maxjzj=r jf(z)j � exp �r�2+�� for jzj = r � r0so that for large r, we haveln lnM(r) � (�2 + �) ln r; i.e. ln lnM(r)ln r � �2 + �:On the other hand, by de�nition,M(r) > exp �r�2��� ; i.e ln lnM(r)ln r > �2 � �for an in�nite number of r's, r !1. Thus,�2 = lim supr!1 ln lnM(r)ln rand hene, �1 = �2.Finally, �1 = 1 i� �2 = 1. Indeed, if �2 = 1 then for any givenA > 0, M(r) > exp(rA) or ln lnM(r)ln r > Afor some values of r suÆiently large. Thus, �2 =1 i� �1 =1.We have the following(i) the number �(f) = �1 = �2 is alled the order of f(z). When thereis no onfusion, we may simply use the notation � instead of �(f) aswe did in the proof of the above theorem. So, 0 � � <1 as we workhere only with funtions of �nite order.(ii) Clearly, if �2 < 0, then f(z) is bounded on C and so redues toa onstant, by Liouville's theorem. This is another reason why wehave de�ned �2(f) in (11.92) through nonnegative real numbers Asatisfying the growth ondition.



11.8 The Order and the Genus of Entire Funtions 48911.93. Example. For z = rei�(i) j exp(ez)j = j exp(er os �eir sin �)j = j exp �er os � os(r sin �)� j so thatM(r) = exp(er) andln lnM(r)ln r = rln r !1 as r !1:Therefore, � =1 and we say that f(z) = exp(ez) is of in�nite order.Alternatively, as x!1 along the positive real axis, we haveexp(ex) > exp(xk)so that � � k for any k � 0. Consequently, by (11.92), f(z) = exp(ez)is of in�nite order.(ii) If f(z) = exp(zm) for some m 2 N, then jf(z)j = j exp(rm os(m�))jso that M(r) = exp(rm) whih gives easily that � = m, by (11.91).In partiular, the order of ez is 1 while the order of ez2 is 2. Moregenerally, if p(z) is a polynomial of degree m (� 1) then the order ofexp(p(z)) is m.(iii) If f(z) = os z, thenjf(z)j � j(eiz + e�iz)=2j � (ey + e�y)=2 � (ejzj + ejzj)=2 = ejzjso that � � 1, aording to (11.92). But, for z = iy,jf(iy)j = ��(e�y + ey)=2�� � ejyj=2whih shows that � is at least 1. Thus, the order of os z is 1.(iv) If f(z) = sin z, then for jzj = rjf(z)j = ����eiz � e�iz2i ���� � ey + e�y2 � ejzjso that � � 1, aording to (11.92). But, for z = iyjf(iy)j = ��(e�y � ey)=2�� � (ejyj � e�jyj)=2 � ejyj=3 as y !1whih shows that � is at least 1. Thus, �(sin z) = 1.(v) If f(z) = a0+a1z+ � � �+anzn, then, for jzj = r > maxf1;Pnk=0 jakjg,jf(z)j � (ja0j+ ja1jr + � � � + janjrn)< (ja0j+ ja1j+ � � � + janj) rnand so, jf(z)j < rn+1, i.e. M(r) � rn+1. Thus,ln lnM(r)ln r � ln(n+ 1) + ln ln rln r ! 0 as r !1showing that every polynomial is of order 0. �



490 Representation for Entire and Meromorphi FuntionsBefore we turn to the disussion on Hadamard's fatorization theoremfor entire funtions, we reall the Weierstrass fatorization theorem (seeTheorem 11.43) whih states that every entire funtion f an be fatoredin the form f(z) = zmeh(z) Y1�n�!Epn(z=an)(11.94)where(i) h is entire(ii) fang!n=1 forms a sequene of zeros of f distint from z = 0, eah ofthem listed aording to its multipliity(iii) ! 2 N if the sequene is �nite and ! =1 otherwise(iv) m = 0 is allowed if f(0) 6= 0; otherwise m is the multipliity of thezero of f at the origin(v) fpng!n=1 is a sequene of non-negative integers suh thatX1�n�!� rjanj�pn+1 <1 for every r > 0:Our main task is to deal with the situation ! =1.Let f be entire with zeros fangn�1, listed aording to multipliity andarranged suh that 0 < ja1j � ja2j � � � � . If p is the smallest nonnegativeinteger suh that P1n=1 janj�(p+1) < 1, then f is said to be of rank p. Itis trivial to see that p = 0 whenever f has only a �nite number of zeros.An entire funtion f is of in�nite rank, i.e. if there exists no p for whihP1n=1 janj�(p+1) <1. This is possible wheneverP1n=1 janj�(p+1) =1 forall p � 0.If f is of �nite rank p, i.e., there exists a nonnegative integer p � 0 suhthat P1n=1 janj�(p+1) <1, then, by (11.94), f(z) an be rewritten asf(z) = zmeh(z) 1Yn=1Ep � zan� =: zmeh(z)P (z):(11.95)Here the produt P (z) :=Q1n=1Ep (z=an) is alled the Weierstrass produtor the anonial produt assoiated with the sequene fangn�1. Further, iff is of �nite rank p, and p0 is any integer with p0 > p, thenjanj�(p0+1) � janj�(p+1); i.e. 1Xn=1 janj�(p0+1) <1and so there is another produt Q1n=1Ep0 (z=an) showing that the fator-ization for f is not unique.If p happens to be the rank of f , then p is alled the genus of theanonial produt P (z). Moreover, the produt P (z) so de�ned is said to be



11.8 The Order and the Genus of Entire Funtions 491in standard form for f . It is important to remember thatP1n=1 janj�p =1whereas P1n=1 janj�(p+1) < 1. Further (as in Examples 11.45), in therepresentation (11.95), the fatorization is unique exept that h(z) may bereplaed by h(z) + 2m�i for any m 2 Z.If p is the genus of the anonial produt and h(z) is a polynomial inthe representation (11.95), then the funtion f(z) is said to be of �nitegenus and, in addition, if q is the degree of the polynomial h(z) then the� := maxfp; qg is de�ned to be the genus of f(z). The number q is referredto as the exponential degree of f(z). If P (z) is not of �nite rank or h(z)is not a polynomial, then f is said to be of in�nite genus. In the sequel,we are interested only on funtions of �nite genus. For example, an entirefuntion of genus zero is of the formzm 1Yn=1�1� zan�with P1n=1 janj�1 < 1. By de�nition, the anonial representation of anentire funtion of genus 1 is either of the formzmez 1Yn=1E1 � zan� ;  2 C ;with P1n=1 janj�2 <1, P1n=1 janj�1 =1, or of the formzmez 1Yn=1�1� zan�with P1n=1 janj�2 <1 and  6= 0.11.96. Examples.(i) From the representation of sin�z shown in (11.50), we see that sin�zis an entire funtion of genus 1.(ii) ez is of genus 1 whereas ez2 is of genus 2.(iii) A polynomial p(z) = a0 + a1z + � � � + anzn is of genus 0. �11.97. Lemma. Let f be a nononstant entire funtion of order�, with zeros at a1; a2; : : : , with ounting multipliities. Suppose that0 < ja1j � ja2j � � � � . If p is an integer with p + 1 > �, then for z 2C n fa1; a2; : : : g, dpdzp �f 0(z)f(z) � = �p! 1Xj=1 1(aj � z)p+1 :



492 Representation for Entire and Meromorphi FuntionsProof. First we assume f(0) 6� 0. Let a1; a2; : : : ; an be the zeros of fin �R so that f(z) 6= 0 on jzj = R. De�neF (z) = f(z) (R)Yj=1 1�aj=R(z=R) ; ��(z) = �� z1� �z :Then F is a non-vanishing analyti funtion in �R with jF (z)j = jf(z)jon jzj = R and so there exists a g 2 H(�R) suh that F (z) = exp(g(z)),z 2 �R. This gives f(z) (R)Yj=1 R2 � ajzR(aj � z) = exp(g(z)):Taking the logarithmi derivative with respet to z, we obtainf 0(z)f(z) � (R)Xj=1 �� 1aj � z + ajR2 � ajz� = g0(z)and so di�erentiating p-times yields thatdpdzp �f 0(z)f(z) � = p! (R)Xj=1 " �1(aj � z)p+1 + ap+1j(R2 � ajz)p+1#+g(p+1)(z);(11.98)p = 0; 1; : : : : As for the seond term on the right in (11.98), we �rst notethat for jzj < R=2 and janj � R,jR2 � ajzj � R2 � jaj j jzj > R2 �R2=2 = R2=2and so������(R)Xj=1 ap+1j(R2 � ajz)p+1 ������ � Rp+1(R2=2)p+1 (R) � 2p+1R(p+1) (AR�+� +B)for some onstants A and B. Here, as f is of order �, we have used theestimate (see (11.88))(R) � AR�+� +B for R suÆiently large:As p+1�� > 0, if we hoose � so that �+� < p+1 (e.g. � = (p+1��)=2),2p+1(R)R�(p+1) approahes zero as R ! 1; that is the seond sum in(11.98) onverges to zero.As for the last term, we note that Re g(z) = ln jF (z)j for z 2 �R andRe g(z) = ln jf(z)j for jzj = R. By Theorem 10.34, g has the formg(z) = iIm g(0) + 12� Z 2�0 �Rei� + zRei� � z� ln jf(Rei�)j d�:



11.8 The Order and the Genus of Entire Funtions 493Thus, for jzj < Rg(p+1)(z) = (p+ 1)!2� Z 2�0 2Rei�(Rei� � z)p+2 ln jf(Rei�)j d�:(11.99)For eah �xed z with jzj < R=2, the Cauhy integral formula applied to thefuntion  (w) = (w � z)�p�2 shows that0 = (p+ 1)!2�i Zjwj=R dw(w � z)p+2 = (p+ 1)!2� Z 2�0 Rei�(Rei� � z)p+2 d�:In view of this, for jzj < R=2jg(p+1)(z)j = ����(p+ 1)!2� Z 2�0 2Rei�(Rei� � z)p+2 �ln jf(Rei�)j � lnM(R)� d������ (p+ 1)!R�(R� jzj)p+2 Z 2�0 �lnM(R)� ln jf(Rei�)j� d�� (p+ 1)!R� � 2R�p+2 Z 2�0 (lnM(R)� ln jf(0)j) d�on aount of R� jzj > R�R=2 = R=2 and the Jensen inequality12� Z 1�0 ln jf(Rei�)j d� � ln jf(0)j:Therefore, sine lnM(R) < R�+� for large R and for a given � > 0, we havejg(p+1)(z)j � (p+ 1)!� � 2R�p+2 (R�+� � ln jf(0)j)2�R= (p+ 1)!2p+3(R�+� � ln jf(0)j)R�(p+1)! 0 as R!1 ( sine (� + �)=(p+ 1) < 1):Finally, as R ! 1, (11.99) gives the desired formula whenever f(0) 6= 0.If f(0) = 0 and zero is of multipliity m, then we writef(z) = zmG(z); G(0) 6= 0:Then f 0(z)f(z) = mz + G0(z)G(z) :Di�erentiate p times to omplete the argument.11.100. Theorem. (Hadamard's Fatorization Theorem) Let fbe an entire funtion of �nite order �. Suppose that a1; a2; : : : ; are the zeros



494 Representation for Entire and Meromorphi Funtionsof f(z) listed with multipliities and 0 < ja1j � ja2j � � � � � janj � � � � .Then f has a �nite genus � satisfying the inequality � � �.Proof. Let f have an order � and p = [�℄. Then, p � � < p + 1 andfor any small � > 0lnM(r) � r�+�=2 for r suÆiently large.If f has a zero of order m at the origin, then for jzj = rln jf(z)=zmj � ln(M(r)r�m)� r�+�=2 �m ln r� r�+� for r suÆiently large.So F (z) = f(z)z�m is an entire funtion of order � with no zero at the originand F (0) = limz!0 f(z)z�m = f (m)(0)=m!. Thus, by Corollary 11.86,(r) � 1ln 2((2r)�+� � ln jF (0)j) = Ar�+� +B;(11.101)where A = 2�+�= ln 2 and B = � ln jF (0)j= ln 2, independent of r. There-fore, taking r = janj, we obtainn � (janj) � Ajanj�+� +B for large n:In partiular, 1janjp+1 � � An�B�(p+1)=(�+�) for large n(11.102)and if we hoose � (e.g. � = (p+1��)=2) so that p+1 > �+ � (reall thatp+ 1� � > 0), the series P janj�p�1 is dominated by a onvergent series.Therefore, 1Xn=1 janj�(p+1) <1and so, f(z) an be written in the formf(z) = zmeg(z) 1Yn=1Ep(z=an) =: zmeg(z)P (z); p = [�℄;(11.103)where m = 0 when f(0) 6= 0. Next, we laim that g(z) is a polynomial ofdegree � �.First we let PN =QNj=1 qj(z) be the Nth partial produt of P (z). Notethat PN (z) ! P (z) loally uniformly on C and so, P 0N (z) ! P 0(z) loallyuniformly on C . Consequently,P 0N (z)PN (z) = NXj=1 q0j(z)qj(z) ! P 0(z)P (z) = 1Xj=1 q0j(z)qj(z)



11.8 The Order and the Genus of Entire Funtions 495where the series on the right onverges uniformly on every ompat subsetof C not ontaining the zeros of P (z). Also, we note thatqj(z) = Ep(z=aj) = (1� z=aj) exp zaj + z22a2j + � � � + zppapj !so that q0j(z)qj(z) = � 1aj � z + 1aj + za2j + � � � + zp�1apjand dpdzp �q0j(z)qj(z)� = � p!(aj � z)p+1 :Thus dpdzp �P 0(z)P (z) � = �p! 1Xj=1 1(aj � z)p+1 ; z 6= a1; a2; : : : :(11.104)Finally, by (11.103), we havef 0(z)f(z) = mz + P 0(z)P (z) + g0(z):Di�erentiating both sides p times and applying Lemma 11.97 and (11.104)gives g(p+1)(z) = 0 and g is a polynomial of degree at most p. In partiular,the genus � of f is less than p. Sine p � �, we have � � �.The Hadamard fatorization theorem is often stated in the followingequivalent form.11.105. Theorem. (Hadamard's Fatorization Theorem) Let f bean entire funtion of �nite order �. Suppose that a1; a2; : : : ; are the zerosof f(z) listed with multipliities and 0 < ja1j � ja2j � � � � � janj � � � � .Then there exists a polynomial g(z) of degree not greater than �, and anonnegative integer p (p � �) suh thatf(z) = zmeg(z) 1Yn=1Ep(z=an):The onverse of Theorem 11.100 is also true. In fat, we have11.106. Theorem. If f is an entire funtion of �nite genus �, thenf is of �nite order � and � � �+ 1.Proof. If f is of �nite genus �, thenf(z) = zmeh(z)P (z); P (z) = 1Yn=1E�(z=an)



496 Representation for Entire and Meromorphi Funtionswhere the degree q of the polynomial h(z) is � �. We note that the orderof the produt of the two entire funtions annot exeed the order of theeah of the fators. In view of this observation,�(f) � maxf�(eh(z)); �(P (z))g:Sine f is of �nite genus �, the order of exp(h(z)) is q whih is � �.Hene, to omplete the proof, it suÆes to show that the order of theanonial produt P (z) is � � + 1. Sine � = maxfq; pg � p and theonvergene of the produt P (z) implies P1n=1 janj�(p+1) < 1, it followsthat P1n=1 janj�(�+1) <1. First we laim thatln jE�(z)j � (1 + �)jzj�+1; z 2 C :(11.107)Note that 1 + jzj � ejzj, i.e. ln(1 + jzj) � jzj for z 2 C . Consequentlyln jE0(z)j = ln j1� zj � ln(1 + jzj) � jzj; z 2 C ;showing that the estimate (11.107) holds when � = 0. Next we prove(11.107) for � � 1. To do this, we reall Lemma 11.39:�1 + jE�(z)j � jE�(z)� 1j � jzj�+1 for jzj � 1so that jE�(z)j � 1 + jzj�+1 for jzj � 1. Consequently, for eah � � 1ln jE�(z)j � ln(1 + jzj�+1) � jzj�+1 � (�+ 1)jzj�+1 for jzj � 1:(11.108)For arbitrary z 2 C with jzj � 1, and � � 1jE�(z)j = j1� zj jezj jez2=2j � � � jez�=�j � (1 + jzj)ejzjejzj2=2 � � � ejzj�=�so that, for all jzj � 1,ln jE�(z)j � ln(1 + jzj) + �Xk=1 jzjkk� jzj+ �Xk=1 jzj�k (beause jzjk � jzj� for k = 1; 2; : : : ; �)�  1 + �Xk=1 1k! jzj� � (1 + �)jzj�� (1 + �)jzj�+1:Combining the last inequality with (11.108) proves (11.107). The estimate(11.107) gives at oneln jP (z)j = 1Xk=1 ln jE�(z=an)j � (1 + �)jzj�+1 1Xn=1 janj�(�+1)



11.8 The Order and the Genus of Entire Funtions 497and so, there exists an � > 0 with ln jP (z)j � �jzj�+1 for all z 2 C . Itfollows that P (z) is at most of order �+ 1, i.e. � � �+ 1.Finally, we obtain the following result whih exhibits the strength ofHadamard's fatorization Theorem.11.109. Corollary. An entire funtion of frational order assumesevery omplex value in�nitely often.Proof. Let f be an entire funtion of order �, where � 62 N. Clearly,�(f) = �(f � a) for any onstant a 2 C . Therefore, it suÆes to show thatf has in�nitely many roots. Suppose not. Then f has only �nitely manyzeros, namely a1; a2; : : : ; an. Then f is of the formf(z) = eh(z) nYk=1(z � ak) =: eh(z)P (z):By Hadamard's fatorization theorem, h is a polynomial of degree m ��(f). But then �(f) = �(eh(z)) = m. This ontradition proves the orol-lary.Thus, every entire funtion of �nite order has either in�nitely manyzeros or else f(z) = eh(z)P (z), where h(z) and P (z) are some polynomials.11.110. Convergene exponent. Let fangn�1 be a sequene of nonzeroomplex numbers, listed aording to inreasing moduli suh that janj ! 1as n!1. Then the onvergene exponent of fangn�1 is de�ned by� = inf (� > 0 : 1Xn=1 janj�� <1) :Thus, for eah � > 0, one has1Xn=1 1janj�+� <1 and 1Xn=1 1janj��� =1:For example, if an = n for all n 2 N, then we have � = 1. Also, we have(i) If P1n=1 janj�� = 1 for all � > 0, then we set � = +1 as thein�mum of an empty set.(ii) If P1n=1 janj�� <1 for all � > 0, then � = 0.(iii) From the proof of Theorem 11.100, we have the following: if f is anentire funtion of order � and a1; a2; : : : ; are the zeros of f(z) listedwith multipliities and 0 < ja1j � ja2j � � � � � janj � � � � , then1Xn=1 janj�� <1 for � > �:



498 Representation for Entire and Meromorphi FuntionsIndeed, let � be a number suh that � < � < �. Then, for small � > 0and for large n, we haven � (janj) � Ajanj�+� +B; i.e. 1janj� � � An�B��=(�+�) :The onlusion follows, as �=� > 1.If f is an entire funtion having fangn�1 as its non-zero zeros, then � :=�(f) de�ned as above is alled the onvergene exponent for the zero-sequene fangn�1 of f .11.111. Examples.(i) For  > 0, set an = n1= for all n 2 N. Then, as1Xn=1 janj�� = 1Xn=1n��= <1 if � > ;the exponent of onvergene � of fn1=g is . Note that1Xn=1 janj�� = 1Xn=1 janj� = 1Xn=1n�1 =1:(ii) If f(z) = sin z, then the zeros of f(z) are an = n� (n 2 Z) and soXn2Znf0g janj�� = 2 1Xn=1 janj�� = 2�� 1Xn=1 1n�showing that �(f) = 1 = �(f). If g(z) = os z, then �(g) = �(g) = 1.(iii) Sine ez has no zero in C , we set that �(ez) = 0. �11.9 Exerises11.112. Determine whether eah of the following statements istrue or false. Justify your answer with a proof or a ounterexam-ple.(a) The meromorphi funtions sin z=[e2iz + 1℄ and 1=(2i osz) di�er byan entire funtion.(b) If f is meromorphi and has an in�nite number of poles, then everylosed disk jzj � R (0 < R < 1) ontains only a �nite number ofpoles inside it.() There an be no meromorphi funtion in C with poles at 1=n, n 2 N.



11.9 Exerises 499(d) If f is entire and f(z) 6� 0, then either f has a �nite number of zerosor has an in�nite number of zeros an with an !1 as n!1.(e) An in�nite produtQ1k=1(1+ak) is divergent i� the sequene of partialproduts either diverges to in�nity or onverges to zero or osillates.(f) If f is a non-onstant entire funtion suh that f(z) 6= 0 in C , thenf 0(z) may or may not have a zero in C .(g) The in�nite produt Q1k=1(1 + ak) onverges i� the series P1k=1 akonverges.(h) For �1 < ak � 1 for k 2 N, the produt Q1k=1(1 + ak) onverges i�the seriesP1k=1 ak onverges.(i) The onvergene of the produt Q1k=1(1 + ak) is neessary and suÆ-ient for the absolute onvergene of the seriesP1k=1 ak.(j) Eah of the produts Q1k=1 �1 + 12k+1�1� and Q1k=2 �1 + 1k2�1� on-verges.(k) For 0 6= � 2 C , the in�nite produt Q1n=2 �1� 1n� � onverges abso-lutely provided Re� > 1.(l) The in�nite produtQ1n=1(1+anz), jaj < 1, de�nes an entire funtion.(m) If R is the radius of onvergene of the series P1n=1 anzn, then theprodut Q1n=1(1 + anzn) onverges for jzj < R.Note: As the series P1n=1 jz3n j onverges for jzj < 1, the produtQ1n=1(1 + z3n) onverges for jzj < 1.(n) For z 2 C nfx + i0 : x � 0g, Q1n=1 z2�n onverges to z whereasQ1n=1 z3�n does not onverge to z.(o) Let p(z) be a non-onstant polynomial in z (e.g. z, z2). If the seriesP1k=1 jakj is onvergent (e.g. ak = 1=k� with � > 1), then the produtQ1k=1(1+ p(z)ak) is onvergent for all z 2 C and represents an entirefuntion.(p) The produt Q1k=1 �1 + 2kz+k3�1� represents an analyti funtion forRe z > 3:(q) The region of absolute onvergene of eah of Q1n=1 �1 + zn2� andQ1n=1 �1 + z=n2� is di�erent.(r) The produt Q1n=1(1 � z=n2) represents an entire funtion whereasthe produt Q1n=1(1� z=n) does not although Q1n=1(1� z=n)ez=n isan entire funtion.(s) There exists an entire funtion whih has zeros of multipliity n atz = n (n 2 N), and no other zeros.(t) The produt Q1n=1 (1 + n�z) onverges uniformly on every ompatsubset Re z � 1+ Æ (Æ > 0) and represents an analyti funtion in thehalf-plane Re z > 1.



500 Representation for Entire and Meromorphi Funtions(u) The produt Q1n=1 �1� 2zn2+z� represents a bounded analyti fun-tion on the right half-plane Re z > 0.(v) The terms of an absolutely onvergent produt an be rearrangedwithout a�eting the onvergene or the value of the produt.(w) There exist entire funtions with simple zeros at n2, n 2 N.(x) There exists no non-onstant entire funtion having zeros at z = 1=n(or 1=n2 or 1=n3), n 2 N.(y) An entire funtion, whih has simple zeros at 0, �n1=4 (n 2 N) andno other zeros, is given byz 1Yn=1�1� z2pn� exp� z2pn + z42n� :(z) There exists an analyti funtion f in the unit disk suh that f(z) = 0i� z = 1� 1=n, n 2 N.11.113. Determine whether eah of the following statementsis true or false. Justify your answer with a proof or a ounterex-ample.(a) The order of entire funtions f(z) and f(z) ( 6= 0) are the same.(b) The entire funtions f(z) and z�nf(z) (n 2 N) have the same order,where the point z = 0 is a zero of multipliity n for f(z).() The order of the entire funtion f(z) = zez is 1.(d) For any two entire funtions f and g, �(f + g) � maxf�(f); �(g)g.(e) For any two entire funtions f and g, �(f + g) = maxf�(f); �(g)gwhenever �(f) 6= �(g).(f) If f and g are two entire funtions suh that �(f) > �(g), then �(f +g) = �(f).(g) For any two entire funtions f and g, �(fg) � maxf�(f); �(g)g.(h) If f is an entire funtion and h(z) = f(az), then �(h) = �(f).(i) If f is an entire funtion and h(z) = f(zn), then �(h) = n�(f).(j) If f is an entire funtion and h(z) = znf(z), then �(h) = �(f).(k) The exponent of onvergene of Q1n=1E1(z=n) is 1.(l) The order of zmQ1n=1E1(z=n) ( m 2 N) is 1.(m) If �(f) 6= 0 and �(g) 6= 0, then �(f + g) is not neessarily a non-zeronumber.(n) There are in�nitely many prime numbers.(o) If R is the retangle with verties at �n� (2n+1=2)�i, then one hasjez � 1j > 1=2 for z 2 �R.



11.9 Exerises 50111.114. Construt meromorphi funtions f in C with the followingproperties:(i) simple poles only at an = n 2 N with Res [f(z); an℄ = n(ii) simple poles only at an = pn, n 2 N, with Res [f(z); an℄ = 1(iii) simple poles only at an = n, n 2 Z, with Res [f(z); an℄ = 1(iv) simple poles only at an = n(1+ i), n 2 Znf0g, with Res [f(z); an℄ = 1(v) poles only at an = n 2 N of order n.11.115. Set an = (�1)n+1=pn. Show that Q1n=1(1 + an) divergeseven though P1n=1 an onverges. Does this provide an example of a seriesthat is onvergent but not absolutely?11.116. Construt entire funtions with the following properties(i) simple zeros at an = �n; n 2 N and no other zeros(ii) simple zeros at an = n; n 2 N and no other zeros(iii) simple zeros at an = pn; n 2 N and double zeros at bn = �ipn;n 2 N, and no other zeros(iv) simple zeros at an = n5=4; n 2 N and no other zeros(v) simple zeros at an = n4=5; n 2 N and no other zeros(vi) simple zeros at an = n1=2; n 2 N and no other zeros.11.117. Suppose that the produtQ1k=1(1+ak) onverges whereas theprodut Q1k=1(1 + jakj) diverges. What an we say about the sequene?11.118. Show that produt Q1k=1(1 + fk(z)) is uniformly onvergentin a domain 
 if the series P1k=1 jfk(z)j onverges uniformly in 
: Usingthis result, disuss the onvergene of the produt Q1k=1(1 + fk(z)) when(i) fk(z) = (k=(k + 1))k zk, z 2 �(ii) fk(z) = (1� z)=(1� z2k), z 2 �(iii) fk(z) = (1� z2k)=(1� z), z 2 �(iv) fk(z) = zk=k!, z 2 C(v) fk(z) = z=[k(ln k)2℄, z 2 C .11.119. Let f be meromorphi in �R. Suppose that(i) a is neither a zero nor a pole of f(ii) ai (1 � i � m) and bj (1 � j � n) denote, respetively, the zeros andpoles of f in �R (ounted as many times as its order of multipliities).



502 Representation for Entire and Meromorphi FuntionsThen show the Poisson-Jensen Formula of the form12� Z 2�0 Re �R+ ae�i�R� ae�i�� ln jf(Rei�)j d�= ln jf(a)j+ mXi=1 ln ���� R2 � aiaR(ai � a) ����� nXj=1 ln ���� R2 � bjaR(bj � a) �����a(z) = (a � z)=(1 � az) (Note that if f is free from poles, then the lastterm on the right does not appear in the formula). Also, disuss whatmodi�ation is required if a is a zero or a pole of f(z).11.120. Give an example of an entire funtion f(z) whose order is notan integral number.11.121. Prove that, whenever � 62 Z,sin�(z + �) = e�z ot�� sin�� 1Yn=�1�1 + zn+ �� e�z=(n+�):11.122. Find the order and genus of the entire funtionf(z) = 1Yn=2�1� zn(lnn)2� :11.123. For a > 0, onsider the Hurwitz zeta funtion �(s; a) de�nedby �(s; a) = 1Xn=0 1(n+ a)s :Show that �(s; a) is analyti for Re s > 1. Also show that�(s; a) = 1�(s) Z 10 e�(a�1)sxxs�1ex � 1 dx:11.124. Prove the Gauss multipliation formula(2�)(n�1)=2�(nz) = nnz�1=2 n�1Yk=0 ��z + kn� :11.125. For s 2 C , prove the funtional equation�(1� s) = 21�s��s os(�s=2)�(s)�(s):



Chapter 12Mapping Theorems
We shall disuss a number of interesting results onerning ertain mappingproblems between domains. Setion 12.1 begins with the open mappingtheorem whih is a elebrated result about analyti mappings. In Setion12.2, we study some basi results on univalent funtions. Setion 12.3 isdevoted to a preliminary disussion on normal families. In addition, wealso prove Montel's theorem for normal families of analyti funtions. Themain result in Setion 12.4 is the Riemann mapping theorem whih assertsthat every simply onneted domain of the omplex plane having at leasttwo boundary points an be mapped onformally onto the open unit disk.In Setion 12.5, we state the elebrated onjeture due to Bieberbah whihled to the development of a great number of di�erent and deep methodsthat have solved a large number of problems in funtion theory. Sinethe on�rmation of the Bieberbah onjeture by de Branges, one of theoutstanding open problem in omplex analysis is that of �nding the exatvalue of the Bloh onstant. Our �nal setion disusses this onstant alongwith the long awaited Piard's little theorem and Shottky's theorem.12.1 Open Mapping Theorem and Hurwitz' TheoremIn the subjet of topology, ontinuity of f on 
 � C is equivalent to sayingthat the inverse image of every open set in f(
) under f is open. We areinterested now in these funtions for whih the diret image of any openset is open. A funtion de�ned on an open set D is said to be an \openmapping" if for every open subset 
 of D, the image f(
) is open. Thus ifthere exists an open set in D whose image under f is not open, then f isnot an open mapping in D. Consider fj : R ! R (j = 1; 2; 3) de�ned byf1(x) = x2; f2(x) = sinx and f3(x) = ex + e�x2 ;



504 Mapping Theoremsrespetively. Clearly,f1(R) = [0;1); f2((0; �)) = (0; 1℄ and f3(R) = [1;1)showing that for eah j, eah of the real-valued funtions fj of a real variablefj is not an open mapping. Our emphasize will be on plane domains in C ,and the above examples show that the following theorem has no analog inR. 12.1. Theorem. (Open Mapping Theorem) If f is a non-onstantanalyti funtion on a domain D, then f is an open mapping, i.e. f(D) isan open set in C .Clearly, the name of this theorem is derived from the property of \open-ness". What does this theorem onvey? If D is a domain in C andf 2 H(D), then f(D) is either a domain or a single point; i.e. f(D) isa domain or else f is a onstant funtion. For example, this theorem pro-hibits a non-onstant C1-analyti mapping of a disk onto a portion of aline (see Corollary 12.3). Is there an analogous result for real-valued C1funtions de�ned on D � C ? De�ne f : C ! C by f(z) = jzj2: Thenf(C ) = fx+ i0 2 C : x � 0gwhih is not an open subset of C . Note that f is nowhere analyti but isreal-di�erentiable beause f(x; y) = x2 + y2 and the partial derivatives ofall orders exist and are ontinuous on R2 . On the other hand, f(z) = z2 isan open mapping on C . Is there a non-onstant omplex-valued funtion(need not be analyti) de�ned on a domain that is an open map? Howabout f(z) = z, z 2 C ?Proof of the open mapping theorem. We shall show that if fis a non-onstant analyti funtion in D and 
 is an open subset of Dontaining a, then f(
) ontains an open disk about f(a). Sine zeros ofthe non-vanishing analyti funtion f(z)� f(a) are isolated, there exists adisk �(a; r) with �(a; r) � 
 suh thatf(z)� f(a) 6= 0 in 0 < jz � aj < r:In partiular, f(�)� f(a) 6= 0 for � 2 C = ��(a; �) where 0 < � < r. Let2m = min�2C jf(�)� f(a)j:Then m > 0. Further, for every w 2 �(f(a);m), we note thatjf(�)� wj � jf(�)� f(a)j � jf(a)� wj > 2m�m = m > jf(a)� wjfor all � 2 C. Rewrite the last inequality asjf(a)� wj = j(f(�)� w)� (f(�) � f(a))j < jf(�)� wj for all � 2 C:



12.1 Open Mapping Theorem and Hurwitz' Theorem 505It follows from Rouh�e's theorem that the funtions f(�)�w and f(�)�f(a)have the same number of zeros inside the irle C. But as f(�)� f(a) hasat least one zero inside C, f(�) � w has at least one zero inside C. Henethere exists z0 2 �(a; �) suh that f(z0) = w and so w is in the range of f ,w being an arbitrary element of �(f(a);m) the assertion is true.As the onnetedness of D implies the onnetedness of f(D) (see The-orem 2.24), the open mapping theorem is often formulated in the followingform:12.2. Theorem. A non-onstant analyti funtion maps the domainD onto the domain f(D).Proof. By the open mapping theorem f(D) is open; so we only needto show that f(D) is onneted. We provide a diret proof to show thatf(D) is onneted. Let w1; w2 2 f(D). Then there exist z1; z2 2 D suhthat f(z1) = w1 and f(z2) = w2. Beause D is onneted, z1 and z2 anbe onneted by a �nite number of line segments that lie entirely within D.The image of eah line segment under f is always a urve in f(D), sinef is di�erentiable in D. It follows that w1 and w2 an be onneted by aurve in f(D). Note that this urve an be approximated by line segmentsin f(D).12.3. Corollary. Theorem 3.31(ii) follows from Theorem 12.2.Proof. The hypothesis of Theorem 3.31(ii) shows that, in the w-plane,f(D) is either a subset of a irle or u = onstant, or v = onstant, ortan�1(v=u) = onstant, respetively. However, we note that none of thesetakes open sets into open sets. It follows from Theorem 12.2 that in eahase, f must be a onstant. This ompletes the proof.Here is another appliation of Rouh�e's Theorem.12.4. Theorem. (Hurwitz' Theorem) Let ffng be a sequene ofnon-vanishing analyti funtions in a domain D whih onverges to f uni-formly on every ompat subset of D. Then either f(z) � 0 or f has nozeros.Proof. Sine, by assumption, ffng onverges uniformly on D, f isanalyti on D. Suppose f(z0) = 0 but f(z) 6� 0. Then (as zeros areisolated) there exists a small irle C = ��(z0; Æ) suh that �(z0; Æ) � Dand �(z0; Æ) nfz0g \ fz : f(z) = 0g = ;:In partiular, f(z) 6= 0 on C. Let f have k zeros in �(z0; Æ). Sine f isanalyti on �(z0; Æ), jf j attains a minimum value m on C. As f(z) 6= 0



506 Mapping Theoremson C, m > 0. Sine fn ! f uniformly on the ompat set C, for a givenm > 0, there exists an N suh thatjfn(z)� f(z)j < m=2 < m � jf(z)j for n � N and for all z 2 C:By Rouh�e's Theorem, it follows that fn and f have the same number ofzeros on �(z0; Æ), and for some n � N . Thus, fn has a zero in �(z0; Æ);this is a ontradition. Hene we must have f(z) � 0.We note that for eah n 2 N, fn(z) = ez=n has no zeros in C , but thelimit funtion f is identially zero in C .12.5. Corollary. Let ffng be a sequene of analyti and univalentfuntions in a domain D whih onverges to f uniformly on every ompatsubset of D. Then either f is onstant or univalent on D.Proof. Assume that f is a non-onstant analyti funtion that is notunivalent. Then there exist two distint points z1 and z2 in D suh thatf(z1) = f(z2) = �. Choose r so small that�(z1; r) � D; �(z2; r) � D and �(z1; r) \�(z2; r) = ;:If f(z) 6� �, then, sine fn � � ! f � � uniformly on ompat subsets ofD, Hurwitz' Theorem applied to fn(z) � � shows that there is an n suhthat fn(z)� � has a zero in �(z1; r) and a zero in �(z2; r). That is,fn(z01) = fn(z02) for some z01 2 �(z1; r) and z02 2 �(z2; r):This is a ontradition to the hypothesis that fn is univalent in D. Sof(z) � �.For example, we note that fn(z) = z=n, n � 1, is univalent in C , andthe limit funtion f is identially zero in C .12.2 Basi Results on Univalent FuntionsWe have already enounted a large number of examples of univalent fun-tions. Now start with12.6. Theorem. If f(z) = z+P1n=2 anzn is suh thatP1n=2 njanj �1, then f is univalent in the unit disk �.Proof. Suppose that Pn�2 njanj � 1. Then, we have janj � 1 for alln � 2, and hene Pn�2 janznj �Pn�2 jzjn: Sine Pn�2 jzjn onverges forjzj < 1, by the omparison test, we see that the series represented by fonverges for jzj < 1 so that f is analyti in �. Let jz0j < 1. We have



12.2 Basi Results on Univalent Funtions 507(f(z)� f(z0))� (z � z0)= Xn�2 an(zn � zn0 )= (z � z0)Xn�2 an(zn�1 + zn�2z0 + � � � + zn�10 ):As jzn�1 + zn�2z0 + � � � + zn�10 j < n for jzj < 1, we havej(f(z)� f(z0))� (z � z0)j < jz � z0jXn�2njanj � jz � z0j:Aording to Rouh�e's Theorem, f(z) � f(z0) and z � z0 have the samenumber of zeros in �, that is f(z) = f(z0) has exatly one solution.12.7. Theorem. Let f be analyti at a. Then f is one-to-one insome neighborhood of a i� f 0(a) 6= 0.Proof. Clearly, f is analyti at a i� g de�ned by g(z) = f(z+a)�f(a)is analyti at 0. Note that f 0(a) = g0(0). In view of this observation, itsuÆes to prove the theorem with a = 0 and f(a) = 0.(=: Let f 0(0) 6= 0, f(0) = 0 and h(z) = f(z)=f 0(0). Then h0(z) =f 0(z)=f 0(0) whih is analyti at 0, and h0(0) = 1. The ontinuity of h0(z)at z = 0 shows that there exists an open disk jzj < Æ suh thatjh0(z)� 1j < 1=4 for jzj < Æ:(The univaleny of h in jzj < Æ may be obtained quikly from Theorem12.18). In partiular, for any two distint points z1 and z2 in this disk, andfor  = [z1; z2℄, the line segment joining z1 and z2, we havejh(z2)� h(z1)� (z2 � z1)j = ����Z z2z1 (h0(z)� 1) dz����� Z[z1;z2℄ jh0(z)� 1j jdzj� (1=4)jz1 � z2jwhih, by the triangle inequality, implies thatjh(z2)� h(z1)j � jz2 � z1j � (1=4)jz1 � z2j > 0:Thus, h and (hene f) is one-to-one in a neighborhood of 0.=): Let f be analyti, f(0) = 0 and one-to-one in a neighborhood�R of 0 . Assume the ontrary that f 0(0) = 0. Then by the Malaurinseries of f around 0, there exists k � 2 suh that f(z) = zk�(z) where �is analyti at 0 and �(0) 6= 0. By hypothesis, f is univalent (and so f is



508 Mapping Theoremsnot a onstant). As zeros are isolated (and f 0(z) is analyti in �R withf 0(0) = 0), we havef(z) 6= 0 and f 0(z) 6= 0 for 0 < jzj � Æ:Now, m = minjzj=Æ<R jf(z)j > 0. Pik any omplex number  suh that 0 <jj < m. Thenjf(z)� (f(z)� )j = jj < m � jf(z)j for jzj = Æ:Therefore, by Rouh�e's Theorem, f(z) �  has the same number of zerosinside jzj = Æ as that of f(z). But, sine f(z) has a zero of order k (k � 2) atthe origin, we must have f(z) =  at two or more points. This ontraditsthe hypothesis that f is univalent in �R. Hene we must have f 0(0) 6= 0,whih proves the assertion.The vanishing of a derivative does not prelude the possibility of areal-valued funtion of a real variable being one-to-one. For example, iff(x) = x3 then f 0(0) = 0 but the funtion is still one-to-one on R. Thissituation annot our for omplex-valued funtions. This fat is indeed aspeial ase of Theorem 12.7 and is important enough to merit a speialmention.12.8. Corollary. (Loal Mapping Theorem) If f is analyti andunivalent in a domain D, then f 0(z) 6= 0 in D.12.9. Remark. Note that there exists an analyti funtion havingnon-vanishing derivative on a domain D without being univalent on D.Thus, the onverse of Corollary 12.8 is not neessarily true. For example,the funtion f(z) = ez is not univalent in jzj < R if R > � even thoughf 0(z) = ez 6= 0 throughout C . As another example we note that the fun-tion g(z) = z2 is not univalent in the puntured plane C nf0g even thoughg0(z) = 2z 6= 0 on C nf0g: Here we bring an interesting omparison betweenthe derivatives of real and omplex funtions. For real di�erentiable fun-tions, the non-vanishing of the derivative on an open interval is suÆientto guarantee that the funtion is one-to-one on that interval. As we haveseen above, this is not the ase for omplex-valued funtions de�ned on adomain. �12.10. Example. Consider f(z) = z=(1� z)�3. Thenf 0(z) = (1 + 2z)=(1� z)�4so that f 0(�1=2) = 0. This means that f annot be univalent in jzj < r ifr > 1=2. Next we show that f is atually univalent if r = 1=2. Indeed, if



12.2 Basi Results on Univalent Funtions 509z1; z2 2 �1=2, thenf(z1) = f(z2) ) z1(1� z2)3 = z2(1� z1)3) z1[1� z32 � 3z2(1� z2)℄ = z2[1� z31 � 3z1(1� z1)℄) (z1 � z2)� z1z2(z22 � z21)� 3z1z2(z1 � z2) = 0) (z1 � z2)[1 + z1z2(z1 + z2)� 3z1z2℄ = 0) z1 � z2 = 0as jz1z2(z1 + z2)� 3z1z2j < 12 12 ( 12 + 12 ) + 3( 12 )( 12 ) = 1. �The next result is a diret onsequene of Corollary 12.8 and Theorem7.43.12.11. Theorem. A funtion f is a onformal mapping from C ontoC (i.e. f 2 Aut (C ) \ H(C )) i� f(z) = a0 + a1z (z 2 C ), a0; a1 onstants,a1 6= 0.An analog of Theorem 12.7 for meromorphi funtions follows.12.12. Theorem. Let g be meromorphi with a pole at a. Then g isone-to-one in some neighborhood of a i� a is a simple pole ( of multipliityone ).Proof. Just look at 1=g(z) (see also Corollary 12.14).12.13. Theorem. Let f be analyti at z = 1. Then f is univa-lent at z = 1 (i.e. univalent in the neighborhood of 1) if and only ifRes [f(z);1℄ 6= 0.Proof. Suppose f is analyti at z =1. Then f an be expanded in apower series whih onverges absolutely for jzj > R:f(z) =Xn�0 anz�n:Sine w = 1=z is bianalyti whih maps fz : jzj > Rg nf1g onto �r nf0g,r = 1=R, f(z) is univalent at z =1 i� g(w) =Pn�0 anwn is univalent atw = 0. By Theorem 12.7 we note that g is univalent at 0 i� a1 = g0(0) 6= 0.The result now follows from the fat that a1 = �Res [f(z);1℄.12.14. Corollary. Let D be an open set in C , and f : D ! C1 bemeromorphi and univalent in D. Then f has only a simple pole in D.Proof. The result follows immediately from Theorem 12.13. An alter-nate proof of this orollary is as follows:



510 Mapping TheoremsIt is lear that a meromorphi univalent funtion f : D ! C1 annothave two distint poles in D beause otherwise 1 would be assumed morethan one.Let z0 6=1 be a pole of order n, n � 1. Then in a deleted neighborhoodof z0 we have f(z) = (z�z0)�ng(z); where g is analyti at z0 and g(z0) 6= 0.As g(z) 6= 0 on a neighborhood of z0, the reiproal1f(z) = (z � z0)ng(z)is learly analyti at z0 and has a zero of order n at z0 and is univalent ona neighborhood of z0. Hene we must have n = 1.If z0 = 1 is a pole of order m (m � 1), then 0 is a pole of order n forf(1=z) = g(z). Applying the preeding argument to g = f Æh (h(z) = 1=z),we obtain m = 1. This ompletes the proof.12.15. Example. Consider the funtion f(z) = (1=2)(z+ z�1). Ev-idently, f is meromorphi and has two simple poles at 0 and 1. Thisfuntion is often referred to as (a speial ase of) a Joukowski mapping.(i) As f(z1) = f(z2) =) (z1 � z2)(1� 1=z1z2) = 0, f is univalent on Dif the domain D has the property that no two distint points z1; z2in D satisfy the ondition z1z2 = 1, i.e. z2 = z1=jz1j2. For example,f is univalent in D whenever D is � nf0g, or C n� or H+ or H�respetively.(ii) Clearly, f 0(z) = 0 at z = �1 and so, f is not onformal at z = �1.(iii) Setting z = rei� and w = f(z) = u+ iv, we �nd thatu = a os �; v = b sin � �a = (1=2)(r + r�1); b = (1=2)(r � r�1)�and therefore, the image of the irle jzj = r (r 6= 1) is the ellipsede�ned by u2a2 + v2b2 = 1 (a2 � b2 = 1):The semi-major and the semi-minor axes of the ellipse are seen tobe a and b with faii at w = �1. The ellipse degenerates into theline segment [�1; 1℄ on the u-axis if r ! 1. Sine f(z) = f(1=z), theirle jzj = r and jzj = 1=r (r 6= 1) are mapped into the same ellipse.Consequently, f(�) = f(C n�) = C n[�1; 1℄:(iv) The image of the ray Arg � is a branh of the hyperbolau2os2 � � v2sin2 � = 1;whose foi are also at �1, beause os2 � + sin2 � = 1:



12.2 Basi Results on Univalent Funtions 511(v) Rewrite w = k(z) = z=(1� z)2 asw = 1� � 2 ; � = g(z) = z + 1z :Reall that the unit disk � in the z-plane is mapped under g ontothe �-plane minus the real interval [�2; 2℄. Under w = (� � 2)�1, thedomain C n[�2; 2℄ is mapped onto the w-plane minus the negative realaxis from 1 to �1=4. �12.16. Theorem. Let f(z) be analyti and one-to-one on an openset D. Then the inverse map g(w) = f�1(w) is analyti on f(D).Proof. Let f be one-to-one and analyti on D. Then f 0(z) 6= 0 on D.Also, f�1 is single-valued and univalent in f(D). We know that f(D) isopen (why?). By hypothesis, g = f�1 is ontinuous in f(D). Let z0 bearbitrary, and set w0 = f(z0). Suppose that wn is a sequene suh thatwn ! w0, but never equals w0. Setting zn = g(wn), we see that zn ! z0(as g is ontinuous), and therefore, taking the limit wn ! w0, we haveg(wn)� g(w0)wn � w0 = zn � z0f(zn)� f(z0) ! 1f 0(z0) as n!1so that g0(w0) = 1=f 0(z0): Therefore g is also analyti and onformal, sinez0 is arbitrary.12.17. Corollary. (Inverse funtion theorem) Let f(z) be analytiin a neighborhood of z0, and f 0(z0) 6= 0 in D. Then the relation w = f(z)de�nes z as analyti funtion f�1(w) in some neighborhood of the pointw0 = f(z0).12.18. Theorem. If f(z) is analyti on a onvex domain D, andRe f 0(z) > 0 in D, then f(z) is univalent in D.Proof. We pik two distint points z1; z2 2 D. Then the straight linesegment z(t) = (1� t)z1 + tz2 (0 � t � 1) must lie in D. Now,f(z1)� f(z2) = Z z2z1 f 0(z) dz = Z 10 f 0(z(t)) (z2 � z1) dtso that����f(z2)� f(z1)z2 � z1 ���� � Re �f(z2)� f(z1)z2 � z1 � = Re �Z 10 f 0(z(t)) dt� > 0:Thus, f(z2) 6= f(z1) and so f is univalent in D.



512 Mapping TheoremsAording to Theorem 12.18, the funtionsf1(z) = �z � 2 log(1� z) and f2(z) = � log(1� z)are univalent in �.12.19. Corollary. Let f 2 H(
), where 
 is an open set in C andf 0(a) 6= 0 for some a 2 
. If further, there exists a disk �(a; Æ) � 
 suhthat jf 0(z)� f 0(a)j < jf 0(a)j for z 2 �(a; Æ);(12.20)then f is one-to-one on �(a; Æ).12.21. Examples.(i) Consider f(z) = z+zn, n � 2. Then f 0(0) = 1 and f 0(z)�1 = nzn�1.Further, f 0(�Æn) = 0 for Æn = (�1=n)1=(n�1) so that f annot beunivalent on �(0; Æ) if Æ � n�1=(n�1). Finally, for jzj < n�1=(n�1), wehave jf 0(z)� 1j = njzjn�1 < 1implying that f is univalent on jzj < n�1=(n�1). In partiular, f(z) =z + z2 is univalent for jzj < 1=2 but not on any larger disk around 0.Similarly, we see that g(z) = z+ zn=n is univalent in the unit disk �but not in any larger disk about 0.(ii) Consider the polynomial f(z) =Pnk=1 akzk of degree n � 2 suh thatPnk=2 kjakj � ja1j and a1 6= 0. Then, for z 2 �,jf 0(z)� a1j � nXk=2 kjakj jzjk�1 < nXk=2 kjakj � ja1j = jf 0(0)jso that f is one-to-one on �, by Corollary 12.19. Note that if a1 = 0,then f annot be one-to-one in any neighborhood of 0 (prove!). �12.3 Normal FamiliesThe proof of the Riemann mapping theorem whih we are going to dealwith in the next setion relies on the idea of a normal family whih is abasi onept in funtion theory. We know that every bounded sequene ofomplex numbers fzng possesses a limit point and so, fzng has a onvergentsubsequene. Analogous situation for sequenes of funtions ffng leads tothe de�nition of a normal family.Let 
 be a domain in C , and F � H(
). We say that F is a normalfamily if every sequene of funtions ontains a subsequene whih onvergesuniformly on ompat subsets of 
 (i.e. loally uniformly on 
). The limitof suh a subsequene must be analyti on 
.



12.3 Normal Families 513A family F � H(
) is said to be loally uniformly bounded in 
 if forany ompat set K � 
, there exists a onstant M =M(K) suh thatjf(z)j �M for all f 2 Fand for all z 2 K. We say that the family F is uniformly bounded on 
 ifthere exists a onstant M > 0 suh thatjf(z)j �M for all z 2 
 and all f 2 F :Clearly, uniformly boundedness of a family implies that eah member of thefamily is bounded. However the onverse is not true. For instane, onsiderF1 = fnz : n 2 Ng; F2 = f1=(z�ein) : n 2 Ng; F3 = f1=(1�zn) : n 2 Ng:Then eah Fk (k = 1; 2; 3) is a loally uniformly bounded family in � butnone of them is uniformly bounded in �.Our next result shows that every ompat subset K of a domain 
 isontained in a �nite union of losed disks ontained in 
.12.22. Lemma. Let 
 be a domain in C . Then there exists a se-quene fKng of ompat sets suh that(i) �(z; Æn) � Kn+1 with Æn = 1n(n+1) and for z 2 Kn(ii) Kn � int (Kn+1), intK denotes the interior of the set K(iii) 
 = [n2NKn(iv) If K � 
 is any ompat set, then K � Kn for some n 2 N.Proof. If 
 = C , then we let Kn = �(0;n). If 
 6= C , then we letKn = fz 2 
 : dist (z;
) � 1=ng \�(0;n):Clearly dist (z;
) � 0 if 
 6= C , and if 
 = C , we ould perhaps interpretit as 1. Now Kn is bounded (beause Kn � �(0;n) for eah n) and Kn islosed beause it is an intersetion of two losed sets. Thus, Kn is ompatfor eah n. For z 2 
\Kn, we show that �(z; Æn) � Kn+1. It follows thatjzj � n and w 2 �(z; Æn) =) jwj � jw � zj+ jzj < Æn + n < 1 + n=) w 2 �(0;n+ 1):Also, for eah a 2 
, z 2 Kn and w 2 �(z; Æn), we havejz � aj � 1=n and jw � zj < Ænso thatjw � aj � jz � aj � jw � zj > 1n � Æn = 1n � 1n(n+ 1) = 1n+ 1 :



514 Mapping TheoremsThus, w 2 Kn+1 and so, �(z; Æn) � Kn+1. Note that eah z 2 Kn impliesthat �(z; Æn) � Kn+1. This means that Kn is ontained in the interior ofKn+1. Hene, (i) and (ii) follow.To prove (iii), we let z 2 
. Sine 
 is open, there exists some disk�(z; r) � 
. In partiular,�(z; 1=n) � �(z; r) � 
where n is large enough so that n � jzj > 1=r. This gives z 2 Kn. There-fore, 
 � S1n=0Kn: But Kn � 
 for all n and so we also have[1n=1Kn � 
:and (iii) follows.For the proof of (iv), we onsider a ompat subset K � 
. ThenK � [1n=1Kn � [1n=1int (Kn+1)and so we have an open over of K by the sets int (Kn+1). Aording tothe Heine-Borel theorem, there exists a �nite subover of K. Thus, thereis an N suh thatK � [Nn=1int (Kn+1) = int (KN+1) � KN+1and (iv) holds.We prove the following general result whih we shall need later on.12.23. Lemma. Let 
 be a domain in C and F � H(
) suh that Fis loally uniformly bounded in 
. Then, for eah k � 1, the familyF (k) = ff (k) : f 2 Fgis loally uniformly bounded in 
.Proof. Let a 2 
 be an arbitrary point of 
 and 0 < Æ < dist (a; �
).Then �(a; Æ) � 
. As F is loally uniformly bounded in 
, there exists aonstant M > 0 suh thatjf(z)j �M for all z 2 C and for every f 2 F ;where C is the boundary of the disk �(a; Æ) oriented positively. By theCauhy integral formula for derivativesf (k)(z) = k!2�i ZC f(�)(� � z)k+1 d� for z 2 �(a; Æ)



12.3 Normal Families 515and for all f 2 F . For z 2 �(a; Æ=2), as j�� zj � j��aj� ja� zj> Æ� Æ=2,we obtain jf (k)(z)j � k!2� M(Æ=2)k+1 2�Æ = k!MÆk 2k+1so that F (k) is loally uniformly bounded in 
.Next we begin with the de�nition of an equiontinuous family. Let 
be a domain in C and F be a family of omplex-valued funtions (notneessarily analyti) in 
. We say that F is equiontinuous on 
 if forevery � > 0 there is a Æ > 0 (depending only on � and not on f 2 F) suhthat jf(z)� f(z0)j < �for all f 2 F whenever z; z0 2 
 and jz � z0j < Æ.For example, onsider F = ff : f(z) = 3z + onstantg. Then for allf 2 F , jf(z)� f(z0)j = 3jz � z0j < �whenever jz � z0j < Æ = �=3 and z; z0 2 C . Thus, F is an equiontinuousfamily on C .12.24. Lemma. (Bounded derivatives imply equiontinuity) Let
 be a domain in C and F � H(
) suh that the family of their derivatives,F 0 = ff 0 : f 2 Fg, is loally uniformly bounded in 
. Then F is (loally)equiontinuous.Proof. It suÆes to prove equiontinuity of F on an arbitrary boundedlosed disk K ontained in 
. As F 0 is loally uniformly bounded in 
, fora losed disk K � 
 there exists a onstant M =M(K) > 0 suh thatjf(z)j �M for all z 2 K and for every f 2 F :Then for any two points z; z0 2 K, integrating over a straight line pathfrom z0 to z givesf(z)� f(z0) = Z zz0 f 0(�) d� = Z[z0;z℄ f 0(�) d�so that jf(z)� f(z0)j �M jz � z0j:For any � > 0, let Æ = �=M . Then jf(z) � f(z0)j < � whenever z; z0 2 Kand jz � z0j < Æ: Thus, F is equiontinuous on ompat subset of 
.12.25. Lemma. Suppose that ffn(z)g is a sequene of analyti fun-tions that is loally uniformly bounded in a domain 
. Suppose thatffn(�)g onverges at every � on a dense subset E of 
. Then ffn(z)gonverges loally uniformly on 
.



516 Mapping TheoremsProof. Fix a ompat setK � 
. By Lemmas 12.23 and 12.24, ffn(z)gis equiontinuous on K. Therefore, for any given � > 0, there exists a Æ > 0suh that jfn(z)� fn(z0)j < �=3 for jz � z0j < Æ and z; z0 2 K;(12.26)where n is arbitrary. Sine K is ompat, we an over K by a �nitesubover, say p neighborhoods �(zk; Æ=2) with zk 2 K and 1 � k � p.In eah of these p neighborhoods, hoose a point �k = zm(k) (1 � k � p)from the dense subset of K. By hypothesis, ffn(�k)g onverges for eah1 � k � p. As a result, this sequene is Cauhy. Consequently, there is aninteger N suh that n > m � Njfn(�k)� fm(�k)j < �=3 for 1 � k � p:(12.27)Now, let z 2 K be an arbitrary point. Then, z 2 �(zk; Æ=2) for some k. Itfollows from (12.26) and (12.27) that for the above n > m � Njfn(z)� fm(z)j � jfn(z)� fn(�k)j+ jfn(�k)� fm(�k)j+ jfm(�k)� fm(z)j< �=3 + �=3 + �=3 = �:Thus, the sequene ffn(z)g is uniformly Cauhy on K, and therefore on-verge uniformly on K, sine K is ompat.Using the notion of equiontinuity and uniform boundedness, we arenow prepared to state the following simple version of Montel's theoremwhih is one of the key ingredients in the proof of the Riemann mappingtheorem.12.28. Theorem. (Montel's theorem) Let 
 be a domain in C andF � H(
) suh that F is loally uniformly bounded in 
. Then F is anormal family.Proof. Let ffng be a sequene from F . To prove that F is normal, wehave to onstrut a subsequene that onverges loally uniformly in 
. LetK be a ompat subset of 
. Then, by Lemma 12.22, K is ontained in Knfor some n, where Kn is de�ned as in Lemma 12.22. Therefore, it suÆesto prove that there exists a subsequene that onverges uniformly on eahKn. Let E � 
 be a ountable dense subset. For instane,E = fz = x+ iy 2 
 : x and y are rationalg:As E is ountable, we may enumerate the points of E by z1; z2; : : : ,E = fz1; z2; z3; : : :g:We are given that F is uniformly bounded on eah ompat subset of 
 andhene it is pointwise bounded (beause Kn = fzng onsisting of singleton



12.3 Normal Families 517subsets are ompat). Thus, ffn(z1)g is a bounded sequene of omplexnumbers. Thus (by Bolzano-Weierstrass theorem), there is a onvergentsubsequene of ffng, whih we shall denote by ffn;1g, that is onvergent atz1. Now onsider the sequene ffn;1(z2)g whih is bounded, and so we an�nd a further subsequene ffn;2g of ffn;1g suh that ffn;2(z2)g onverges.Sine ffn;2g is a subsequene of ffn;1g, ffn;2(z1)g is onvergent too. Heneffn;2g atually onverges at two points z1; z2. Repeating the proess, foreah k � 1, we obtain a subsequene ffn;kg that onverges at z1; z2; : : : ; zkand ffn;kg � ffn;k�1g. We get a list of lists:f1;1(z); f2;1(z); f3;1(z); : : : fk;1(z); : : : onveges at z1f1;2(z); f2;2(z); f3;2(z); : : : fk;2(z); : : : onverges at z1; z2f1;3(z); f2;3(z); f3;3(z); : : : fk;3(z); : : : onverges at z1; z2; z3... ... ... ... ...f1;k(z); f2;k(z); f3;k(z); : : : fk;k(z); : : : onverges at z1; : : : ; zk.... ... ... ... ...Now we onsider the funtions gn(z) = fn;n(z), n 2 N. Then for eah�xed k, fgn(zk)g is a (diagonal) subsequene of the onvergent sequeneffn;k(zk)g; n � k, and hene onverges at eah zk 2 E. By Lemma 12.25,fgn(zk)g onverges loally uniformly on 
 and so, the limit funtion g(z)is analyti on 
.Let use onsider some simple examples.1. Let fn(z) = zn and F be the olletion of all fn(z), z 2 �. Thenfn ! 0 loally uniformly to 0 on �, but does not onverge uniformlyon � beause limn!1 supz2� jfn(z)j 6= 0. It follows that F is anormal family of analyti funtions in �. Also, we remark that fzngdoes not onverge loally uniformly on the losed disk jzj � 1, beauselimn!1 jznj = 1 at z = 1.2. Let fn(z) = z=n, and F be the olletion of all fn(z), 
 = C . Clearly,there is no M > 0 suh that jz=nj �Mfor all n and all z 2 C . On the other hand, on any �xed ompat setK, there exists anM > 0 (e.g. M = supz2K jzj) suh that jz=nj �Mfor all n and all z 2 C . Thus, F is a normal family (as F is aloally uniformly bounded family of analyti funtions in C ). Notethat fn ! 0 loally uniformly on C .3. Consider F = fnz2 : n 2 Ng. If fn(z) = nz2, then fn(0) = 0! 0 asn ! 1 whereas fn(z) ! 1 as n ! 1 for z 6= 0. This observation



518 Mapping Theoremsshows that F annot be normal in any domain whih ontains theorigin. Also, F is not normal in any domain that does not ontainthe origin.4. De�ne F = ff 2 H(�) : f(0) = 1 and Re f(z) > 0 for z 2 �g. Thenwe have (see Theorem 6.49)jf(z)j � 1 + jzj1� jzj for z 2 �:Thus, F is loally uniformly bounded and therefore, F is a normalfamily.5. Let F denote the family of all funtions from H(�) suh thatZ 2�0 jf(rei�)j d� �  for eah r 2 (0; 1)and for some  > 0. Then for eah ompat set K � �, there existsa � suh that K � ��. Now, we �x r with � < r < 1 and letm = maxjzj=r jf(z)j. By the Cauhy integral formula, for eah f 2 Fand a 2 K, we havejf(a)j = ����� 12�i Zj�j=r f(�)� � a d������ � 12� mr � jaj2�r =M(K) (say):Thus, F is loally uniformly bounded in � and therefore, by Montel'stheorem, F is normal.12.4 The Riemann Mapping TheoremThe Riemann mapping theorem is onerned with the mapping of a do-main in the z-plane onto a domain on the w-plane. In this setion, we areonerned with this important problem whih has a lot of appliations.12.29. Problem. Given two domains 
, 
0, is it always possible to�nd a onformal map of 
 onto 
0? That is, given two domains 
 and 
0,under what onditions is there a funtion f 2 H(
) suh that 
0 = f(
)?Does the problem always have a solution? For instane, does it have asolution if 
 is a multiply onneted domain and 
0 is a simply onneteddomain? In general, the answer is no as there exists no map (why!) whihtakes the multiply onneted domain 
 onto the simply onneted domain
0. So unless otherwise stated expliitly, from now onwards, we restrit ourattention to when 
 and 
0 are simply onneted domains. Two simplyonneted domains 
 and 
0 in C are said to be onformally equivalent if



12.4 The Riemann Mapping Theorem 519there exists an analyti funtion � from 
 to 
0 suh that � is one-to-oneand onto. Clearly onformality is an equivalene relation. If the domains
 and 
0 are onformally equivalent, then ��1 : 
0 ! 
 with ��1 2 H(
0)so that � and ��1 are onformal. However, it is natural to ask whetherit is always possible to say that two given simply onneted domains areonformally equivalent. Is the omplex plane C onformally equivalent tothe unit disk �, for example? Note that both C and � are simply onneteddomains. Aording to Liouville's theorem, C and � are not onformallyequivalent (why!).12.30. Theorem. (Riemann Mapping Theorem) Let 
 be a simplyonneted domain and 
 6= C . Then there exists a univalent funtionf 2 H(
) suh that f(
) = �; i.e. every simply onneted domain whihis a proper subset of C is onformally equivalent to the unit disk.The map f in Theorem 12.30 is essentially unique in the following sense:if a is an element of 
 and � 2 (��; �℄ is an arbitrary angle, then thereexists preisely one f as above with the additional properties f(a) = 0and arg f 0(a) = �. Without loss of generality we may simply assume that� = 0. Also, we remark that the ondition f(a) = 0 is simply a onvenientnormalization. Moreover, the Riemann mapping theorem15 implies that� among the simply onneted domains, there are exatly two equiva-lene lasses: one onsisting of C alone and the other ontaining theunit disk (and muh more).� among the doubly onneted regions, there are unountably manyequivalene lasses, eah ontaining a irular annulus for some uniquereal (and muh more). In partiular, the two annuli A(r1; R1) andA(r2; R2) are onformally equivalent i� R1=r1 = R2=r2, that is theratio of outer radius and inner radius is a onformal invariant. We donot disuss these in detail here.� the funtion provided by the Riemann mapping theorem is a homeo-morphism. Indeed, as a orollary to the Riemann mapping theorem,we say that if 
 and 
0 are onformally equivalent, then they arehomeomorphi. The onverse is false; for example, C is homeomor-phi to �, but not onformally equivalent to �.A number of proofs are available today, see Burkel's survey [5℄. Be-fore we present the proof of the Riemann mapping theorem, we reall thefollowing fats:� every non-onstant analyti funtion is an open map.15Riemann's dissertation, ompleted under Gauss's supervision in 1851, was on thefoundations of omplex analysis. It introdued several ideas of fundamental importane,suh as the de�nitions of onformal mapping and simple onnetivity.
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Figure 12.1: A onformal map of � onto 
0 = fw : 0 < Imw < 1g:� every one-to-one analyti funtion has non-vanishing derivative and,so has an analyti inverse.� every analyti funtion with non-vanishing derivative preserves anglesand their orientations and so, the funtion provided by the Riemannmapping theorem is, in partiular, onformal. In view of this reason-ing the Riemann mapping theorem is frequently alled the \onformalmapping theorem".� frequently the omposition of onformal maps makes the problemeasier. For instane, it follows that if 
1 and 
2 are two simplyonneted domains with C n 
k 6= ; for k = 1; 2 then, by Theorem12.30, there exist two onformal maps fk : 
k ! � (k = 1; 2) andtherefore, f = f�12 Æ f1 : 
1 ! 
2 is the desired onformal map from
1 onto 
2. Thus, the use of the unit disk in the proof is a onvenientintermediate step in the statement of the Riemann mapping theorem.Before we undertake the proof of the Riemann mapping theorem it isimportant to examine several examples of suh mappings.12.31. Example. A onformal map whih arries the unit disk �onto the horizontal strip 
0 = fw : 0 < Imw < 1g is given by1� Log � i(1 + z)1� z � :A proof for this fat follows easily from Figure 12.1. �12.32. Example. Consider the resent shaped domain D1 de�nedby D1 = fz 2 C : jz � i�j > �g \ fz 2 C : jz � 2i�j < 2�g (� > 0)
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Figure 12.2: A onformal map of D1 onto D2:and D2, the open �rst quadrant. The Riemann mapping theorem assuresthe existene of a univalent analyti funtion f from D1 onto D2 (althoughit does not give any method for onstruting suh a mapping). In thisspeial ase, we an atually desribe the method of �nding a onformalmapping whih arries D1 onto D2. To do this we �rst see that if a > 0then, under the inversion w = 1=z, one has� jz � iaj < a is mapped onto the half-plane Im (w) < �1=(2a)� jz � iaj = a is mapped onto the straight line Im (w) = �1=(2a)� jz � iaj > a is mapped onto the half-plane Im (w) > �1=(2a).If we let (see Figure 12.2)w = f1(z) = 1z ; � = f2(w) = 4���w + i2�� ; � = f3(�) = exp(�=2);then the above information help us to onlude that f = f3 Æ f2 Æ f1 is amap with the desired property. This gives f(z) = � exp(2��=z). Also wenote that f(2i�) = 1 and f(4i�) = i. In partiular if D3 is the open upperhalf-plane H+ , then a onformal mapping whih arriesD1 onto D3 is givenby f(z) = exp(4��=z). �12.33. Example. For k = 1; 2, let Dk = fz : 0 < rk < jzj < Rkgsuh that (r2=r1) = (R2=R1). Then we see that f given byf(z) = (r2=r1)zmaps the annulus D1 onto D2.



522 Mapping TheoremsNext, we let A(r) = fz : r < jzj < 1g, r > 0, and B = � n�(1=3; 1=3).Let us now desribe a method of �nding a onformal map that takes A(r)onto B. De�ne��(z) = �� z1� �z ; C1 = ��(1=3; 1=3) and C2 = ��:First we need to �nd � suh that ��(C1) = ��r. For the moment, let �be real. Then ��(x) is real and �� maps the real line into itself. Now,��(0) = �; and ��(2=3) = �� (2=3)1� (2=3)�meets the real axis. Note that C1 meets the real axis in a perpendiularfashion, real goes to real and that �� is onformal. As we need ��(C1) tobe the irle ��r entered at the origin, ��(0) = ���(2=3) whih gives� = �� �� (2=3)1� (2=3)�� or �2 � 3�+ 1 = 0:That is � = (3 � p5)=2. As j�j < 1, we hoose � = (3 � p5)=2 whih ispositive. Thus, ��(z) = ((3�p5)=2)� z1� ((3�p5)=2)zmaps �� onto itself, and maps C1 onto the irle with enter at the originand radius r = (3�p5)=2.Suppose that 1 = ��(1=4; 1=4) and 2 = ��: Then, ��(0) = ���(1=2)gives � = �� �� (1=2)1� (1=2)�� or �2 � 4�+ 1 = 0so that � = 2 � p2. Thus, �2�p2(z) maps �� onto itself, and maps 1onto the irle with enter at the origin and radius r = 2�p2. Moreover,as the inverse of �� is itself,z = �2�p2(w) = (2�p2)� w1� (2�p2)wis a onformal map whih arries the annulus A(r) = fz : r < jzj < 1g(r = 2�p2) onto B = � n�(1=4; 1=4). �12.34. Proof of the Riemann mapping theorem. The proof islong and it involves a onsiderable number of triky ideas. So, we dividethe proof into several steps.Uniqueness: We know that the every member of the (analyti) auto-morphisms of the unit disk � whih �xes the origin is given by the mappingf(w) = ei�w for some real �. This result makes the uniqueness part easier.Indeed, if 
 is a simply onneted domain with 
 6= C , a 2 
 and suhthat (see Figure 12.3)
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Figure 12.3: Uniqueness of the Riemann map.� fi : 
! � is analyti, one-to-one and onto for eah i = 1; 2;� fi(a) = 0 and f 0i(a) > 0 for eah i = 1; 2;then the funtion f = f2 Æ f�11 belongs to H(�) and maps � onto itselfonformally. Further,� f(0) = f2(f�11 (0)) = f2(a) = 0� f 0(0) = f 02 �f�11 (0)� �f�11 �0 (0) = f 02(a)f 01(a) > 0:Observe that if z = ��1(w), then w = �(z) so thatd��1(w)dw � dwdz = 1; i.e. (��1)0(w) = 1�0(��1(w))and, for �(a) = 0, we have ���1�0 (�(a)) = ���1�0 (0) = 1=[�0(a)℄: Now,by Shwarz' lemma (see also Corollary 6.48), f(w) = ei�w for some � 2 R.Sine f 0(0) = ei� > 0, it follows that f = f2 Æ f�11 is the identity mappingf(w) = w and so, f2(z) = f1(z) for all z 2 
, as asserted. Having provedthe uniqueness part, we now turn to the problem of the existene part.Existene: Let a 2 
. Consider the family F de�ned byF = ff 2 H(
) : f univalent on 
, f(a) = 0, f 0(a) > 0 and jf(z)j < 1g:We show that the family F is non-empty.Case (i): If 
 is bounded, then the assertion is easy. To do this wesimply need to �nd an f meeting the stated spei�ations. If f(z) = �(z�a)and if � > 0 is taken suÆiently small, then jf(z)j an be made less than1 for all z 2 
. Indeed,jf(z)j = j�j jz � aj � �(jzj+ jaj) � 2� supz2
 jzj = 1



524 Mapping Theoremsprovided � = 1=(2 supz2
 jzj):Case (ii): Let 
 be unbounded. Sine 
 6= C , there exists a pointb 2 C n 
. Further, as z � b 6= 0 on 
 (by Theorem 4.39), there exists afuntion h : 
! C analyti on 
 with h2(z) = z � b for z 2 
: We have� h is univalent on 
, sine, for z1, z2 2 
,h(z1) = h(z2) ) z1 � b = h2(z1) = h2(z2) = z2 � b ) z1 = z2:� there exist no two points z1; z2 2 
 suh that h(z1) = �h(z2). Indeedif z1; z2 2 
, thenh(z1) = �h(z2) ) z1 � b = h2(z1) = h2(z2) = z2 � b) z1 = z2) h(z1) = h(z2) = �h(z1)) 0 = h(z1)) 0 = h2(z1) = z1 � b) z1 = b 2 C n
whih is a ontradition to the fat that z1 2 
.� h, being a (one-to-one) non-onstant analyti funtion, is an openmapping. Now, by the open mapping theorem, h(
) is open andhene, h(
) ontains a disk, say �(w0; Æ) (about a point w0 2 h(
)with some radius Æ), (see Figure 12.4).� �(�w0; Æ) fails to meet h(
), i.e. �(�w0; Æ) \ h(
) = ;. Indeed,if there exists a point w1 2 �(�w0; Æ) \ h(
) then w1 = h(z1) forsome z1 2 
 and also, jw1 + w0j = j � w1 � w0j < Æ showing that�w1 2 �(w0; Æ) � h(
). The last fat infers that�w1 = h(z2) for some z2 2 
:Thus, h(z1) = �h(z2) whih is not possible (as seen above) so that�(�w0; Æ) \ h(
) = ;:� for every z 2 
, jh(z)�(�w0)j = jh(z)+w0j � Æ > 0 so that g de�nedby g(z) = Ækh(z) + w0 (k 2 (0; 1))is a one-to-one analyti funtion (sine h is one-to-one on 
 withh(z) + w0 6= 0 on 
) de�ned on 
 satisfying jg(z)j < 1 for all z 2 
.That is, g is a univalent map of 
 into a subdomain g(
) of �, but g(a) 6= 0.To onstrut a funtion f with f(a) = 0 and f 0(a) > 0, we simply onsiderf(z) = e�i� �g(z)� g(a)2 � ; � = Arg (g0(a)):
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Figure 12.4:Therefore, F 6= ;. Thus, we have established the existene of a onformalmapping f from 
 into a subdomain of � satisfying the desired ondition;that is, f 2 F .Onto: Sine F is uniformly bounded, by Montel's Theorem, F is anormal family. We have already noted in the proof of Lemma 12.23, thereis a �nite upper bound for f 0(a) for all f 2 F . Let� = supff 0(a) : f 2 Fg:Clearly, � > 0 beause f 0(a) > 0 for the funtion de�ned by F . Also, �is �nite. By the de�nition of supremum, there is a sequene fgn(z)g in Fsuh that g0n(a) ! �. By Montel's Theorem, there exists a subsequene(whih we may as well assume is the whole sequene fgn(z)g) of fgn(z)gthat onverges loally uniformly on 
 (to a limit funtion g(z), say). Butthen Weierstrass's theorem (see Theorem 4.84) tells us that g0n ! g0 loallyuniformly on 
, whih gives thatlimn!1 g0n(a) = g0(a):Being the loal uniform limit of a sequene of univalent analyti funtions,g(z) is either analyti and univalent on 
 or g(z) is onstant there. As fg0ngis loally uniformly onvergent on 
 with limit g0, we have g(a) = 0 andg0(a) = � > 0. Thus, g annot be onstant in 
, and is therefore univalent
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. Sine g(
) is open (by the open mapping theorem), g(
) � � and sojg(z)j < 1. The above disussion shows that the family F is ompat; i.e.g 2 F .Observe that the map g 7! g0(a) : F ! R is a ontinuous funtion onthe ompat family F , and so it attains it maximum value. Let g 2 F bea funtion suh that g0(a) is as large as possible. It remains to show that gis an onto map. To prove g is onto, we use Koebe's trik.Suppose that g is not onto. Then there exists a point � 2 � ng(
) (seeFigure 12.5). We onsider the familiar M�obius mappingT�(w) = � � w1� �w :We know that T� is a one-to-one mapping of � onto itself with inverse T�itself. Also T�(w) = 0 i� w = �. De�ne�(z) = (T� Æ g)(z) = � � g(z)1� �g(z) ; z 2 
:Now, � 2 H(
), �(z) 6= 0 on the simply onneted domain 
 (sine � =2g(
)) and so, 
 admits a square root mapping H 2 H(
) suh thatH2(z) = �(z); z 2 
:Sine T� and g are one-to-one, so is H . Sine H2(
) � �, it follows thatH(
) � �. ButH(a) 6= 0 and hene, H annot be in F . Now, setH(a) = �and note that 0 < j�j < 1. De�neF (z) = �ei�(T� ÆH)(z) = ei� H(z)� �1� �H(z) ;where � is hosen to ensure that F 0(a) > 0. Indeed, F 2 H(
), F (a) = 0and F 0(z) = ei� � (1� j�j2)H 0(z)(1� �H(z))2 �



12.5 Bieberbah Conjeture 527so that (note that H 0(a) 6= 0)F 0(a) = ei� H 0(a)1� j�j2 :If we hoose � suh that ei� = jH 0(a)j=H 0(a); then we obtain thatF 0(a) = jH 0(a)j1� j�j2 = jH 0(a)j1� jH(a)j2 > 0:Now, F is in F . As H2(z) = �(z) and �(z) = (T� Æ g)(z), we have2H(z)H 0(z) = �0(z) = T 0�(g(z))g0(z) and T 0�(w) = � 1� j�j2(1� �w)2 ;whih, for z = a, gives (note that g(a) = 0)H 0(a) = T 0�(0)2H(a)g0(a) = ��1� j�j22H(a) � g0(a):Further, �(a) = T�(g(a)) = T�(0) = � gives H2(a) = �. Finally, using theabove observations, we haveF 0(a) = jH 0(a)j1� jH(a)j2= 1� j�j22jH(a)j g0(a) 11� jH(a)j2= 1 + j�j2pj�j g0(a) (sine jH(a)j2 = j�j)> g0(a):Thus F is in F , but F 0(a) is greater than g0(a) ontradits the hoie ofg 2 F as maximizing g0(a). This ontradition proves that g(
) = �.12.5 Bieberbah ConjetureWe reall that f 2 H(�) admits the Malaurin series expansion about 0:f(z) = 1Xn=0 anzn; an = f (n)(0)n! :We note that univaleny is preserved under translation. Moreover, if f isunivalent on � then f 0(z) 6= 0 on � (see Corollary 12.8). In partiular,f 0(0) 6= 0. Sine univaleny is una�eted by magni�ation and translation,f is univalent in � i� g de�ned byg(z) = f(z)� f(0)f 0(0) = z + 1Xn=2 bnzn (bn = an=a1);



528 Mapping Theoremsis univalent in �. The funtion g in this form is referred to as a normalized(in the sense that g(0) = 0 = g0(0) � 1) analyti funtion in �. It isonvenient to introdue the following standard notation:S = ff 2 H(�) : f(0) = 0 = f 0(0)� 1 and f is univalent on �g:Clearly, S is not losed under addition or multipliation of funtions al-though it is losed under a number of elementary transformations (see alsoExerise 12.61). Interesting members of S that an be heked geometri-ally are z; z � z22 ; ez� � 1� ; z1� z ; z1� z2 ; z(1� z)2 :There are a number of basi questions that arise naturally in the theoryof univalent funtions. For instane, the problems of �nding neessary andsuÆient onditions for f to be a member of S.In 1916, Bieberbah proved that if f(z) = z +P1n=2 anzn 2 S, thenja2j � 2 and asked whether we always have janj � n for all n = 2; 3; : : : .This beame his famous onjeture. Although, the ases n = 3; 4; 5; 6 havebeen proved using powerful analysis, the onjeture was proven only in 1984by de Branges. For a proof of the result that ja2j � 2 (due to Bieberbahhimself), it will be easier if we de�ne a new lass of analyti funtions,namely �, the set of all analyti and univalent funtions on fz : 1 < jzj <1g with simple pole at 1 with residue 1. Thus, a typial element g 2 �will be of the formg(z) = z + 1Xn=0 bnz�n; 1 < jzj <1:12.35. Theorem. (Area Theorem) Suppose that g(z) = z+P1n=0 bnz�nis in �. Then we have P1n=1 njbnj2 � 1: In partiular, jb1j � 1.Proof. For an arbitrary r > 1, let �r be the image of the irle r =fz 2 C : jzj = rg under g 2 �. Sine g is univalent, �r is a simple losedurve. Then Green's theorem (see Exerise 12.56) implies that the area Arof the bounded domain surrounded by �r is given byAr = 12i Z�r w dw = 12i Zjzj=r g(z)g0(z) dz = 12 Z 2�0 g(rei�)g0(rei�)rei� d�whih leads to Ar = � r2 � 1Xn=1njbnj2r�2n! :Sine Ar > 0 for r > 1, we have P1n=1 njbnj2r�2n�2 < 1 whih is true forevery r > 1. The required result follows if we allow r ! 1+.12.36. Theorem. If f(z) = z +P1n=2 anzn 2 S, then we have



12.5 Bieberbah Conjeture 529(i) ja2j � 2 [Bieberbah Theorem℄(ii) �1=4 � f(�). [Koebe 1/4-Theorem℄The assertions annot be improved.Proof. For the proof of (i), we de�neF (z) = � f(z)=z if 0 < jzj < 11 if z = 0:Then, F 2 H(�). Sine f 2 S and f(0) = 0, f(z) 6= 0 for 0 < jzj < 1.Consequently, F (z) 6= 0 in � and hene, F admits a square root funtion:h(z) = (F (z))1=2 with h(0) = 1. De�ne g(z) = zh(z2): This in turn showsthe existene of g 2 H(�) withg(0) = 0 = g0(0)� 1 and g2(z) = f(z2) for all z 2 �:We laim that g is univalent in �. Observe thatg(z1) = g(z2) =) g2(z1) = f(z21) = f(z22) = g2(z2)=) z21 = z22 (sine f is univalent)=) z1 = �z2=) z1 = z2:Note that if z1 = �z2, then g(z1) = z1h(z21) = �z2h(z22) = �g(z2) whih(together with g(z1) = g(z2)) gives g(z1) = 0 = g(z2). But 0 =2 h(�) andso, z1 = z2 = 0. It is a simple exerise to see thatg(z) = z + a22 z3 + � � � and �(z) = 1g(1=z) = z � a22 z�1 + � � � ;where �(z) 2 �. By the area theorem, ja2=2j � 1; that is ja2j � 2.(ii) To prove the inlusion �1=4 � f(�) it suÆes to show that w 2C nf(�) =) jwj � 1=4: If w 2 C nf(�), then G de�ned byG(z) = wf(z)w � f(z)is in S. Indeed, G 2 H(�) with G(0) = G0(0)� 1 = 0 and w 6= 0 so thatG(z1) = G(z2) =) f(z1)1� w�1f(z1) = f(z2)1� w�1f(z2)=) f(z1)(1� w�1f(z2)) = f(z2)(1� w�1f(z1))=) f(z1) = f(z2)=) z1 = z2 (sine f 2 S):



530 Mapping TheoremsThus, G 2 S. Moreover, as G00(0)=2! = a2 + w�1, it follows from Case (i)that ja2 + w�1j � 2. This inequality implies thatjw�1j � ja2j+ 2 � 4; i.e. jwj � 1=4;whih proves the inlusion �1=4 � f(�).Finally, onsider the Koebe funtionk�(z) = z(1� ei�z)2 = z + 1Xn=2nei(n�1)�zn = e�i�4 "�1 + ei�z1� ei�z�2 � 1# :It follows that k� 2 S and k�(�) is the omplement of the slit from�(1=4)e�i� to 1. Note that ja2j = 2 and �1=4 is the largest disk en-tered at 0 and ontained in k�(�). Thus, the onlusion is sharp.12.6 The Bloh-Landau TheoremsBasially Bloh's theorem leads to two important topis:� Bloh onstants and Landau onstants� Bloh spae (more generally, many funtion spaes assoiated withit).For f 2 H(�), we raise the following12.37. Problem. How big is the image domain f(�) in size?We an talk about size of image domains in terms of disks, in partiularopen disks in the following sense. That is, what size open disks (need notbe entered at the origin) an be plaed inside f(�)? Thus, this probleman be answered by means of giving a good estimate rather than �ndingthe exat size of these disks.Clearly, the answer does not seem to be easy. Intuitively, it is lear thatit is not easy to �nd the preise size of suh disks for eah funtion in thespae of all analyti funtions de�ned on any arbitrary domain. Neverthe-less, we shall try to answer these questions step by step. Before we get intothe subjet, we shall dispose some of the simple ases. We have alreadyenountered many results onerning the size of the image domains, for ex-ample Liouville's theorem, exponential funtions, and ertain trigonometrifuntions. Reall that the set of all entire funtions is divided into two sub-sets, namely the set of all polynomials (inluding onstant funtions) andthe set of all (entire) transendental funtions. Let us onsider the followingases:� Entire bounded funtions: In this ase, by Liouville's theorem, theimage domain f(C ) is a singleton set. So, no open disk an be plaedinside f(C ).



12.6 The Bloh-Landau's Theorems 531� Entire unbounded funtions: In this ase, we see that f(C ) is eitherthe whole omplex plane C or the plane C minus a single point. Forexample, we know that if p(z) is a non-onstant polynomial (see fun-damental theorem of algebra), then p(C ) = C . Also, sin(C ) = C ,os(C ) = C and exp(C ) = C nf0g (see Casorati-Weierstrass Theoremwhen 1 is an isolated essential singularity of sin z, os z and ez). So,an open disk of arbitrarily large radius an be plaed inside f(C ).� Analyti funtions on the unit disk �: As f(z) is entire i� g de�nedby g(z) = f(Rz) is analyti in � for eah R > 0, we note that thisase leads to the previous ase.Thus, we deal only with the analyti funtions on �. The reason for thisis due to the elebrated Riemann Mapping Theorem. So, it suÆes to payattention to the last ase beause, by means of ompositions, we retrievethe properties of the image domain of the analyti funtions de�ned on anyarbitrary simply onneted domain. Avoiding onstant funtions in ourdisussion, it suÆes to onsider the family of funtions F = ff 2 H(�) :f 0(0) = 1g: The ondition f 0(0) = 1 is to ensure that f is not a onstantfuntion. First we notie that the existene of suh a disk in f(�), f 2 F ,is ensured by the open mapping theorem.To make the size of suh disks more meaningful, we de�ne two onstants.Consider f 2 F . Choose a point w 2 f(�) and �nd the radii of all possibledisks entered at w suh that they lie ompletely in f(�). Repeat thiswith every point of f(�). Let these radii be named as r�;� , where � and �belong to some indexed sets � and �0, respetively. If r�;� is the radius ofthe �-th disk entered at w� 2 f(�), then we de�neLf = supfr�;� : � 2 �; � 2 �0g:Then the Landau16 onstant is de�ned asL = inff2F Lf :Clearly, the de�nition of L is related to the size of the image domains offuntions in F .For L, Ahlfors's [1℄ ultra-hyperboli method produed the non-sharplower bound 1=2. Later Yanahigara [12℄ improved the lower bound for Lto 12 + 10�335. Again it is important to mention that, we do not knowthe exat value of L. The following bounds were determined by Robinson(1938) and independently by Rademaher [10℄,12 < L � �(1=3)�(5=6)�(1=6) ;16The name \Landau" is in honor of the great mathematiian Landau who ontributeda lot to this �eld of researh.



532 Mapping Theoremswho further onjetured that L is atually the above mentioned upperbound, namely, �(1=3)�(5=6)�(1=6) = 0:5432588 � � � :We let H0 denote the spae of all funtions in H(�) suh that f 0(0) 6= 0.12.38. Theorem. (Bloh) For eah f 2 H0, there exists a positiveonstant b suh that f maps some subdomain of � bianalytially onto adisk of radius bjf 0(0)j.The disk referred to in this theorem is alled a univalent disk. Thus,a disk about some point in f(�) is said to be a univalent disk i� it is theone-to-one and onto image of some subdomain of �. For f 2 H0, de�neBf = supfr�;� : � 2 �; � 2 �0g;where r�;� is the radius of the �-th univalent disk about w� 2 f(C ). Thenthe Bloh onstant B is de�ned asB = inff2H0Bf :The following upper and lower estimates for B were found by Ahlfors andGrunsky [1℄, and Ahlfors [2℄:0:43 � � � = p34 � B � �(1=3)�(11=12)�(1=4)(1 +p3)1=2 � 0:4719:It is onjetured that the orret value of B is preisely this upper boundalthough they did not prove this onjeture. Reently, on the basis of Bonk'swork [4℄ and the Shwarz-Pik lemma, Chen Huaihui and P. M. Gauthier[6℄ improved the lower bound for Bloh's onstant further as follows:p34 + 2 � 10�4 � B:Theorem 12.38 yields the following12.39. Corollary. The range f(C ) of every non-onstant entirefuntion ontains open disks of arbitrary radius.12.40. Example. Consider the following funtions:f1(z) = z; f2(z) = az; f3(z) = 12 log�1 + z1� z� ; f4(z) = z1� z ;where a is some non-zero omplex number. ThenLf1 = 1 = Bf1 ; Lf2 = jaj = Bf2 ; Lf3 = �4 = Bf3 ; Lf4 =1 = Bf4 :
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Figure 12.6: Desription for a Bloh theoremFinally, for the familiar Koebe funtion k(z) = z=(1 � z)�2 (also for itsrotation), we have Lk = Bk =1: �12.41. Theorem. Let f 2 H(�) with f(0) = 0 = f 0(0) � 1. Iffurthermore jf(z)j �M for some M > 0, then �(0; 1=4M) � f(�):Proof. We suppose that w =2 f(�), i.e. w 6= f(z) for any z 2 �. Wewish to show that jwj � 1=(4M) (see Figure 12.6). To do this, we de�ne gby g(z) = 1� f(z)w ; z 2 �:Thus g 2 H(�), g(0) = 1, g(z) 6= 0 on � and therefore, by the squareroot property (see Theorem 4.39), g has an analyti square root funtionh 2 H(�) with h(0) = 1 suh thath2(z) = 1� f(z)w :From this, it follows that2h(0)h0(0) = �f 0(0)w ; i.e. h0(0) = � 12w:By the triangle inequalityjh(z)j2 � 1 + ����f(z)w ���� � 1 + Mjwj ; z 2 �:The Malaurin series expansion of h is then given byh(z) = 1Xk=0 hkzk;where h0 = h(0) = 1, h1 = h0(0) = �1=(2w). Also, for z = rei�; r 2 (0; 1)(see Remark 12.43),1 + jh1j2r2 � 1Xk=0 jhkj2r2k = 12� Z 2�0 jh(rei�)j2 d� � 1 + Mjwj



534 Mapping Theoremswhih gives 1 + r24jwj2 � 1 + Mjwj ; i.e. jwj � r24M :Letting r ! 1, we get the desired result.12.42. Corollary. If g 2 H(�R), g(0) = 0, g0(0) 6= 0 and jg(z)j �M for jzj < R, then ��0; R2jg0(0)j24M � � g(�R):Proof. De�ne f byf(z) = g(Rz)Rg0(0) = z + � � � ; z 2 �:Then f is a normalized analyti funtion and jf(z)j � M=(Rjg0(0)j) forz 2 �: Using Theorem 12.41, we have��0; 14(M=Rjg0(0)j)� � f(�) = 1Rjg0(0)jg(�R)whih is equivalent toRjg0(0)j��0; Rjg0(0)j4M � � g(�R)and the desired onlusion follows.12.43. Remark. For those who are familiar with Hilbert spaes andomplex Fourier series, it is easy to show that if f 2 H(�) and f(z) =P1k=0 akzk, then 1Xk=0 jakj2r2k = 12� Z 2�0 jf(reit)j2 dt:Indeed, this equality is a onsequene of Parseval's equality (see for examplethe book by Ponnusamy [8℄) applied to the funtiont 7! f(reit) = 1Xk=0 akrkeikt:However, one an provide a diret proof of Bessel's inequality1Xk=0 jakj2r2k � 12� Z 2�0 jf(reit)j2 dt:(12.44)



12.6 The Bloh-Landau's Theorems 535To do this we onsider the spae X of all omplex-valued funtions de�nedon [0; 2�℄ with an inner produt given byh�;  i = 12� Z 2�0 �(t) (t) dt:If ek(t) = eikt; k 2 Z, thenhek; eli = � 1 if k = l0 if k 6= lso that fek(t) : k 2 Zg forms an orthonormal basis for the inner prod-ut spae X . We onsider the orrespondene fr : t 7! f(reit) and theorthonormal projetion of fr onto the spae Yn = span fe0; e1; : : : ; en�1g:This projetion is given bysn(t) = hfr; e0ie0 + hfr; e1ie1 + � � � + hfr; en�1ien�1:It follows thathfr; eki = 12� Z 2�0 fr(t)e�ikt dt = 12� Z 2�0 f(reit)e�ikt dt = akrk :Therefore, for eah n 2 N,n�1Xk=0 jakj2r2k = ksnk2 � kfrk2 = 12� Z 2�0 jf(rei�)j2 d�:Letting n!1; we get the inequality (12.44). �12.45. Theorem. (Landau's Theorem) Let f 2 H(�) and f 0(0) =1. Then f(�) ontains a disk of radius � > 0, where � is an absoluteonstant.Proof. We may assume that f is analyti on �, sine otherwise we anonsider ��1f(�z) for � near 1. For t 2 [0; 1℄, we setM(t) = maxjzj�t jf 0(z)j:Then M(t) is non-dereasing and, beause f 0(0) = 1, we have M(t) � 1.In fat, M(t) = maxjzj=t jf 0(z)j (by the maximum priniple). Now, we putw(t) = tM(1� t):Then w : [0; 1℄ ! R is ontinuous, w(0) = 0 and w(1) = 1 (see Figure12.7).
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Figure 12.7: Choosing suitable branh.Therefore, there exists at least one t, say t0 > 0 suh that w(t0) = 1and w(t) < 1 if 0 < t < t0 (Note that we an hoose t0 = infft : w(t) = 1gso that w(t0) = 1 and w(t) < 1 for 0 � t < t0). Let a be a point withjaj = 1� t0 and jf 0(a)j =M(1� t0) = w(t0)t0 = 1t0 :De�ne �(z) = f(z+a)�f(a) and note that jz+aj � jzj+jaj = jzj+1�t0 < 1if jzj < t0. Moreover,� � is analyti for jzj < t0, �(0) = 0, and j�0(0)j = jf 0(a)j = 1=t0 > 0� jz + aj � jzj+ 1� t0 < 1� t0=2 if jzj < t0=2� for jzj < t0=2,j�0(z)j = jf 0(z + a)j �M(1� t0=2) = w(t0=2)t0=2 < 2t0(beause w(t) < 1 for 0 < t < t0). Hene, for jzj < t0=2,j�(z)j = j�(z)� �(0)j = ����Z z0 �0(�) d����� � 2t0 jzj < 1:Finally, as � 2 H(�t0=2) with �(0) = 0, j�0(0)j = 1=t0 and j�(z)j < 1 on�t0=2, we an apply Corollary 12.42 to get��0; R2j�0(0)j24M � � �(�R)where R = t0=2, M = 1, j�0(0)j = 1=t0. Substituting these values we get�1=16 � �(�t0=2):This expresses the fat that the image of �(0; t0=2) under �(z) overs thedisk �(0; 1=16). Equivalently, the image of jz � aj < t0=2 under �(z) =f(z + a)� f(a) overs the disk �(0; 1=16). That is,�(f(a); 1=16) � f(�(a; t0=2))



12.6 The Bloh-Landau's Theorems 537so that the image of � under f ontains the disk �(f(a); 1=16).Theorem 12.45 does not say anything about the enter about whih thedisk of radius � an be found in f(�). In general, f(0) is not the enter ofsuh a disk as the funtionf�(z) = �(ez=� � 1) = z + z22!� + � � �shows. Note that f�(0) = 0 = f 0�(0) � 1, and f�(z) omits the value �� as�� =2 f�(�). This funtion shows that for small values of � > 0, f�(�)never ontains any disk �(f(0);�). Thus, although f�(�) ontains somedisk �(b; 1=16), b is not neessarily f(0).12.46. Corollary. If f 2 H(�(;R)) and f 0() 6= 0, then the imagef(�(;R)) ontains a disk of radius �Rjf 0()j with � = 1=16.Proof. De�neg(z) = f(+Rz)Rf 0() = f()Rf 0() + z + � � � :Then g 2 H(�) and g0(0) = 1. By Theorem 12.45, g(�) ontains a disk ofradius � with � = 1=16. The result follows.Let us now prove the following stronger version of Theorem 12.45.12.47. Theorem. (Bloh's Theorem) Let f 2 H(�) and f 0(0) = 1.Then there exists a subdomain 
 (in fat a disk) in� on whih f is univalentsuh that f(
) ontains a disk of radius 1=24.Proof. Following the proof of Theorem 12.45, the funtion � de�nedby �(z) = f(z + a)� f(a) satis�es the following onditions(i) � 2 H(�t0 ), �(0) = 0, j�0(0)j = 1=t0 > 0(ii) j�0(z)j < 2t0 for jzj < t0=2.Now, we note that for jzj < t0=2,j�0(z)� �0(0)j � j�0(z)j+ j�0(0)j < 2t0 + 1t0 = 3t0 = 3j�0(0)j:Shwarz' lemma (see Corollary 6.28) applied to F (z) = �0(z) � �0(0) forjzj < t0=2 implies thatj�0(z)� �0(0)j � 3j�0(0)j� jzjt0=2� = j�0(0)j�6jzjt0 � < j�0(0)j



538 Mapping Theoremswhenever jzj < r = t0=6. By Corollary 12.19, �(z) is univalent for jzj < r.Thus, the funtion h de�ned byh(z) = f(rz + a)� f(a)rf 0(a)is a normalized univalent funtion in �. By the Koebe 1=4-theorem, h(�)overs the disk �(0; 1=4). Consequently, f(rz + a) � f(a) overs the diskof radius rjf 0(a)j=4 whih is 1=24, as jf 0(a)j = 1=t0 = 1=6r. Equivalently,f(rz+a) ontains a (univalent) disk of radius 1=24 about f(a). The desiredresult follows.Although the exat value of B is unknown, by our argument, for allfuntions in F = ff 2 H(�) : f 0(0) = 1g it follows that B � 1=24.12.7 Piard's TheoremWe begin by deriving some easy onsequenes of simple onnetivity for therepresentation of funtions that omit two values. To do this, we reall thatevery analyti funtion on a simply onneted domain admits a primitive.Moreover, if 
 � C is a simply onneted domain then, eah non-vanishingfuntion f 2 H(
) admits an analyti branh of the logarithm and ananalyti branh of the square root funtion in 
 (see Theorems 4.38 and4.39). That is, there exist h; g 2 H(
) with g(z) 6= 0 on 
 suh that� eh(z) = f(z) or h(z) = log f(z); z 2 
� f(z) = (g(z))2 or g(z) = (f(z))1=2; z 2 
.We start by proving two lemmas whih lead to the lassial proof of Piard'slittle theorem with the help of Bloh's theorem.12.48. Lemma. Let 
 � C be a simply onneted domain, and letf 2 H(
) be suh that 1 =2 f(
) and �1 =2 f(
). Then there exists anF 2 H(
) suh that f(z) = osF (z) for z 2 
.Proof. Consider the funtion 1� f2(z) = (1+ f(z))(1� f(z)) whih isnon-vanishing in 
 and belongs to H(
). Sine 1 � f2(z) has no zeros in
, by the square-root property there exists a funtion g 2 H(
) suh thatg2(z) = 1� f2(z); i.e. (f + ig)(f � ig) = f2 + g2 = 1; z 2 
;whih shows that f + ig belongs to H(
) and has no zeros in 
. As aonsequene, f + ig = exp (iF ) for some F 2 H(
) and it follows thatf � ig = 1f + ig = exp(�iF )



12.7 Piard's Theorem 539so that f = exp(iF ) + exp(�iF )2 = os(F )whih ompletes the proof.12.49. Lemma. Let 
 � C be a simply onneted domain, and letf 2 H(
) be suh that 0 =2 f(
) and 1 =2 f(
). Then there exists ag 2 H(
) suh that f(z) = 1 + os(� os�g(z))2(12.50)and with the property that g(
) ontains no open disk of radius 1.Proof. Clearly the funtion 2f(z)� 1 omits the values 1 and �1 in 
.Thus, by Lemma 12.48, there exists a funtion F 2 H(
) suh that2f(z)� 1 = os�F (z); z 2 
:Moreover, as osF (z) omits the values 1 and �1, the funtion F 2 H(
)must omit all integer values whih implies the existene of g 2 H(
) withF = os(�g). Therefore, the desired representation in (12.50) follows. Itremains to show that g(
) ontains no disk of radius 1 in the w-plane. Wede�ne A = nam;n = m+ i��1 log(n+pn2 � 1) : m 2 Z; n 2 No :We laim that the points of A do not belong to g(
), yet every open diskof radius 1 ontains one point of A. To do this, we onsider a general pointin A: a := am;n for some m 2 Z, n 2 N :Then, as i�a = i�m� log(n+pn2 � 1), we haveos�a = ei�a + e�i�a2= (�1)m2 � 1n+pn2 � 1 + n+pn2 � 1�= (�1)mnso that os�(os�a) = os�(n(�1)m) = os�n = (�1)n. Thus, if a 2g(
), there exists a point za 2 
 with a = g(za) and therefore,f(za) = 1 + os�(os�g(za))2 = 1 + os�(os�a)2 = 1 + (�1)n2showing that f(z) assumes the values 0, or 1 or both, whih ontraditsthat f(z) 6= 0; 1 for z 2 
. This observation shows that the �rst laimg(
) \A = ; is veri�ed.



540 Mapping TheoremsNext we must show that no disk of radius 1 an be disjoint from theset A. For this, we estimate the di�erene between the onseutive realand imaginary parts of points from A. Clearly, the points of A are simplythe verties of a retangular grid in C and the length of every retangle(i.e. the di�erene between the real parts of the two onseutive horizontalpoints) is seen to be 1. Also, eah retangle has a height (i.e. the di�erenebetween the imaginary points of the two onseutive vertial points) lessthan 1. Indeed, by the monotoniity of log(x), we havelog�n+ 1 +pn2 + nn+pn2 � 1 � = log�1 + 1n +q1 + 2n1 +q1� 1n2 �� log�1 + 1n +r1 + 2n�� log(2 +p3) < �so that 1� log(n+ 1 +p(n+ 1)2 � 1)� 1� log(n+pn2 � 1) < 1:These two observations imply that orresponding to every given omplexnumber w 2 C there exists an a = am;n (the losest one in A) withjRe a�Rewj � 12 and jIm a� Imwj < 12 ;so that ja� wj � jRea�Rewj+ jIm a� Imwj < 1:Thus, every disk of radius 1 intersets A. But we have already shown thatg(
) \A = ; and therefore, g(
) ontains no disk of radius 1.We an now prove that the range of every non-onstant entire funtionis the omplex plane with at most one exeption (see Theorem 7.37).12.51. Proof of Piard's little theorem.We shall show that everyf 2 H(C ) whih omits 0 and 1 is neessarily a onstant. For this, we applyLemma 12.49 with 
 = C . Aording to Lemma 12.49, we havef(z) = 1 + os (� (os �g(z)))2where g 2 H(C ) and g(C ) ontains no disk of radius 1. Sine f is notonstant, g annot be onstant either. Therefore, we an hoose  suhthat g0() 6= 0. We then de�neG(z) = 1�g� �g0() z + � = g()� + z + � � �



12.7 Piard's Theorem 541whih is entire and G0(0) = 1. Sine g(z) does not ontain any disk ofradius 1, G(z) does not ontain a disk of radius �.But Bloh's theorem (see Theorem 12.47 with � = 1=24, Landau's The-orem 12.45 with � = 1=16, and also Corollary 12.39) implies that the rangeof every non-onstant entire funtion ontains disks of every radius. Thisis a ontradition, so g is a onstant and hene, f is onstant.Another appliation of Lemma 12.49 is Shottky's theorem.12.52. Theorem. (Shottky's Theorem) Let f(z) = a0+ a1z+ � � �be analyti for jzj < R and omit the values 0 and 1. Then, for any 0 < � <1, there exists a onstant S(a0; �) depending only on a0 and �, suh thatjf(z)j � S(a0; �) for jzj � R�.Proof. By Lemma 12.49, there exists a g 2 H(�R) suh thatf(z) = 1 + os(� os�g(z))2 = os2�� os�g(z)2 �(12.53)and with the property that g(�R) ontains no open disk of radius 1.Suppose a 2 �R� . It is lear that the funtionG(z) = g(a+ (1� �)Rz)(1� �)Rg0(a) = g(a)(1� �)Rg0(a) + z + � � �is analyti for jzj < 1 and satis�es the onditions of the Bloh-Landau the-orem (see Corollary 12.46), provided that g0(a) 6= 0. Sine g(�R) ontainsno disk of radius 1, G(�) does not over a disk of radius1(1� �)Rjg0(a)j :On the other hand, by Corollary 12.46, it follows that1(1� �)Rjg0(a)j > 116 ; i.e. jg0(a)j < 16(1� �)R:This is also true if g0(a) = 0. If jzj � R�, we havejg(z)� g(0)j = ����Z z0 g0(�) d����� � 16jzj(1� �)R � 16�1� �so that jg(z)j � jg(0)j+ 16�1� � :Note that g(0) depends only on a0. If we let w = �2 os(�g(z)), then (12.53)gives jf(z)j1=2 = ����eiw + e�iw2 ���� � ejwj � exp ((�=2) exp(�jg(z)j))� exp ((�=2) exp(�[jg(0)j+ 16�=(1� �)℄) :



542 Mapping Theorems12.8 Exerises12.54. Determine whether the following statements are true orfalse. Justify your answer.(a) Let D be a domain in C and f 2 H(D). Suppose that B is a disk ofpositive radius ontained in D. If Re f or Im f or Arg f is onstanton B, then f is onstant on D.(b) If f is univalent and analyti in an open set D exept for isolatedsingularities, then f an have at most one singularity and that as asimple pole.() An even funtion in a domain D is not univalent in D.(d) The funtion f(z) = z=(1� z)3 is univalent for jzj < 1=2 but not inany larger disk entered at the origin.(e) If f 2 H(�) and jf 0(z) � 1 � ij < p2 for z 2 �; then f is univalentin �.(f) If f is analyti in a onvex domain D suh that Ref 0(z) 6= 0 for allz 2 D, then f is univalent in D.(g) If the polynomial p(z) = a0 + a1z + � � � + anzn (an 6= 0) is univalentin the unit disk �, then njanj � ja1j.(h) The funtion f(z) = [exp(6z) � 1℄=6 omits the value �1=6 and thisfuntion does not ontradit Koebe's one-quarter theorem.(i) Both os z and sin z are univalent in(i) the strip 
 = fz : � < Re z < �+ �g(ii) the semistrip 
 = fz : � < Re z < �+ 2�; Im z > 0g(iii) the semistrip 
 = fz : � < Re z < �+ 2�; Im z < 0g,where � is a �xed real number.(j) If 
 = fz : 0 < Re z < 2�; Im z > 0g, then the funtion os z =12 �eiz + e�iz� is univalent on the domain 
 and os(
) = C n[�1;+1).(k) If 
 = fz : jRe zj < �=2; Im z > 0g, then the funtion sin z =12i �eiz � e�iz� is univalent on the domain 
 and sin(
) is the upperhalf-plane.(l) The funtion oth(z=2) = ez+1ez�1 maps the semistrip 
 = fz : Re z >0; jIm zj < �g onto 
0 = fw : Rew > 0g.(m) The funtion f(z) = z=(1 + jzj) is a homeomorphism of C onto �.(n) The puntured unit disk � nf0g is homeomorphi to the punturedplane C nf0g but not onformally equivalent.(o) If D = fz : jzj � 1 or jz + 2j � 1g and D = (C nD) [ f1g, then Dis onformally equivalent to the open upper half-plane H+ .



12.8 Exerises 543(p) There exists an analyti univalent funtion f that maps the in�nitestrip fz : 0 < Im z < 1g onto the unit disk �.(q) If 
 is a simply onneted domain, f 2 H(
) and 0 =2 f(
), thenf has an analyti n-th root; that is there exists a g 2 H(
) withgn(z) = f(z) for z 2 
:(r) If 
 � C (
 6= C ) is a simply onneted domain with the propertythat every non-vanishing analyti funtion on 
 has a square rootproperty, then there exists a univalent analyti funtion g on 
 suhthat g(
) � �.(s) Let 
 be a simply onneted domain, a and b be any two points of
. Then there exists an analyti automorphism f of 
 suh thatf(a) = b.(t) If f is an univalent analyti mapping from � onto a simply onneteddomainD suh that f(0) = 0 and � = dist (0; C nD), then jf 0(0)j � �.(u) There exists a unique onformal map w = f(z) whih arries � ontoitself suh that f(1=2) = i=3 and f 0(i=3) > 0.(v) If w = f(z) is a onformal mapping of a domain D onto D0, then thearea A of the domain D0 is given by A = R RD jf 0(z)j2 dx dy.(w) The area of the image of the unit disk � under the univalent funtionf(z) = z + (z2=2) is 3�=2.(x) There exists a onformal mapping of the resent shaped domainD1 = �(2; 2) n�(1; 1) onto the unit disk.(y) If A(r) = fz : 0 < r < jzj < 1g and 
 = � n�(9=28; 5=28), then thereexists an r suh that A(r) is onformally equivalent to 
.(z) If A(R) = fz : 1 < jzj < Rg and 
 = �(1; 5=2) n�, then there existsan R suh that A(R) is onformally equivalent to 
.12.55. Suppose f is analyti in a neighborhood N of the origin andthat f 0(0) 6= 0. Show that there exists a disk 
 � N , a positive integer n,and an analyti funtion h suh that f(z) = f(0) + (h(z))n in 
.12.56. If  is a positively oriented simple losed urve and D is theregion bounded by , then Area (D) = 12i Z z dz:12.57. If  is a losed urve and f is analyti in a domain ontaining, then Z f(z)f 0(z) dz is a purely imaginary number.12.58. If f : 
! C is one-to-one on 
, then we know that f 0(z) 6= 0on 
. Does this result hold for a funtion of a real variable? Explain withan example.



544 Mapping Theorems12.59. Find a onformal, one-to-one map f from the unit disk � ontothe domain 
 = fw : jImwj < �=2g nfu : u � �1g suh that f(0) = 1.12.60. Let 
 = fz 2 � : Im z > 1=2g: Find a onformal map f whihmaps 
 one-to-one and onto � suh that f(3i=4) = 0.12.61. If f 2 S, then show that eah of the funtions G de�ned belowis in S:(i) G(z) = ��1f(�z) (j�j � 1)(ii) G(z) = f(z)(iii) G(z) = ff(zn)g1=n (n 2 N)(iv) G(z) = wf(z)w � f(z) (w =2 f(�))(v) G(z) = f � z+�1+�z�� f(�)(1� j�j2)f 0(�) (j�j � 1).12.62. Give an example of a normal family of funtions in H whihontains unbounded funtions.12.63. Supply the proof of Corollary 12.17.12.64. Suppose that f is onformal map of a simply onneted domain
 (6= C ) onto �, and a 2 
. Find a onformal mapping g of 
 onto � suhthat g(a) = 0 and g0(a) > 0.12.65. Let 
 (6= C ) be a simply onneted domain and b 62 
. Supposethat h is an analyti branh of pz � b. Show that h is univalent in 
 andh(
) is disjoint from �h(
).12.66. Let f 2 H(�), f(0) = f 0(0) � 1 = 0 and jf(z)j � M for allz 2 �. Using the Cauhy estimate show that f(�) � �1=6M :12.67. For 0 < � < 1, de�nef�(z) = z(1� �z)2 ; g�(z) = z1� �z ; and h�(z) = z1� �z2 :If f denotes one of these funtions, then f(0) = f 0(0)�1 = 0, and f 2 H(�):Find an expliit radius r > 1=16 suh that �r � f(�): Also, how large anyou make r?12.68. Suppose that f(z) is entire and Im f(z) 6= 0 whenever jzj 6= 1.Prove that f(z) is onstant.
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Index of Speial Notation
Symbol Meaning; empty seta 2 S a is an element of the set Sa 62 S a is not an element of Sfx : : : :g set of all elements with the property : : :X [ Y set of all elements in X or Y ;i.e. union of the sets X and YX \ Y set of all elements in X as well as in Y ;i.e. intersetion of the sets X and YX � Y set X is ontained in the set Y ;i.e. X is a subset of YX � Y X � Y and X 6= Y ;or X ( Y i.e. set X is a proper subset of YX � Y Cartesian produt of sets X and Y ;i.e. f(x; y) : x 2 X; y 2 Y gX nY or X � Y set of all elements that live in X but not in YX omplement of X=) implies (gives)=)= does not imply() if and only if, or briey `i�'�! or ! onverges (approahes) to; into�!= or != does not onvergeN set of all natural numbers, f1; 2; : : :gN0 N [ f0g = f0; 1; 2; : : :gZ set of all integers (positive, negative and zero)Q set of all rational numbers, fp=q : p; q 2 Z; q 6= 0gR set of all real numbers, real lineR1 R [ f�1;1g, extended real lineC set of all omplex numbers, omplex planeC1 extended omplex plane, C [ f1g



548 Index of Speial NotationsRn n-dimensional real Eulidean spae, the set of alln-tuples x = (x1; : : : ; xn), xk 2 R, k = 1; : : : ; niR set of all purely imaginary numbers, imaginary axisdomain open and onnetedH+ upper half-planeH� lower half-planez z := x� iy, omplex onjugate of z = x+ iyjzj px2 + y2, modulus of z = x+ iy, x; y 2 RRe z (Im z) real part x (imaginary part y) of z = x+ iyarg z set of real values of � suh that z = jzjei�Arg z argument � 2 arg z suh that �� < � � �;the prinipal value of arg zlim sup jznj upper limit of the real sequene fjznjglim inf jznj lower limit of the real sequene fjznjglim jznj limit of the real sequene fjznjgsupS least upper bound, or the supremum, of the set S � R1inf S greatest lower bound, or the in�mum, of the set S � Rinfx2D f(x) in�mum of f in DmaxS the maximum of the set S � R; the largest element in SminS the minimum of the set S � R; the smallest element in Sf : D �! D1 f is a funtion from D into D1f(z) the value of the funtion at zf(D) set of all values f(z) with z 2 D;i.e. w 2 f(D)() 9 z 2 D suh that f(z) = wf�1(D) fz : f(z) 2 Dg, the preimage of D under ff�1(w) the preimage of one element fwgf Æ g omposition mapping of f and gdist (z; A) distane from the point z to the set Ai.e. inffjz � aj : a 2 Agdist (A;B) distane between two sets A and Bi.e. inffja� bj : a 2 A; b 2 Bg[z1; z2℄ losed line segment onneting z1 and z2;fz = (1� t)z1 + tz2 : 0 � t � 1g(z1; z2) open line segment onneting z1 and z2;fz = (1� t)z1 + tz2 : 0 < t < 1g



Index of Speial Notation 549�(a; r) open disk fz 2 C : jz � aj < rg (a 2 C ; r > 0)�(a; r) losed disk fz 2 C : jz � aj � rg (a 2 C ; r > 0)��(a; r) the irle fz 2 C : jz � aj = rg�r �(0; r)� �(0; 1), unit disk fz 2 C : jzj < 1g�� unit irle fz 2 C : jzj = 1gez exp(z) =Pn�0 znn! , an exponential funtionLog z ln jzj+ iArg z; � � < Arg z � �log z ln jzj+ i arg z := Log z + 2k�i; k 2 Z��z 12 � ��x � i ��y�, Cauhy-Riemann operator��z 12 � ��x + i ��y�fz �f�z , partial derivative of f w.r.t zfz �f�z , partial derivative of f w.r.t zInt () (Ext ()) interior (exterior) of 1 + 2 sum of two urves 1; 2L() length of the urve f (n)(a) n-th derivative of f evaluated at af(z) = O(g(z))as z ! a �there exists a onstant K suh that jf(z)j � Kjg(z)jfor all values of z near af(z) = o(g(z))as z ! a � limz!a f(z)g(z) = 0limn!1 zn = z;or zn ! z ) sequene fzng onverges to zd(zn; z)! 0 sequene fzng onverges to z with a metri dRes [f(z); a℄ residue of f at aPRes [f(z);D℄ sum of the residues of f at eah singularity of f inside DH(D) family of all analyti (holomorphi) funtions on D
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Hints and Solutions for SeletedExerisesChapter 1, Exerises 1.7:1.53:(k) If Im z 6= 0, then����Im znIm z ���� = ����zn � (z)n2i � 2iz � z ����= jzn�1 + zn�2z + � � � + (z)n�1j � njzjn�1:(r) No. For example take z1 = i and z2 = �i. Note that the two roots ofz2 + z + 1 = 0 are w1 = (�1 + ip3)=2, w2 = (�1� ip3)=2 and theysatisfy w21 = w2 and w22 = w1.(s) If Re z =a > 0, then jz � 1j < jzj so that����zn+1 � 1z � 1 ���� > ����zn+1 � 1z ���� � jzjn � 1jzjfrom whih we obtain j1 + z + z2 + � � � + znj > jzjn � 1=jzj: Sine1=jzj < 1 and the left hand side of the above inequality is an integerwe an neglet the term 1=jzj if we replae the symbol > by �. Proofof (ii) is similar.(w) Let limn!1 zn = `. Then, for a given � > 0 there exists an N suhthat jzn � `j < �=2 for n > N: Now the triangle inequality givesjZn � `j = 1n ����� nXk=1(zk � `)����� � 1n nXk=1 jzk � `j:Therefore, for n > N , we havejZn � `j � 1n NXk=1 jzk � `j+ 1n nXk=N+1 jzk � `j� 1n NXk=1 jzk � `j+ 1n (n�N) �2� �2 + 1n NXk=1 jzk � `j:



552 Hints and Solutions for Seleted ExerisesChoose n suÆiently large so that 1nPNk=1 jzk�`j < �2 : Thus, we havejZn � `j < � for suÆiently large n and so, Zn ! ` as n ! 1. Asimple onsequene of this is that1n �1 + 12 + � � � + 1n�! 0; sine 1n ! 0:1.54. If we let zj = jzj jeiArg zj (j = 1; 2), thenz1z2 = jz1z2jei(Arg z1+Arg z2) with � 2� < Arg z1 +Arg z2 � 2�and z1z2 = jz1z2jeiArg (z1z2) with �� < Arg (z1z2) � �: Thus, wemust have Arg (z1z2) = Arg z1 +Arg z2 + 2k1�;where k1 is some integer in the set f�1; 0; 1g suh that�� < Arg z1 +Arg z2 + 2k1� � �:Now, (a) is lear. Similarly we an establish (b).1.55. Assume that the result is true for m = n > 1. For m = n + 1, wehave n+1Xk=1 jzkj2! n+1Xk=1 jwk j2!� X1�k<j�n+1 jzkwj � zjwkj2=  nXk=1 jzkj2! nXk=1 jwkj2!+ jzn+1j2jwn+1j2+ nXk=1 jzkwn+1j2 + nXk=1 jzn+1wkj2� X1�k<j�n jzkwj � zjwkj2 � nXk=1 jzkwn+1 � zn+1wkj2= ����� nXk=1 zkwk�����2 + jzn+1wn+1j2+ nXk=1[jzkwn+1j2 + jzn+1wkj2 � jzkwn+1 � zn+1wkj2℄= ����� nXk=1 zkwk�����2 + jzn+1wn+1j2 + 2Re ( nXk=1 zkwkzn+1wn+1)= �����n+1Xk=1 zkwk�����2 :



Hints and Solutions for Seleted Exerises 553
z2

π/3

|z2
− z3

|

z3
π/3

|z
1 −

z
3 |

z1

|z
2

−
z 1

| π/3

Figure 12.8: Desription for equilateral triangle.1.56. We have z2 � z1 = ei�=3(z3 � z1) and z1 � z3 = ei�=3(z2 � z3) so that(z2 � z1)(z2 � z3) = (z1 � z3)(z3 � z1)from whih we get the required onlusion (see Figure 12.8). Letz1 = 1+ i and z2 = 1� i. Then z21 = 2i, z22 = �2i, z1+z2 = z1z2 = 2:Sine z1; z2; z3 should form an equilateral triangle, we should have2i� 2i+ z23 = 2 + 2z3; i.e. z23 � 2z3 � 2 = 0:Solving the last equation gives z3 = 1 +p3 or 1�p3:1.61. jz � (�7 + ib)j = (48 + b2)1=2, b 2 R:Chapter 2, Exerises 2.5:2.63:(d) For z1; z2 in �, we have f(z1) = f(z2) =) (z1� z2)(n+ �) = 0 where� = zn�11 +zn�21 z2+ � � � +z1zn�22 +zn�12 lies in �n so that n+ � 6= 0.(f) For z1; z2 in �,k(z1) = k(z2) =) z1(1� z2)2 = z2(1� z1)2=) (z1 � z2)(1� z1z2) = 0=) z1 � z2 = 0; sine 1� z1z2 6= 0:(g) Note that k(z) = (1=4)[((1 + z)=(1� z))2 � 1℄.(j) For z = rei� , we note thatRe (z2)jzj2 = os 2� and Im (z2)jzj2 = sin 2�and allow r ! 0 along � = 0; �=2; �=4.



554 Hints and Solutions for Seleted Exerises(m) Clearly, f(z) is ontinuous on the ut plane C nfx+iy : x � 0; y = 0g.Beause f(�2) = 0 = limz!�2(2 + z), one may use the �� Æ notation tosee that z = �2 is the only removable disontinuity of f(z).(o) Reall the binomial theorem:(z+h)n� zn = �n1�zn�1h+�n2�zn�2h2+ � � �+� nn� 1�zhn�1+hnso that F (z; h) = �n2�zn�2h+� � �+� nn�1�zhn�2+hn�1. The onlusionfollows if we use the triangle inequality.(p) Use the fat that jfn(z)�0j � 1=(njzj�1) < � whenever n > N(�; z) =(1 + 1=�)=jzj:(t) Fixing z 6= 0, one ould apply the root/ratio test with an(z) = 3�nznto obtain that the series onverges absolutely for jzj < 3.(v) Let z = rei� and w = u + iv. Then we �nd that u = a os � andv = b sin �, where a = 2�1(r+�2r�1) and b = 2�1(r��2r�1): Fromthis we obtain u2a2 + v2b2 = 1:whih is an ellipse.2.66. Note. For instane to hek the non-uniform ontinuity of f(z) = 1=zin U = fz : Re z > 0g, it is enough to onsider�n = 1 + in and �n = 1 + in+ 1 :Note that�n � �n = 1 + in(n+ 1) ! 0 as n!1; and jf(�n)� f(�n)j = 1p2 :2.67. Set z = x+ iy and w = u+ iv. Thenz + w = x+ u+ i(y + v); zw = xu� yv + i(xv + yu):Similarly, if A = � x y�y x� and B = � u v�v u�then matrix addition and multipliation show thatA+B = � x+ u y + v�(y + v) x+ u� and AB = � xu� yv yu+ xv�(yu+ xv) xu� yv� :Thus, if we let f(z) = A and f(w) = B, thenf(z + w) = A+B; f(zw) = AB; f(�z) = �Ashowing that there is a one-to-one orrespondene between C and theset of matries of the given form.



Hints and Solutions for Seleted Exerises 555Chapter 3, Exerises 3.7:3.116:(g) De�ne f : C ! � by f(z) = z=(1 + jzj). Then f is bijetive andbiontinuous, and the inverse mapping is given by f�1 : � ! C ,where f�1(w) = w=(1� jwj).(h) Let f(z) = e2�iz � 1. Then f is entire, f(0) = 0 = f(1), yet thereexist no values of z (real or omplex) suh thatf(1)� f(0) = f 0(z)(1� 0); i.e. 0 = 2�ie2�iz:(n) As limr!0+ f(rei�=4) = limr!0+ e1=r4 = 1 6= f(0) = 0; f is notontinuous at the origin.(o) The impliation `=)' is trivial. For the onverse part, let f(z) =u+ iv. Then zf(z) = (xu� yv) + i(xv + yv) =: U + iVand u; v; U; V are all harmoni in D. It is now a simple exerise tosee that 52U = 0 and 52V = 0 imply ux = vy and uy = �vx,respetively. By Theorem 3.26, f is analyti in D.(p) Consider f1(z) = z and f2(z) = 1 in C .(r) If f(z) = u(x) + iv(y) is entire, then 52u = u00(x) = 0 and 52v =v00(y) = 0 on R. Thus, u(x) = ax+b and v(y) = y+d, where a; b; ; dare real. Using the C-R equations, we get a =  so thatf(z) = (ax+ b) + i(y + d) = az + b+ id:What will be the form of f if f(x+ iy) = u(y) + iv(x) is entire?(s) De�ne F = f�g = i(v�V ). Then, F 2 H(
) and the C-R equationsgive (v � V )x = 0 = (v � V )y: Thus, v � V (being a real-valuedfuntion) is onstant on every vertial line segment as well as onevery horizontal line segment in 
. Sine every pair of points in thedomain 
 an be onneted by vertial and horizontal line segments,v � V is neessarily onstant in 
.(t) From the previous exerise (f(z) = u+ iv and f(z) = u� iv) we getthat v � (�v) = 2v is onstant.(u) If u = y2 � 2x then uxx + uyy = 2 6= 0.(v) If v = x3 � y3, then vxx + vyy = 6(x� y) = 0 for z 2 
 = f�(1 + i) :� 2 Rg. Note that 
 is not in an open set in C and therefore, vannot be harmoni in any open subset of C .



556 Hints and Solutions for Seleted Exerises(w) We have � vx = 2uuxvy = 2uuy and � vxx = 2uuxx + 2u2xvyy = 2uuyy + 2u2y:Sine u and v are harmoni in 
, the addition of the last two equationsshow that u2x + u2y = 0, i.e. ux = 0 = uy. Similarly, vx = 0 = vy.Thus, f is onstant.(z) Consider fn(z) = zn=n2.3.117:(a) Note that (n!)1=n = exp[(1=n) Logn!℄ and(1=n) Logn! = (1=n)[ln 1 + ln 2 + � � � + lnn℄!1 as n!1:(d) Suppose f(z) = Pn�0 anzn onverges for jzj < R. Then by theomparison test we see that F (z) = Pn�0 ann+1zn+1 onverges forjzj < R and F 0(z) = f(z) for jzj < R:(f) It suÆes to note that j(Re an)znj � janj jzjn:(g) Let Sn =Pnp=1(zk)p: Then for zk 6= 1Sn = zk (1� zkn)1� zk ! zk1� zk as n!1:(j) More generally, for jaj = jj > 0 the series P1n=0 �az+bz+d�n onvergeswhenever Re (z(d� ab)) > (jbj2 � jaj2)=2.(k) For jzj = 1, the triangle inequality shows that znn! + n4zn ! 1 andtherefore, the series diverges for jzj = 1. Note thatP1n=0 n4zn onvergesfor jzj > 1 and diverges for jzj � 1.(l) Let fn(z) = nzn=(1� zn). Then, for jzj � r with r 2 (0; 1)jfn(z)j � njzjn1� jzjn � nrn1� rn :As limn!1 rn = 0, it follows that 1 � rn � 1=2 for large n so thatjfn(z)j � 2nrn. Thus, P1n=1 jfn(z)j � 2P1n=1 nrn showing that theseries Pn�1 fn(z) onverges absolutely and uniformly for jzj � r. Asimilar onlusion holds for the seond series. Now,1Xn=1 nzn1� zn = 1Xn=1nzn 1Xm=0(zn)m= 1Xn=1n 1Xm=0(zn)m+1



Hints and Solutions for Seleted Exerises 557= 1Xn=1 1Xk=1 n(zn)k= nXk=1 1Xn=1n(zk)nand1Xn=1 zn(1� zn)2 = 1Xn=1 zn 1Xm=0(m+ 1)(zn)m! = 1Xn=1 1Xk=1 k(zn)k :(p) As ey is stritly inreasing in R, we have ey > e0 = 1 > e�y for y > 0.Also note that the above inequalities yieldlimjyj!1 j sin zj = limjyj!1 j os zj =1:(r) Consider os z = . Then, by the de�nition of os z, we see thateiz = + w; where w2 = 2 � 1: The onlusion for os z now followsfrom the fat that the exponential funtion takes every value exeptzero. Apply the same priniple for sin z, osh z and sinh z.(s) If x > 0 and � = os�1(x), then � 2 (0; �=2) so thatos � = x = sin(�=2� �)and, sine � is aute, we have �=2� � = sin�1(x).(u) Let z 2 ��(r; r) nf0g. Then, we have z = r(1+ei�) with �� < � < �.Now 1z = 1r(1 + ei�) = e�i�=22r os(�=2) = 1� i tan(�=2)2rso that jf(z)j = e1=2r.(y) Suppose that suh a funtion f exists. Then f(0) = 0. This impliesthat z = f2(z) so that f2(z) has a zero of order n, n � 2, at 0. Thisis a ontradition, sine z has only a simple zero at 0. In other words,it is not possible to de�ne Arg z in suh a way that f(z) = z1=2 isanalyti in a neighborhood of 0.3.120. By the C-R equations, we have 1 = uxvy � uyvx = jf 0(z)j2 so thatf 0(z) = ei� for some onstant a with jaj = 1.3.121. We have f 0(z) = ux + ivx and f 0(z) = vy � iuy in C . By hypothesis,we see that2f 0(z) = (ux + vy) + i(vx � uy) = 0 + i(vx � uy); i.e. Re f 0(z) = 0and therefore, jef 0(z)j = 1 in C showing that ef 0(z) is a onstant �with j�j = 1, i.e. ef 0(z) = ei� for some real �: whih gives f 0(z) = itfor some real t.



558 Hints and Solutions for Seleted Exerises3.123. The given ondition on f for z1 = z2 = 0 implies that f(0) = 0.Then, as f(z + h)� f(z) = (f(z) + f(h))� f(z) = f(h), we havef 0(z) = limh!0 f(z + h)� f(z)h = limh!0 f(h)� f(0)h = f 0(0)and so, f(z) = f(0) + f 0(0)z = f 0(0)z.3.124. f(z) = eiaz23.125. If f = u+ iv and 52jf j = 0, then we �nd that ux+ vx = uy + vy = 0so that f 0(z) = 0 in 
.3.126. For u(x; y) = lnpx2 + y2, z = x+ iy 6= 0, we have uxx + uyy = 0; sou is an harmoni in C nf0g. For a funtion v to beome a harmonionjugate in C nf0g we must have f = u + iv analyti in C nf0g. Inpartiular, u and v must satisfy the C-R equations:ux = vy = xx2 + y2 ; � uy = vx = � yx2 + y2 :Therefore, we have the total derivativedv = �v�xdx+ �v�ydy = �ydx+ xdyx2 + y2 :Using the hange of variable x = r os �; y = r sin � (where � =Arg (x + iy)), the above beomes dv = d� and so v = Arg (x + iy)+some onstant. But, as we know, v is not ontinuous on the setD� = f(x; y) : y = 0; x � 0g. However, v is harmoni onjugate to uin C nD� and so f = u+iv is analyti in C nD�. Hene in the ut plane(with the negative real axis removed) the solution is f(z) = Log z sothat f 0(z) = 1=z for z 2 C nD�. Again note that there is no analytifuntion f for all z 2 C nf0g suh that f 0(z) = 1=z (see also Example4.89).3.128. From the geometri series, we note that the region of onvergene forthe �rst series is given by jz=(1 + z)j < 1, i.e. Re z > �1=2, whereasthe region of uniform onvergene is obtained from jz=(1+ z)j � r for0 < r < 1, whih is given by����z � r21� r2 ���� < r1� r2 :For the seond series, we may use Theorem 1.48.3.129. Let f(z) = Pn�1 anzn and ompute the oeÆients using the givenrelation.3.130. Indeed, if g(z) =P1k=0 akzk (jzj < Æ); then we see thatg0(2z) + g(z) = 0 =) 1Xk=0(k + 1)ak+12kzk + 1Xk=0 akzk = 0



Hints and Solutions for Seleted Exerises 559=) ak+1 = � ak(k + 1)2k for k = 0; 1; 2; : : :=) ak+1 = (�1)k+1a0(k + 1)!2k(k+1)=2 ; k = 0; 1; 2; : : : :Note that if a0 = 0, then f(z) � 0. If a0 6= 0, then by the ratio test����ak+1ak ���� = 1(k + 1)2k ! 0 as k !1showing that the radius of onvergene of the seriesP1k=0 akzk is 1,and so g is entire.3.136. If the prinipal values of za1 and za2 are used, then, for a1; a2 omplexonstants and z 2 D� = C nfz : z = x; x � 0g, we haveza1za2 = expfa1 Log zg�expfa2 Log zg = expf(a1+a2) Log zg = za1+a2 :If the prinipal values of za1 and za2 are used, then for a, a omplexonstant, and z1; z2 2 C nf0g,za1za2 = expfaLog z1g � expfaLog z2g= expfa( Log z1 + Log z2)g= expfa[ Log (z1z2) + 2k1(z1; z2)�i℄g= (z1z2)a expf2ak1(z1; z2)�ig;where k1(z1; z2) has one of the values of f�1; 0; 1g (see Exerise1.54(a)).3.137. Write Fk(1) = e(1=4)[Log (1+i)+2k�i℄= j1 + ij1=4e(1=4)iArg (1+i)ek�i=2= 21=8ei�=16ek�i=2:Thus, the desired branh orresponds to the ase k = 2. This meansthat F (z) = �e(1=4)Log (z+i).3.140. Consider f(z) = exp((1=3) Log z).Chapter 4, Exerises 4.13:4.144:(d) For an arbitrary �xed � 2 D, let  be de�ned by(t) = (1� t) � 0 + t � �; t 2 [0; 1℄;



560 Hints and Solutions for Seleted Exerisesand f(�) = e� . Then,Z f(z) dz = Z 10 f((t))0(t) dt = Z 10 et�� dt = e� � 1and for � 2 D,M = maxt2[0;1℄ jf((t))j = maxt2[0;1℄ jet� j = maxt2[0;1℄ etRe � < 1:So we have, je� � 1j = ����Z f(z) dz���� �ML() < 1: j�j:Also, we note that jez � 1j � jzj for all z 2 D = fw : Rew � 0g.(e) This is a slightly general version of the previous statement. Clearly(see Theorem 4.16),jea � ebj = ����Z ab ez dz���� � maxx�0 ex jb� aj = jb� aj:(f) On the irle jzj = r, we have z = rei� (� 2 [0; 2�℄) and dz = izd�.So, Re z = r os �, jdzj = r d� andjz � rj2 = jzj2 + r2 � 2rRe z = 2r2(1� os �) = 4r2 sin2(�=2):Thus, jz � rj = 2r sin(�=2) for � 2 [0; 2�℄ and hene,I = Z 2�0 2r sin(�=2)r d� = 2r2 ��os(�=2)1=2 �����2�0 = 8r2:(g) Let z = ei�. Then, dz = iz d� so thatI = i Z 2�0 [f(ei�)� f(e�i�)℄ d�= i �Z 2�0 f(ei�) d� � Z 2�0 f(ei�) d�� (� = 2� � �);whih is zero.(h) Let p(z) =Pnk=0 akzk and z = eit. Then,I = nXk=0 ak Z 2�0 e�iktieit dt = i nXk=0 ak Z 2�0 e�i(k�1)t dt = 2�ia1:Also, we observe that Rjzj=1 p(z) dz = iPnk=0 ak R 2�0 ei(k+1)t dt = 0:



Hints and Solutions for Seleted Exerises 561(i) Note that e2z + 1os(iz) = ez(ez + e�z)os(iz) = 2ez 6= 0 for z 2 C .The existene of an entire funtion f follows from Theorem 4.38 (seealso Theorem 4.40). Clearly, entire funtions satisfying the givenequation are given by f(z) = ln 50 + z + 2k�i, k 2 Z.(l) Let f(z) = g(z)� z. Apply the Cauhy integral formula for the �rstderivative to f and obtaing0(a)� 1 = 12�i Zjzj=1 g(z)� z(z � a)2 dzso that (as jzj = 1 implies that jz � aj � jzj � jaj = 1� jaj)jg0(a)� 1j � 12� 2�(1� jaj)2 = 1(1� jaj)2 :Thus, we have jg0(a)j � 1+ (1� jaj)�2. For example, if a = 1=2 thenwe have jg0(1=2)� 1j � 4. In partiular, jg0(1=2)j � 5.Note: If we use the Shwarz-Pik lemma for f(z), one an obtain animproved estimate.(m) Apply the Cauhy integral formula for the seond derivative at a = 1.(n) Let f(z) =P1n=1 anzn, z 2 C . Then, for any r > 0,janj = ����� 12�i Zjzj=r f(z)zn+1 dz����� � 12� Z 2�0 jf(rei�)jrn+1 r d� � 12�rn�� :For n > �, allow r ! 1 to obtain an = 0 for n > �. For n < �,allow r ! 0 to obtain an = 0 for n < �. Thus, f(z) = 0 in C . Whathappens when � is a positive integer?(o) Considerf(z) = � 1 if z 2 C nf1g0 if z = 1 and f(z) = i�1 + z1� z� :(p) Clearly, the radius of onvergene is 1. We may set the sum of theseries as f(z). It follows thatf 0(z) = 1Xn=1(z � 3)n = 11� (z � 3) = 14� z ; jz � 3j < 1:Integration gives f(z) = �Log (4�z)+ , where the prinipal branhut is hosen. The branh ut is C nfx+ i0 : x � 4g. As 0 = f(3), wehave  = 0 and therefore, the sum is �Log (4� z).



562 Hints and Solutions for Seleted Exerises(q) The onvergene of P1n=0 f (n)(a) implies that the n-th term of thisseries, namely, f (n)(a) = n!an, approahes zero as n ! 1 showingthat the radius of onvergene of the power series about a is 1.(r) As jbnj1=n < n2=njanj1=n, the Root test implies that the radius ofonvergene of the series is at least 1.(s) Note that the disk of onvergene of P1n=0 an(z + 2)n is jz + 2j < 3and therefore, the transformed seriesP1n=0 anzn onverges for jzj < 3.What is its sum?(v) As f(z) = f(�z), we have f (n)(z) = (�1)nf (n)(�z) whih (at z = 0)gives (1 � (�1)n)f (n)(0) = 0. Thus, an = f (n)(0)=n! = 0 whenevern > 0 is an odd integer. The Taylor series of f about 0 will be of theform f(z) =P1k=0 a2kz2k:(y) By the Cauhy inequality, we have��f (n)(0)��n! � MRn ; where M = maxjzj=R jf(z)j :If the inequality ��f (n)(0)�� � n!nn were true, then we would havenn < MR�n for all n 2 N. However, this inequality annot hold forall n sine nn grows faster than R�n for any �xed R 2 (0; 1).Alternately, we observe that the given ondition implies that janj1=n �n. As n ! 1, we see that the radius of onvergene of f(z) =Panzn is zero and hene, f(z) annot be analyti at z = 0 whih isa ontradition.4.145:(a) By de�nitionsin z = 0() (eiz � e�iz)=2 = 0() ei2z = 1() z = k�; k 2 Z:(b) By the de�nition of the osine hyperboli funtion, oshx 6= 0. There-fore, osh z = 0() oshx os y = 0 and sinhx sin y = 0:Sine oshx 6= 0, the �rst equation implies that os y = 0. Heney = (k + 1=2)�, k 2 Z. However, sin(k + 1=2)� 6= 0 for eah k 2 Z.The seond then beomes sinhx = 0 and this has only one root x = 0.Therefore, osh z = 0 () z = i(k + 1=2)�, (k 2 Z): Note that thisan be quikly obtained from the zeros of os z, sine os(iz) = osh z.(d) Find two distint harmoni funtions in a domain D whih oinidesin a set S � D whih has a limit point in D. On the other hand, onean prove that if u and v are harmoni funtions in a domain D andu = v on in open set S in D, then u = v in D.



Hints and Solutions for Seleted Exerises 563(h) Apply the Uniqueness theorem by equating the oeÆients of f2 andf .(j) Suppose that suh an f were to exist in � satisfying the desiredproperty. Then the funtion g de�ned byg(z) = f(z)� z2k�1belongs to H(�) and g (1=n) = 0 = g (�1=n) for n = 2; 3; : : : : Itfollows from the uniqueness theorem that g(z) � 0 in �; i.e. f(z) �z2k�1 in �. But then f(�1=n) = �1=n2k�1 for n � 2, whih isnot possible. Thus there exists no analyti funtion with the desiredproperty.(q) By the Uniqueness theorem, we have(f 0=f)(z) = (g0=g)(z); i.e. g(z)f 0(z)� g0(z)f(z) = 0 in �whih gives (f=g)0(z) = 0 in �. Thus, f=g is onstant in �.4.149. See Example 4.68.4.150. Use the method of proof of Example 4.68 by hoosing a suitable aux-iliary funtion �(z).4.151. On the unit irle jzj = 1, we have z = ei� (� 2 [0; 2�℄) and dz = izd�.So, os � = (z2 + 1)=(2z),os2(�=2) = 1 + os �2 = 12+�z2 + 14z � and sin2(�=2) = 12��z2 + 14z � :Thus, I an be rewritten asI = Zjzj=1 f(z)�12 + z2 + 14z � dziz= 12i Zjzj=1 f(z)z dz + 14i Zjzj=1 f(z) dz + 14i Zjzj=1 f(z)z2 dz= 2�if(0)2i + 04i + 2�if 0(0)4i= �(f(0) + f 0(0)=2):Similarly, one an obtain that Is = �(f(0)� f 0(0)=2).4.152. If jaj > 4, then Cauhy's theorem shows that the value of the integralis zero. So, f(a) = 0 for eah a with jaj > 4. On the other hand, ifjaj < 4 then the Cauhy integral formula for derivatives implies thatthe value of the integral is 2�iF 0(a) = f(a), where F (z) = z2+3z�7.Thus, for eah a with jaj < 4, one has f(a) = 2�i(2a+ 3).



564 Hints and Solutions for Seleted Exerises4.154. Fix a 2 �. Then, by the Cauhy integral formula,f 0(a) = 12�i Z f(z)(z � a)2 dzwhere  : jz�aj = r, a irle whih is ompletely inside the unit disk�. For example, r = (1 � jaj)=2 will do. By hoosing r in this way,we see that (as z = a+ rei� implies that jzj < jaj+ r)1� jzj � 1� (jaj+ r) = (1� jaj)� r = 1� jaj2and jdzj = jirei� d�j = rd�; jdzjjz � aj2 = d�r = 21� jaj d�so that jf 0(a)j � 12� Z 2�0 1(1� jzj)� 1jz � aj2 jdzj� 12� Z 2�0 � 21� jaj�� 21� jaj d�= 2�+1(1� jaj)�+1 :4.155. Follows from f(z)� f(0) = R z0 f 0(z) dz.4.157. (a) If there were a funtion f satisfying the given ondition, then, bythe Cauhy estimate (a = �1, R =M = 5), we would have1 = jf 00(�1)j � 5(2!)25 = 25whih is learly not true.4.158. We write f(z) as11� z2 = 12 � 16 + (z � 5) � 14 + (z � 5)�and therefore, for jz � 5j < 4, we havef(z) = 1Xn=0 an(z � 5)n; an = 12 � (�1)n6n+1 � (�1)n4n+1 � :Using this and the root/ratio test, one an see that the radius ofonvergene of the desired series is R = 4.



Hints and Solutions for Seleted Exerises 5654.159. Rewrite f(z) asf(z) = 1� z31� (z3)5 ; with z3 6= 1 ( i.e. z 6= 1; e2�i=3; e4�i=3):Then f has simple poles at zk = e2k�i=15, k 2 f1; 2; : : : ; 14g nf0; 5; 10g,so that the distane from 1 to the nearest singularity is j1�e2�i=15j =R.4.160. By the partial fration deomposition, we easily �nd thatf(z) = 1p5 � �z � � � �z � ��  � = 1 +p52 ; � = 1�p52 ! := 1p5Xn�0� ��n+1 � ��n+1� zn; jzj < j�j:Note that j�j < � and �� = �1.4.161. By hypothesis, we may writef(z) = (z � a)m�(z) and g(z) = (z � a)n (z)where m � 0, � and  are analyti at a with �(a) = f (m)(a)=m! and (a) = g(n)(a)=n! 6= 0. It follows thatlimz!a f(z)g(z) = limz!a(z � a)m�n �(z) (z) = 8>><>>: �(a) (a) if m = n0 if m > n1 if m < n:Note that the limit exists whenever m � n.4.162. Note that pz = 0 implies that z = 0 whih is not to be onsideredas a zero beause pz is not analyti at z = 0. The point z = 0 isa singular point (but it annot be an isolated singularity as we shallsee in Chapter 7).4.163. By the Uniqueness theorem, f 00(z) + ez = 0 for all z 2 �. From thisone an get an expliit form of f(z). How about if e1=n is replaedby f 0(1=n) or f(1=n) or sin(1=n) or os(1=n)?4.164. De�ne g(z) = f 00(z)� 10 + 3z. Then, g 2 H(C ) and g(1 + 1=n) = 0.The Uniqueness theorem implies that f 00(z) = 10� 3z and therefore,f 0(z) = 10z�3z2=2+a. As f 0(0) = 0, a = 0. So, f(z) = 5z2�z3=2+b(b-onstant).Chapter 5, Exerises 5.8:5.82:



566 Hints and Solutions for Seleted Exerises(f) Choose for example, T (z) = z=(z + 1) and S(z) = 1 + z. ThenT (S(z)) = z + 1z + 2 and S(T (z)) = 1 + zz + 1 = 2z + 1z + 2 :(h) Note that T is one-to-one (if it is not a onstant).(k) If (z; z1; z2; z3) = �, then from the de�nition of the ross-ratio, z3annot be 1 and that this equation redues to�z2 � z3z � z3 �� = � �� = z � z2z2 � z1� :Solving this for z3 yields z3 = (�z2 � �z)=(� � �):(m) (=: This is Theorem 5.38.=): Let (z4; z1; z2; z3) = (w4; w1; w2; w3), and g(w) = (w;w1; w2; w3).Then g is a unique M�obius transformation with g(w1) = 0, g(w2) = 1,and g(w3) = 1. By Theorem 5.38, there exists a unique M�obiustransformation f suh thatf(z) = (z; z1; z2; z3); f(zj) = wj for j = 1; 2; 3.It remains to show that f(z4) = w4. In view of the invariane propertyof the ross-ratio for f(z), the de�nition of g gives,(z4; z1; z2; z3) = (f(z4); f(z1); f(z2); f(z3))= (f(z4); w1; w2; w3)= g(f(z4)):By assumption, the L.H.S equals (w4; w1; w2; w3) = g(w4) and so,g(w4) = g(f(z4)) whih, beause g is univalent, implies that w4 =f(z4).(p) If T (z) = az + bz + d (ad� b 6= 0)is a M�obius transformation whih �xes 0 and 1, then we must haveb = 0 and  = 0 so that T (z) = (a=d)z =: �z: For T to have no other�xed points, we must have � 6= 1. Again, we want the map T totake the upper half-plane to itself. Hene, � must be a positive realnumber suh that � 6= 1.(q) If T is a M�obius transformation and1 2 Fix (T ), then T has the formT (z) = �z+� (� 2 C nf0g; � 2 C ): If T �xes1 and no other points,then the �xed point equation T (z) = z gives that z = �=(1 � �),whih should be possible only if z =1 showing that � = 1 (otherwiseT (z) = �z+� will have a �xed point in C ). Therefore, T (z) = z+�:Again, 0 is not a �xed point, so � 6= 0. We require T to be a selfmapping of the upper half-plane, whih gives the ondition Im� > 0.



Hints and Solutions for Seleted Exerises 567(r) If T is a M�obius transformation and 1 2 Fix (T ), then T has theform T (z) = �z + � (� 2 C nf0g; � 2 C ). Sine the required M�obiusmap arries R onto R, we must haveT (0) = � 2 R and T (1) = �+ � 2 Rso that both � 6= 0 and � are real.(s) For example, f(z) = ez + z and g(z) = ez2 + z. What is the set of�xed points of the omposite funtion f Æ f?(t) Choose � = 2i and � = � (so that ei� = �1) in Theorem 5.47.(u) Follows from the proof of Theorem 5.69. In fat, if T (z) is the M�obiustransformation whose oeÆients a; b; ; d are non-zero and ad� b =1, then we note that T (0) = bd ; T (1) = a :Suppose that T takes R into R. Then b=d and a= are real. So weonlude that a; b; ; d are real or purely imaginary.(v) Note that g(z) = zn arries the in�nite setor of angle �=n onto theupper half-plane H+ . Now ompose with a M�obius map whih arriesH+ onto �.(x) First map the �(a; r) onto �(0; r) by w(z) = z�a and then map thedisk �(0; r) onto C1 n�(0;R) by �(z) = Rr=w. Finally, map jwj > Ronto jw � bj > R by �(z) = � + b. The desired M�obius mapping T isgiven by T (z) = (� Æ � Æ w)(z):(z) Clearly, f1(z) = z6 maps 
 onto the upper half-plane H+ . A mapwhih arries H+ onto � is given by Theorem 5.47. The ompositionwill give us the desired map.5.89. Rewrite the given transformation in the form z = i(w + 1)=(1� w).Then, we �nd thatjzj = r =) j1 + wj2 = r2j1� wj2 =) ����w + 1 + r21� r2 ���� = 2rj1� r2j :Chapter 6, Exerises 6.8:6.75:(a) Use Example 6.15.() Clearly, f 2 H(�) and therefore, jf(z)j attains its maximum valueon jzj = 1. For z = ei� (� 2 [��; �℄),jf(z)j2 � 14p2 + 4p osn� + 1 � 14p2 � 4p+ 1 = 1(2p� 1)2and the maximum is attained when � = ��=n.



568 Hints and Solutions for Seleted Exerises(d) Let 0 � x; y � 1. Then, it suÆes to observe thatjf(x+ i0)j = jx2 � 2xj = 1� (x� 1)2 � 1jf(0 + iy)j = j � y2 � 2iyj =py4 + 4y2 � p5jf(1 + iy)j = j(1 + iy)2 � 2(1 + iy)j = j � 1� y2j = 1 + y2 � 2jf(x+ i)j = j(x + i)2 � 2(x+ i)j =p(x2 � 2x� 1)2 + (2x� 2)2�p1 + 22 = p5:(e) Note that jf(0)j = 2 and so, jf(z)j attains its maximum at the originwhih is an interior point.(f) We an write f(z) = (z2 + 4)g(z), where g is also entire. On jzj = 3,M � jf(z)j = j(z2 + 4)g(z)j � (jzj2 � 4)jg(z)j = 5jg(z)j so thatjg(z)j �M=5. Therefore, on jzj = 3, one hasjf(z)j = j(z2 + 4)j jg(z)j � (M=5)jz2 + 4jand the desired onlusion follows from the Maximum modulus prin-iple.(g) We write f(z) = g(z)Qn�1k=0 (zn � !k), where g is also entire. Applythe Maximum modulus priniple.(k) Choose a = 1=2 and b = 0 in (6.35). Can one prove this without usingthe formula (6.35)? Note that among all funtions whih are analytiand bounded by 1 in the unit disk, maxz2� jf 0(z)j is assumed whenf(1=2) = 0.(m) Use a = 1=2, b = 0 in (6.35). Aording to (6.35), with f(a) = b, itfollows thatjf 0(1=2)j = jf 0(a)j � 1� jf(a)j21� jaj2 = 1� 9=161� 1=4 = 712 :But if f 0(1=2) = 3=4, then we would have 3=4 � 7=12 whih is notpossible.(n) As jf 0(z)j � jzj, we have f 0(0) = 0 and jf 0(1)j � 1: By Theorem 6.60,f 0(z) is a polynomial of degree at most one. So, f 0(z) = a0 + a1z: Asf 0(0) = 0, we have f 0(z) = a1z whih gives that f(z) = a+ bz2 withb = a1=2. As jf 0(1)j = ja1j � 1, we have jbj � 1=2.(o) For jzj � 1=2, we note thatjp(z)j � 1� jp(z)� 1j� 1� fjzjn + jan�1j jzjn�1 + � � � + ja2j jzj2 + ja1j jzjg� 1�(�12�n +�12�n�1 + � � � +�12�2 +�12�) ;= 1� 12 �1� (1=2)n1� 1=2 � = 12n



Hints and Solutions for Seleted Exerises 569and so p(z) annot have zeros for jzj � 1=2. For jzj � 2, that isj1=zj � 1=2, we note thatp(z)zn = �1z�n + a1�1z�n�1 + a2�1z�n�2 + � � � + an�1�1z�+ 1and so proeeding as above, we obtain jz�np(z)j > 0 for jzj � 2: Thus,all the zeros of p(z) must lie in the annulus D.(q) As f is entire, �(z) = exp(f(z)) is entire and j�(z)j = eRe f(z): AsRe f(z) is bounded as jzj ! 1, � is bounded. Thus, by Liouville'stheorem, � and hene, f is onstant.Note: The ondition jf(z)j �M on C implies that�M � Re f(z) �M ; �M � Im f(z) �M:Apply the hint with f , �f , if and �if to show that any one of thefour inequalities suÆes to prove that f is onstant, if f is entire.(r) Let f(z) = Pn�0 anzn. Sine f(R) � R, eah an is real. Sinef(iR) � iR, an = 0 for n even.(s) Suppose that f does not assume values in a disk, say �(;M) forsome omplex number  and M > 0. Then, jf(z) � j > M for allz 2 C . Thus, f is onstant by Liouville's theorem.(u) For example if k = 2, thenf(2z) = f(z) = f(z=2) = f(z=22) = � � � = f(z=2n) = � � � :De�ne g(z) = f(z) � f(z=2n). Then, g 2 H(C ) and g(z) = 0 forz 2 C . Moreover,0 = g(z) = limn!1(f(z)� f(z=2n)) = f(z)� f(0); or f(z) = f(0):(w) First we observe that every zero of f(z) is also a zero of f 0(z). Thus,f 0(z)=f(z) is entire and bounded by 2 so that it is a onstant, say a,with jaj � 2. Integration gives the desired form.(x) Note that �(z) = exp(f2(z)) is entire and j�(z)j = eu2�v2 on C . ByLiouville's theorem, � and hene f is a onstant.(y) Without loss of generality, we may assume that 0 < a < 1. Sine u(z)is harmoni in C , there exists a harmoni onjugate v(z) in C suhthat g(z) = u(z) + iv(z), where g 2 H(C ). Now, f(z) = exp(g(z)) isan entire funtion, and for jzj > 1,jf(z)j � jeu+iv j = eu � ebea ln jzj = �jzjaso that f is a polynomial of degree not greater than a. Thus, f isa onstant and so, u(z) is onstant. Does the same onlusion holdeven if a and b are �xed real numbers (see the previous Exerise)?



570 Hints and Solutions for Seleted Exerises6.77. Suppose that f 2 H(�), jf(z)j < 1 and that there exist two distintpoints a; b in � suh that f(a) = a and f(b) = b: De�ne�a(z) = a� z1� az and h = �a Æ f Æ �a:Then, we easily have� h 2 H(�), jh(z)j < 1 and h(0) = 0� As �a is onto, there exists an � 2 � suh that �a(�) = b.� As ��1a = �a, � = ��1a (b) and h(�) = �a(f(b)) = ��(b) =��1� (b) = �� Sine a and b are distint, � 6= 0.By Shwarz' lemma, h(z) = ei�z for some �. But h(�) = � showsthat � = 0 and so,h(z) = �a(f(�a(z))) = z; i.e. a� f(�a(z))1� af(�a(z)) = zand this gives f(�a(z)) = �a(z): Sine �a(z) is an automorphism ofthe unit disk, it follows that f(z) = z for z 2 �.6.78. By Shwarz' lemma (see Example 6.41), jf 0(0)j � 3=4: Thus, thefuntion f(z) = z � 1=21� z=2has the desired properties for the �rst part of our problem. If oneinsists that f 0(0) = 4=5, then we must have 4=5 = jf 0(0)j � 3=4whih is not possible. This observation shows that there exists noanalyti funtion f : �! � with f(0) = �1=2 and f 0(0) = 4=5.6.79. Let w = f(z) and f(0) = a. De�ne G = g Æ f byG(z) = (g Æ f)(z) = a� f(z)a+ f(z) ; i.e. g(w) = a� wa+ w :Then g maps Rew < 0 onto � and so, G(z) maps � onto � withG(0) = 0. Apply Shwarz' lemma to G to obtain the inequalityjG0(0)j � 1 whih gives jf 0(0)j � 2jRe f(0)j:6.80. Note that f1(z) = i�z=2 maps 
1 = fz : jRe zj < 1g onto 
2 = fw :jImwj < �=2g, and f2(w) = ew maps 
2 onto 
3 = f� : Re � > 0g.Finally, f3(�) = (� � 1)=(� + 1) maps 
3 onto �. Therefore,g(z) = (f1 Æ f2 Æ f3)(z) = ei�z=2 � 1ei�z=2 + 1maps 
1 onto � with g(0) = 0. Thus, F = g Æ f maps � onto itselfwith F (0) = 0. By Shwarz' lemma,jF 0(0)j = jg0(f(0))f 0(0)j = jg0(0)f 0(0)j � 1and a omputation gives, jf 0(0)j � 1=jg0(0)j = 4=�.



Hints and Solutions for Seleted Exerises 5716.81. Set g(z) = (��f(z))=�. Sine g(0) = 1 and Re g(z) > 0, by Theorem6.49, it follows that jg0(0)j = jf 0(0)=�j � 2 and�1 + ����f(z)� ���� � ����1� f(z)� ���� = jg(z)j � 1 + jzj1� jzj ; i.e. jf(z)j � 2�jzj1� jzj :6.82. De�ne g(z) = f(Rz)=M for z 2 �. Then, g 2 H(�) and jg(z)j � 1for z 2 �. Let� = g(z0) = f(Rz0)M = w0M with jz0j < 1 and ��(z) = �� z1� �z :By hypothesis, the analyti funtion h de�ned by h = �� Æ g isbounded by 1 and has a zero at z0 2 �. By the Shwarz-Pik lemma(see (6.36)), we have�(h(z); 0) = �(h(z); h(z0)) � �(z; z0)whih is equivalent toj��(g(z))j = jh(z)j � ���� z � z01� z0z ���� for z; z0 2 �:Substituting bak the initial substitutions, this inequality is equiva-lent to ���� (w0=M)� (f(Rz)=M)1� (w0=M)(f(Rz)=M) ���� � ���� z � z01� z0z ���� for z; z0 2 �;that is M ���� w0 � f(z)M2 � w0f(z) ���� � R jz � z0jjR2 � z0zj for z; z0 2 �R:6.83. Consider the funtion F (z) = f(z) NYj=1�1� zjzz � zj � and use the ex-tended version of Shwarz' lemma.6.84. Choose N = 3, z1 = 0, z2 = 1=3 and z3 = �1=3 in Exerise 6.83.6.86. As jf(z)j � eRe z = jezj, we have je�zf(z)j � 1 for z 2 C . ByLiouville's theorem, e�zf(z) = a where a is a onstant with jaj � 1.Similarly, an entire funtion g suh that jg(z)j � e�Imz for z 2 Cmust be of the form g(z) = aeiz with jaj � 1.6.88. We have already proved the �rst inequality (see Setion 6.6). Theseond inequality follows similarly. Indeed, by the triangle inequality



572 Hints and Solutions for Seleted Exerisesfor jzj � 1 (so that jzjn � jzjn�1 � � � � � jzj), we havejp(z)� znj � jzjn� ja0jjzjn + ja1jjzjn�1 + � � � + jan�1jjzj �� jzjn� 1jzj(ja0j+ ja1j+ � � � + jan�1j)�� jzjn2 if jzj > R � R0;R0 = maxf1; 2(ja0j+ � � � + jan�1j)g, whih shows that jp(z)j � 32 jzjn:6.89. For jzj = r � R, let A(r) = maxjzj=r Re f(z): Then, the hypothesisimplies that A(r) � �r� for jzj = r � R: Taking R = 2r in Theorem6.32, we �nd thatjf(z)j � 3jf(0)j+ 2A(2r) � 3jf(0)j+ 2�(2r)�;that is, jf(z)j � 3jf(0)j+2�+1�jzj� for jzj large. Now use the methodof proof of Theorem 6.60 to omplete the proof.Chapter 7, Exerises 7.8:7.49:(a) If f(z) is entire and has a removable singularity at z =1, then g de-�ned by g(z) = f(1=z) has a removable singularity at the origin andtherefore, g(z) is bounded in a deleted neighborhood of 0. Equiva-lently, f(z) is bounded on jzj > R for some R > 0. By Liouville'stheorem, f(z) is onstant.(b) Let f(z) =P1k=0 akzk be entire and have a pole of order n at 1. Ifwe de�ne g(z) = f(1=z), then g(z) has a pole of order n at the origin.It follows that zng(z) is bounded near 0; i.e. z�nf(z) is boundednear 1. That is, f(z) is entire suh that jf(z)j �M jzjn for jzj > R.Consequently, by Theorem 6.60, f(z) is a polynomial of degree n.The onverse part is trivial.(d) If f(z) is a nononstant entire funtion, then g(z) = expff(z)g isalso entire. If g(z) has a removable singularity at 1, then g(z) (andhene, f(z)) is onstant. If g(z) has a pole at 1, then 1=g(z), beinga bounded entire funtion, is a onstant. In either ase, f(z) is aonstant whih is a ontradition. Thus, 1 is neither a removalblesingularity nor a pole for g.(h) See Remark 7.13 and Theorem 4.102.(j) False. The denominator of f(z), namely z2(� � z)(� � z), is notanalyti unless � = � = 0.



Hints and Solutions for Seleted Exerises 573(l) If z0 is a pole of f of order k then f(z) = (z � z0)�kg(z), where gis analyti at z0, g(z0) 6= 0. This gives f 0(z) = (z � z0)�k�1�(z),where � de�ned by �(z) = (z � z0)g0(z)� kg(z) is analyti at z0 and�(z0) 6= 0.(n) De�ne f1(z) = exp(1=z) and f2(z) = sin(1=z). Consider its reipro-als F1(z) = exp(�1=z) and F2(z) = 1= sin(1=z). Then z = 0 is anisolated essential singularity for both f1(z) and F1(z). On the otherhand, z = 0 is an isolated essential singularity for f2(z) but not forF2(z).(o) If there does not exist suh a sequene, f would then be bounded on adeleted neighbourhood of z0. By the removability theorem, z0 wouldbe a removable singularity ontraditing the hypothesis.(r) For z near 1, onsider the Laurent expansion of f(z) about 1. Indeed,f(z) = � e1=(z�1)1� eez�1 = � 1Xn=0 1n! 1(z � 1)n! 1Xm=0 1m!emem(z�1)!and notie that there are in�nitely many negative powers of z � 1.(s) The given inequality shows that jzf(z)j ! 0 as z ! 0 so that z = 0is a removable singularity of zf(z) 2 H(C nf0g). De�neF (z) = ( zf(z) for z 6= 00 for z = 0:Then, F is entire and jF (z)j � ajzj3=2 + bjzj1=2 � M jzj3=2 showingthat F (z) = z+ d, by Theorem 6.60. As F (0) = 0, we have d = 0 sothat F (z) = z or f(z) = .(u) Suppose that there exists suh a funtion f . Then, for z 6= 0,1=jf(z)j � jzj� and therefore, 1=jf(z)j ! 0 as z ! 0. De�neF (z) =8<: 1f(z) for z 6= 00 for z = 0:Then, F is entire and jF (z)j � jzj� for large value of jzj. It followsthat F (and, hene, f) is onstant. But this ontradits the hypothesisthat jf(z)j � jzj�� for z near 0. So, no suh funtion exists.(x) Rewrite the given equation as eg = 1 � ef , where the left hand sidefuntion never assumes zero. This means that f(z) 6= 2k�i for eahk 2 Z. That is, f2k�i : k 2 Zg � C nf(C ) so that the entire funtionf omits 2k�i for eah k 2 Z. By Piard's theorem, f is onstant.Interhanging the role of f and g shows that g is also onstant.



574 Hints and Solutions for Seleted Exerises(y) We know that z = 0 is a branh point of pz. On the other hand if zgoes along a little irle ��r one in the ounterlokwise diretion,then pz is hanged to �pz, whereas f(z) is hanged toe�pz � epzsin(�pz) = epz � e�pzsinpz = f(z):Therefore, z = 0 is not a branh point but is an isolated singularityof f . It an be seen that z = 0 is a removable singularity of f .Note: It an be seen in the same spirit that sinpz is not an entirefuntion whereas ospz is entire.7.50. Note that jz3f(z)j ! 0 as z ! 0. De�neF (z) = ( z3f(z) for z 6= 00 for z = 0:Then, F is entire and jF (z)j � ajzj5 + bjzj � M jzj5 for large valuesof jzj. It follows that F (z) is a polynomial of degree at most 5 withF (0) = 0. If f is odd, then f must be of the form f(z) = z + d=z.7.52. The point at in�nity is not an isolated singularity of f as it is a limitpoint of poles and so, it annot be pole.7.53. z = 0 is not a pole but is an essential singularity. We may write f(z)as sin 1 os(1=z)� os 1 sin(1=z) for jzj > 0.7.54. Consider f(z) = ez� 1z . The point at in�nity is an essential singularityof f(z). Note that there is no non-onstant meromorphi funtionwhih is analyti on the Riemann sphere�a onsequene of Liouville'stheorem.7.60. Let � satisfy the above onditions. Then the funtion f de�ned byf(z) = (z � z1)[(z � z2)(z � z3)(z � z4)℄�1�(z)is analyti at all points exept at zj , j = 1; 2; 3; 4. Sine limz!zj f(z)exists, f is analyti in C . Further, ondition (iv) implies that f isanalyti at in�nity. As a onsequene of Liouville's theorem f reduesto a onstant, and by (iv) this onstant must be 2 and hene � takesthe form: �(z) = 2(z � z1)�1(z � z2)(z � z3)(z � z4):7.61. We �nd thatlimz!1(z � 1)f(z) = limz!1� 1nzn�1 + � � �+ 2z + 1 + � = 2n(n+ 1) + and so  = �2=n(n+ 1) will do.



Hints and Solutions for Seleted Exerises 5757.62. Observe that both limz!0 f(z) and limz!2(z�2)f(z) exist and are non-zero.Further, if g(z) = f(1=z) thenlimz!0z=x>0 zng(z) = limx!0x>0 xn+2(e1=x � 1)1� 2x =1and limz!0z=�x>0 zng(z) = (�1)n limx!0x>0 xn+2(e�1=x � 1)1 + 2x = 0showing that 1 is neither a removable singularity nor a pole of g(z).It follows that z = 0 is an essential singularity for g(z).7.63. Let g(z) = z= sin z. Then g has singularities only at z = k�, k 2 Z.We observe that(i) limz!0 g(z) = 1 so that limz!0 f(z) = e(ii) limz=x!k��k�even g(z) = �1 so that limz=x!k��k�even f(z) = exp(�1) = 0(iii) limz=x!k�+k�even g(z) =1 so that limz=x!k�+k�even f(z) = exp(1) =1.Thus, (ii) and (iii) reveal the fat that k� (k-even and k 6= 0) isneither removable nor a pole for f . A similar onlusion holds whenk-is odd.7.64. If k(z) = z=(1� z)�2, then f de�ned byf(z) = ei�k(e�i�z) = z + 1Xn=2 anzn � an = ne�i(n�1)� � ;satis�es the hypotheses. Note that janj = n so that the sequenefang is not bounded. On the other hand, if g(z) = (1 � ze�i�)�1then g 2 H(C n fei�g) where ei� is a simple pole for g. Note thatbn = g(n)(0)n! = e�in� = osn�� i sinn�and jbnj = 1: Clearly, fbng does not onverge although it is a boundedsequene.Chapter 8, Exerises 8.6:8.60:(a) By de�nition



576 Hints and Solutions for Seleted ExerisesRes [af(z) + bg(z); z0℄= 12�i Z��(z0;r)[af(�) + bg(�)℄d�= a" 12�i Z��(z0;r) f(�)d�# + b" 12�i Z��(z0;r) g(�)d�#= aRes [f(z); z0℄ + bRes [g(z); z0℄;where r is hosen so that z0 is the only singularity of f and g in�(z; r).(f) Suppose not. Then, jf(z) � 1=zj < ja�1 � 1j for all z with jzj = 1.Moreover,ja�1 � 1j = ����� 12�i Zjzj=1�f(z)� 1z� dz����� < ja�1 � 1jwhih is a ontradition. Note that if f(z) = a�1=z, then, for jzj = 1,we have the equality jf(z)� 1=zj = ja�1 � 1j.(g) Use (8.23).(h) Use (8.23).(j) As in the previous exerise, we onlude that F (z) = ez � 1� 2z hasonly one zero inside the unit irle jzj = 1. As F (0) = 0, the onlyzero in � is at z = 0 and so 1=F (z) has a simple pole at the originwith residueRes � 1F (z) ; 0� = limz!0 zez � 1� 2z = limz!0 1ez � 2 = �1:(k) Justify your answer by onstruting expliit examples.(n) Suppose that suh a funtion exists. Then, we must have2�i = Zjzj=1 dzz = 0whih is absurd; so no suh f an exist with the given property.(o) See Example 8.17.(p) Sine Res [osh z ot z; k�℄ = osh k�; k 2 Z; and k� lies inside theirle C, the assertion follows by the residue theorem.(q) The Laurent expansion of ez yieldsf(z) =  1Xn=0 znn!! 1Xm=0 z�mm! ! ; jzj > 0:Truth of the assertion now follows by obtaining the oeÆients of 1=z,using the Cauhy produt of the two onvergent series.



Hints and Solutions for Seleted Exerises 577(s) Set f(z) = ez � 2 and g(z) = �3z. For jzj = 1,jez � 2j = ������1 + 1Xn=1 znn! ����� � 1 + 1Xn=1 1n! = e < 3 = j � 3zj:Sine g(z) has only one zero in the unit disk, f(z)+g(z) also has onlyone zero in �. In the same way, we see that the number of solutionsof sin z = z + 3z2 in the unit disk jzj < 1 is two.(t) On jzj = 1, jez�aj = jez�a � z � (�z)j = eRe z�a � e1�a < j � zj:(u) On jzj = 2, jp(z)j � 1 + 2 + 22 + 23 + 24 = 31 < 25 = jzj5:(v) As j � f(0)j < m < jf(z)j on jzj = 1, f(z) and f(z) � f(0) have thesame number of zeros in �.(w) Sine jf(z)j = j(f(z)�z)� (�z)j< 1 = j�zj for jzj = 1, f(z)�z and�z the have same number of zeros in �. Thus, there exists a pointz0 2 � suh that f(z0) = z0.(x) Let fn(z) = 1 + 2z + 3z2 + � � � + nzn�1 and C = ��R. Then, wesee that fn(z)! (1� z)�2 as n!1, jzj < 1: Applying the methodof Example 8.59 we an immediately onlude that for R < 1 and nsuÆiently large, the polynomial fn has no zeros in jzj < R (Also wean use Hurwitz' theorem with f(z) = (1� z)�2).(z) Nf � Pf is the di�erene of the zeros and the poles of f(z) in � plusthe di�erene of the zeros and the poles of f(1=z) in �. One mayneed to onsider a disk other than � for ertain funtions.8.62. As f 0(z) 6= 0, f(z)� f(a) 6= 0 in D n fag. Nowlimz!a(z � a) g(z)f(z)� f(a) = g(a)f 0(a) :Apply the residue theorem.8.64. (iii) Set f(z) = sin�z and apply the argument priniple.(iv) Inside the irle jzj = 3, the funtion has two singularities atz = 1 and z = 2. Sine Res [f(z);1℄ = �1, by Theorem 8.32, thevalue of the integral is 2�i.8.66. Let f 2 H(�) and f(z) 2 R for jzj = 1. Suppose that  = a+ ib withb 6= 0. We laim that f(z) �  6= 0 for jzj < 1. To do this, we applythe argument priniple and obtain12�i ZC f 0(z)f(z)�  dz = Nwhere N denotes the number of zeros of f(z)�  in �. Observe thatIm (f(z)� ) = Im f(z)� b = �b



578 Hints and Solutions for Seleted Exerisesimplying that � (the image of �� under f(z) � ), whih desribesa losed ontour, lies either in the lower half-plane or in the upperhalf-plane depending upon whether b > 0 or b < 0. Thus, in eitherase, n(�; 0) = 0 so that N = 0, i.e. f(z)�  6= 0 in jzj < 1 wheneverIm  6= 0. It follows that f(z) never assumes non-real values andhene, f(z) 2 R in jzj < 1 whih implies that f is onstant (seeTheorem 3.6).8.74. For jzj = R, we have j � ezj = eRe (z) < eR < jajRn = jaznj (sinejRe zj � R). The �rst part follows from Rouh�e's theorem. If R = 1and jaj > e, the equation azn � ez = 0 has n roots in jzj < 1. If z0 isa root of order k, k � 2, thenazn0 � ez0 = 0 and nazn�10 � ez0 = 0whih means that zn0 � nzn�10 = 0 and this gives either z0 = 0 orz0 = n; i.e. either 0 = ez0 = e0 = 1; or Re z0 � 1 and this is aontradition. Therefore the equation azn � ez = 0 has exatly nsimple roots with positive real part loated in jzj < 1.8.77. Let z = ei�. Then, we haveZjzj=1 f(z)z � a dz = Z 2�0 f(ei�)ei� � aiei� d�= Z 2�0 f(e�i�)1� ae�i� i d�= Zj�j=1 f(�)(1� a�)� d�; � = e�i�:Note that f(z) is analyti for jzj < 2 if and only if f(z) is analytifor jzj < 2. The result follows if we apply Cauhy's integral formulaor Cauhy's residue theorem.Chapter 9, Exerises 9.7:9.75. It suÆes to onsider b = 1. With this,Re �Z 2�0 ein�a+ os � d�� = Re (2i Zjzj=1 znz2 + 2az + 1 dz) :9.76(1). All the zeros z = 0;�2; i of z(z+2)(z� i)2 lie inside the irle jzj = 3.So I = �2�iRes [f(z);1℄ = 0:9.78(1). The ase � = 0 is the error integral while � 2 [�1; 0) follows from thease � 2 (0; 1℄ by onjugating both the sides ofZ 10 e�(1+i�)2t2 dt = � 11 + i�� p�2 :



Hints and Solutions for Seleted Exerises 579Thus, it suÆes to prove this whenever � 2 (0; 1℄. For the proof, usea triangular ontour with 0 < � < 1: C = [0; R℄ [ fR + it : 0 � t ��Rg [ f(1 + i�)t : t 2 [0; R℄g and f(z) = e�z2 .9.78(2). One may use the ontour shown in Figure 9.9. For � = 0, one an �ndthe value of the integral by taking the limit on the right as �! 0.9.78(3). Choose f(z) = Log z=(z2 + a2) = (ln jzj+ iArg z)=(z2 + a2).Chapter 10, Exerises 10.5:10.54:(a) Clearly, f(z) = z and f(z) = sin z satis�es this relation. The givenrelation may be rewritten asf(z) = 2f(z=2)f 0(z=2) for jzj < R:As f is analyti for jzj < R, the right hand side is analyti forjzj < 2R. Consequently, by iteration, f is analyti for jzj < 2nRfor arbitrary n.(b) The funtions f and F whih represent the �rst and the seond seriesare given byf(z) = 11� �z and F (z) = 1� z1� z + (1� �)z ;respetively. Note that the �rst series onverges for jzj < 1=j�j whilethe seond for all z with j(1� �)zj < j1� zj.(d) Clearly, we may write f(z) = Log (1+ z) whih is analyti in the utplane C n (�1;�1℄. Similarly,F (z) = ln 2 + Log �1� 1� z2 � = ln 2 + Log �1 + z2 �whih is also analyti on the same ut plane. If jzj < 1, then both1 + z and 2 lie in the right half-plane Re z > 0 so thatF (z) = ln 2 + Log (1 + z)� ln 2 = Log (1 + z)whih implies that f(z) = F (z) for jzj < 1.10.56. Set f(z) = exp(z Log z) and observe that f(x) is real for x > 0. ApplyTheorem 10.50.10.58. Consider u(x; y) = Axy+B. By hypothesis A+B = 3 and 2A+B = 7.Solve for A and B.Chapter 11, Exerises 11.9:11.112:



580 Hints and Solutions for Seleted Exerises() Suppose that there exists a meromorphi funtion with poles at 1=nfor eah n 2 N. Then, 0 (whih is a limit point of these poles), isa non-isolated singularity. Thus, the limit point of the poles of ameromorphi funtion must be the point at in�nity.(d) Suppose that there are in�nitely many an's in some losed disk jzj � R(0 < R <1). Then there must exist a subsequene fankg onvergingto a point a in this disk. Continuity of f then shows that f(a) = 0; butthen this zero is not isolated. Thus, f(z) � 0 whih is a ontradition.(f) If f(z) = ez, then f 0(z) 6= 0 in C . If f(z) = ep(z), where p(z) is a�xed polynomial of degree at least two, then f 0(z) = p0(z)ep(z) andhene f 0(z) has zero(s) at the point(s) where p0(z) has zero(s). Forinstane, if f(z) = ez3 then f 0(z) has a zero of order two at z = 0.(k) The series P1n=2 j�n��j =P1n=2 n�Re� onverges i� Re� > 1.(l) AsP1n=1 janzj = jzj jaj1�jaj <1, the produt de�nes an entire funtion.(n) SuÆes to observe that for j�j < 1,Pn = nYk=1 z�k = z�+�2+���+�n = z�(1��n)=(1��)showing that Pn ! z�=(1��): In partiular, for � = 1=2 and � = 1=3gives that1Yn=1 z2�n = z and 1Yn=1 z3�n = z1=2 = exp((1=2) Log z):(p) Note thatjfk(z)j = ���� 2kz + k3 � 1 ���� � 2jkzj � jk3 � 1j� 2kRe z � k3 + 1� 2kRe z � k3 = 2k3(kRe z�3 � 1)so that P1k=1 jfk(z)j onverges uniformly on every ompat subsetRe z � 3 + Æ, Æ > 0:(r) For instane, for z = �1, Q1n=1(1 + 1=n) =1:(s) The desired funtion is given by1Yn=1 ��1� zn� exp� zn + z22n2��n = 1Yn=1�1� zn�n exp�z + z22n� :



Hints and Solutions for Seleted Exerises 581(v) Similar to the proof for in�nite series.(w) For example, f(z) = sin�pz�pz . Is it entire?(z) Choose an entire funtion g with zeros at z = n, n 2 N and onsiderf(z) = g(1=(1 + z)).11.113:() Note that (as, for eah � > 0, jzj � e�jzj for jzj large enough)jzezj = jzjex � jzjejzj � e(�+1)jzj � exp �jzj1+�� :(d) As maxjzj=r jf(z)+ g(z)j � maxjzj=r jf(z)j+maxjzj=r jg(z)j, we haveM(r; f + g) � M(r; f) +M(r; g)� exp�r�(f)+��+ exp�r�(g)+�� for large r� 2 exp�rmaxf�(f);�(g)g+��� exp�rmaxf�(f);�(g)g+2�� for large rso that lnM(r; f + g) � rmaxf�(f);�(g)g+2� andln lnM(r; f + g)ln r � maxf�(f); �(g)g+ 2� as r !1:Sine � is arbitrary, �(f + g) � maxf�(f); �(g)g. Thus, the order ofthe sum of two entire funtions f , g annot exeed the order of f andg.(e) Without loss of generality we may assume that �(g) < �(f). Thenthe previous exerise givesM(r; f + g) � exp(r�(f)+2�)so that �(f + g) � �(f) + 2�. Therefore, it remains to show that�(f + g) � �(f)� �. First, by de�nition of lim supM(r; f) � exp(r�(f)��):Now we assume that �(f) > �(g). We an hoose � > 0 so small suhthat �(f)� � > �(g) + �:Then there exists a sequene of numbers rn suh that rn !1 andM(rn; f + g) � M(rn; f)�M(rn; g)� exp(r�(f)��n )� exp(r�(g)+�n )= exp(r�(f)��n ) h1� exp(r�(g)+�n � r�(f)��n )i� 12 exp(r�(f)��n )



582 Hints and Solutions for Seleted Exerisesbeause,r�(g)+�n � r�(f)��n = r�(f)��n hr�(g)��(f)+2�n � 1i! �1 as n!1:That is, �(f + g) � �(f). Thus, the addition of a funtion of lowerorder does not alter the order of the original funtion.(f) Use the previous two exerises.(g) As jfgj � jf j jgj implies that M(r; fg) � M(r; f)M(r; g), for every� > 0 and r suÆiently large, we haveM(r; fg) � M(r; f)M(r; g))� exp�r�(f)+�� exp�r�(g)+��� exp�2rmaxf�(f);�)gg+�� :Thus, �(fg) � maxf�(f); �(g)g and so the order of the produt oftwo entire funtions f and g annot exeed the maximum of the orderof f and g.(h) As maxjzj=r jh(z)j = maxjzj=r jf(az)j = maxj�j=jajr jf(�)j;ln lnM(r; h)ln r = ln lnM(jajr; f)ln r= ln lnM(jajr; f)ln(jajr) � ln(jajr)ln r! �(f) � 1 as r !1:(i) As maxjzj=r jh(z)j = maxjzj=r jf(zn)j = maxj�j=rn jf(�)j;ln lnM(r; h)ln r = ln lnM(rn; f)ln(rn) � ln(rn)ln r! �(f) � n as r !1:For example, as �(ez) = 1, we have �(exp zn) = n. Similarly, theorder of sin(zn) is n.(j) As maxjzj=r jh(z)j = maxjzj=r jznf(z)j = rnmaxjzj=r jf(z)j;ln lnM(r; h)ln r = ln ln(rnM(r; f))ln r= ln(n ln r + lnM(r; f))ln r� ln(lnM(r; f))ln rwhih shows that �(h) � �(f). Also, we know that every polynomialhas order 0 and, h being a produt of two entire funtions, �(h) �maxf�(zn); �(f)g = �(f). Combining the last two inequalities gives�(h) = �(f). For instane, the order of zn sin(zm) is m.



Hints and Solutions for Seleted Exerises 583(k) P1n=1 1n1+� onverges for every � > 0, so �(f) = 1.(m) We have �(ez) = 1 = �(�ez) and �(ez � ez) = �(0) = 0.(n) By substituting s = 1 in the de�nition of the � funtion, we may write1Xn=1 1n = 1Yn=1�1� 1pn��1 = 1Yn=1�1 + 1pn � 1�in the sense that the series and the produt both diverges to1. Suhan observation implies that the seriesP1n=1 1pn�1 diverges. It followsthat there are in�nitely many primes.11.116. (i) By the Weierstrass fatorization theorem, the desired entire fun-tion is given by Q1n=1E1 � zn� =Q1n=1 �1 + zn� e�z=n:(iv) Q1n=1 �1� zn5=4 � :(v) Q1n=1 �1� zn4=5 � exp �z=n4=5� :(vi) Q1n=1 �1� zn1=2 � exp �z=n1=2 + z2=(2n)� :11.117. Beause Q1k=1(1 + ak) onverges, we must have ak ! 0 as k ! 1(by Proposition 11.16). As Q1k=1(1 + jakj) diverges, then the seriesP1k=1 ak does not onverge absolutely (by Corollary 11.22) so theseries may or may not onverge. For example, if ak = (�1)k�1=kthen the produt Q1k=1(1 + ak) onverges whereas Q1k=1(1 + jakj)diverges, see 11.15(i) and (iv). In this hoie, the series P1k=1 akonverges but not absolutely.11.118. The proof is apparently in the proof of Theorem 11.30. Alternatively,we let P1k=1 jfk(z)j < M , z 2 
: Then~pn(z) := nYk=1(1 + jfk(z)j) � exp nXk=1 jfk(z)j! < exp(M)so that ~pn+1(z)� ~pn(z) = ~pn(z)jfn+1(z)j < eM jfn+1(z)j: Sine1Xn=1(~pn+1(z)� ~pn(z)) � eM 1Xn=1 jfn+1(z)jandP1n=1 jfn(z)j onverges uniformly, it follows thatP1n=1(~pn+1(z)�~pn(z)) onverges uniformly, and so does f~png. Hene, Q1k=1(1 +jfk(z)j) is uniformly onvergent.(i) If ak = (k=(k + 1))k, then limk! jakj1=k = 1 so that by the roottest the seriesP1k=1 akzk onverges absolutely for jzj < 1. Thus,the produt Q1k=1(1 + fk(z)) onverges absolutely for jzj < 1.What about for jzj � 1?



584 Hints and Solutions for Seleted Exerises(ii) For jzj < 1, fk(z) ! 1� z 6= 0 so that the produt diverges forjzj < 1.11.119. De�ne �a(z) = (a� z)=(1� az) and onsiderF (z) = f(z) mYi=1 1�ai=R(z=R)!0� nYj=1�bj=R(z=R)1A :Apply Theorem 10.31 to LogF (z) and then equate the real parts onboth sides of the resulting equation. Finally, replae z by a to get thedesired formula.11.120. For instane, onsiderf(z) = oshpz = 12(epz + e�pz) = 1Xn=1 zn(2n)! :Then f is an entire funtion of order 1=2. Indeed,jf(z)j < 12(epr + e�pr) � epr < epr+� for large values of rand for z = r > 0,jf(z)j = 12(epr + e�pr) > epr��; i.e. M(r) > epr��for large r. Similarly,ospz = 1� z2! + z24! � z36! + � � � and sinpzpz = 1� z3! + z25! � z37! + � � �are entire funtions of order 1=2.11.121. The zeros of f(z) = sin�(z + �) are an = n � �, n 2 Z. SinePn2Zjanj�1 diverges while Pn2Zjanj�(1+�) onverges for eah � >0, we set p = 1. Sine sin z is of order 1, by Theorem 11.100, thegenus of f(z) is 1. Hene, we have the representationsin�(z + �) = z0eh(z) Yn2ZE1(z=(n� �))where h(z) is a polynomial of degree at most 1. Thus, we writesin�(z + �) = eaz+b Yn2Z�1 + zn� �� ez=(n��)= (sin��)eaz Yn2Z�1 + zn� �� ez=(n��)



Hints and Solutions for Seleted Exerises 585(beause z = 0 gives that eb = sin��). In order to determine a, wetake the logarithmi derivative on both sides. We �nd� ot�(z + �) = a+Xn2Z�� 1n� a� z + 1n� a�where the proedure is easy to justify by uniform onvergene on anyompat set whih does not ontain the points n � �. Allow z ! 0to obtain a = � ot��. Substituting this value and then hanging ninto �n in the produt gives the desired formula.11.122. The order and the genus of f is 1 and 0, respetively.11.123. Note that for a = 1, this funtion redues to the (ordinary) zetafuntion (11.64). Use the method of proof of Theorem 11.67, andompare with (11.68).11.124. For n = 2, the result redues to Legendre's dupliation formula. Notethat Qn�1k=0 � �z + kn� and �(nz) have the same set of poles, namelyat z = 0;� 1n ;� 2n ; � � � so that the quotient of these funtions is entirewithout zeros. So, as in the proof of the ase for n = 2, we haven�1Yk=0 ��z + kn� = eaz+b�(nz):Replae z by z + 1=n and ompare the resulting equation with theformer to ompute the values of a and b.11.125. Rewrite the funtional equation (11.75) using the identity�(s)�(1� s) = �sin(�s) = �2 sin(�s=2) os(�s=2) :Chapter 12, Exerises 12.8:12.54:(f) This statement is simply a reformulation of Theorem 12.18.(g) By Corollary 12.8, p0(z) 6= 0 in � so that a1 6= 0 and eah zero �k ofp0(z) must lie outside the unit disk �. We may writep0(z) = a1 + 2a2z + � � � + nanzn�1 = nan n�1Yk=1(z � �k):In partiular, a1 = nanQn�1k=1 (��k) and so ja1j � jnanj, sine j�kj � 1for eah k = 1; 2; : : : ; n� 1.(r) See Step 1 in the proof of the Riemann mapping theorem. Notethat the last part of Step 1 proves the existene of suh a funtion fsatisfying f(a) = 0 and f 0(a) > 0.



586 Hints and Solutions for Seleted Exerises(s) We need to distinguish the ases when 
 = C and 
 6= C . When
 = C , the desired automorphism is given byf(z) = z + b� a:If 
 6= C , then aording to the Riemann mapping theorem there aretwo bijetive maps g : 
! � and h : �! 
 suh that g(a) = 0 andh(0) = b: Then the desired map is given by f = hÆg: Alternatively, bythe Riemann mapping theorem, if 
 6= C then there exists aG 2 H(
)suh that G is bijetive. Choose � 2 Aut (�) with �(G(a)) = G(b).Then, f = G�1 Æ � ÆG is the desired map.(t) By the open mapping theorem, the ondition on � implies that �� �f(D). So, the preimage of �� will be a subregion 
 of �. De�neg(z) = �z. Then, F = f�1 Æ g is a one-to-one mapping of � onto 
,F (0) = f�1(g(0)) = f�1(0) = 0 and F 0(0) = g0(0)f 0(0) = �f 0(0) :By Shwarz' lemma, jF 0(0)j � 1 whih gives jf 0(0)j � �.(u) Consider � : �! � given by�a(z) = a� z1� az :Then, �a(a) = 0 and �0a(a) = �1=(1� jaj2). Thus, g(z) = ��1=2(z)maps � onto itself with g(1=2) = 0 and g0(1=2) > 0. Similarly,h(z) = ��i=3(z) maps � onto itself with h(i=3) = 0 and h0(i=3) > 0.The desired mapping is then given by f = h�1 Æ g. Note thatf(1=2) = h�1(g(1=2)) = h�1(0) = i=3 and f 0(i=3) = g0(i=3)h0(g(i=3)) > 0:(v) It suÆes to note thatA = Z ZD0 du dv = Z ZD Jf (z) dx dy = Z ZD jf 0(z)j2 dx dy:(w) Now f(z) = z + z2=2 is univalent and jf 0(z)j2 = j1 + zj2. AsA = Z ZD j1 + zj2 dz= Z 2�0 Z 10 j1 + rei� j2r drd�= Z 2�0 Z 10 (1 + 2r os � + r2)r drd� = 3�2 :



Hints and Solutions for Seleted Exerises 587(y) As in Example 12.33, just onsider ��(z) de�ned there with j�j < 1and �-real. Solve ��(1=7) = ���(1=2) whih gives � = 3 or � = 1=3.Thus, �1=3(z) = (1� 3z)=(3� z) maps �� onto itself, and maps theirle ��(9=28; 5=28) onto the irle with enter at the origin andradius r = j�1=3(1=7)j = 1=5.(z) Using the idea of Example 12.33, we get R = 2 and�(z) = zei� � (1=4)1� (1=4)ei�z ; � 2 R:12.56. Note that12i Z z dz = 12i Z(x dx+ y dy) + 12 Z(x dy � y dx)= 12i Z ZD 0 dx dy + 12 Z ZD 2 dx dy= Z ZD dx dy = Area (D):12.57. Set w = f(z) and � = f(). Then f 0(z) dz = dw and12i Z f(z)f 0(z) dz = 12i Z� w dw;whih is a real number(see Exerise 12.56).12.61. The proof for the ases (iii) for n = 2, and (iv) have already beendealt with in the proof of Theorem 12.36. We provide the proof of(iii) for n 2 N as the remaining ases are easy.Let f 2 S. As F (z) = z�nf(zn) 6= 0 on �, there exists h 2 H(�) suhthat (h(z))n = F (z) with h(0) = 1. Then g de�ned by g(z) = zh(zn)belongs to H(�) and g(0) = 0 = g0(0)� 1. For the univaleny of g,g(z1) = g(z2) =) f(zn1 ) = f(zn2 )=) z1 = !z2 (!n = 1)=) g(z1) = g(!z1) = !z1h(!nzn1 ) = !g(z1)=) (1� !)g(z1) = 0; i.e. ! = 1 or z1 = 0:12.64. See the proof of the Riemann mapping theorem.12.65. See the proof of the Riemann mapping theorem.12.68. Clearly f(��) is ompat (as f is ontinuous and �� is a ompatset). Then f(C ) = f(��) [ f(C n��) =: A [ B; where A = f(��)is a ompat set and B = f(fz : jzj 6= 1g) is a subset of C nR, byhypothesis. Thus, f(C ) = C nfR nAg and so f misses more than onepoint in its image. By Piard's little Theorem, f must be onstant.
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